This is documentation for an old release of SciPy (version 0.10.1). Read this page in the documentation of the latest stable release (version 1.15.1).
Returns plotting positions (or empirical percentile points) for the data.
(0,1) : p(k) = k/n, linear interpolation of cdf (R, type 4)
(R, type 5)
(0,0) : p(k) = k/(n+1), Weibull (R type 6)
p(k) = mode[F(x[k])]. That’s R default (R type 7)
p(k) ~ median[F(x[k])].
The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8)
(3/8,3/8): p(k) = (k-3/8)/(n+1/4), Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9)
(.4,.4) : approximately quantile unbiased (Cunnane)
(.35,.35): APL, used with PWM
(.3175, .3175): used in scipy.stats.probplot
Parameters : | data : array_like
alpha : float, optional
beta : float, optional
|
---|---|
Returns : | positions : MaskedArray
|