This is documentation for an old release of SciPy (version 0.10.1). Read this page Search for this page in the documentation of the latest stable release (version 1.15.1).
scipy.stats.rv_continuous.fit
-
rv_continuous.fit(data, *args, **kwds)
Return MLEs for shape, location, and scale parameters from data.
MLE stands for Maximum Likelihood Estimate. Starting estimates for
the fit are given by input arguments; for any arguments not provided
with starting estimates, self._fitstart(data) is called to generate
such.
One can hold some parameters fixed to specific values by passing in
keyword arguments f0, f1, ..., fn (for shape parameters)
and floc and fscale (for location and scale parameters,
respectively).
Parameters : | data : array_like
Data to use in calculating the MLEs
args : floats, optional
Starting value(s) for any shape-characterizing arguments (those not
provided will be determined by a call to _fitstart(data)).
No default value.
kwds : floats, optional
Starting values for the location and scale parameters; no default.
Special keyword arguments are recognized as holding certain
parameters fixed:
f0...fn : hold respective shape parameters fixed.
floc : hold location parameter fixed to specified value.
fscale : hold scale parameter fixed to specified value.
- optimizer : The optimizer to use. The optimizer must take func,
and starting position as the first two arguments,
plus args (for extra arguments to pass to the
function to be optimized) and disp=0 to suppress
output as keyword arguments.
|
Returns : | shape, loc, scale : tuple of floats
MLEs for any shape statistics, followed by those for location and
scale.
|