Integrate a system of ordinary differential equations.
Solve a system of ordinary differential equations using lsoda from the FORTRAN library odepack.
Solves the initial value problem for stiff or non-stiff systems of first order ode-s:
dy/dt = func(y,t0,...)
where y can be a vector.
Parameters : | func : callable(y, t0, ...)
y0 : array
t : array
args : tuple
Dfun : callable(y, t0, ...)
col_deriv : boolean
full_output : boolean
printmessg : boolean
|
||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Returns : | y : array, shape (len(t), len(y0))
infodict : dict, only returned if full_output == True
|
||||||||||||||||||||||||||
Other Parameters: | |||||||||||||||||||||||||||
ml, mu : int
rtol, atol : float
tcrit : ndarray
h0 : float, (0: solver-determined)
hmax : float, (0: solver-determined)
hmin : float, (0: solver-determined)
ixpr : bool
mxstep : int, (0: solver-determined)
mxhnil : int, (0: solver-determined)
mxordn : int, (0: solver-determined)
mxords : int, (0: solver-determined)
|