Return k-th derivative (or integral) of a periodic sequence x.
If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:
y_j = pow(sqrt(-1)*j*2*pi/period, order) * x_j
y_0 = 0 if order is not 0.
Parameters : | x : array_like order : int, optional
period : float, optional
|
---|
Notes
If sum(x, axis=0) = 0 then diff(diff(x, k), -k) == x (within numerical accuracy).
For odd order and even len(x), the Nyquist mode is taken zero.