Returns plotting positions (or empirical percentile points) for the data.
(0,1) : p(k) = k/n, linear interpolation of cdf (R, type 4)
(R, type 5)
(0,0) : p(k) = k/(n+1), Weibull (R type 6)
p(k) = mode[F(x[k])]. That’s R default (R type 7)
p(k) ~ median[F(x[k])].
The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8)
(3/8,3/8): p(k) = (k-3/8)/(n+1/4), Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9)
(.4,.4) : approximately quantile unbiased (Cunnane)
(.35,.35): APL, used with PWM
(.3175, .3175): used in scipy.stats.probplot
Parameters : | data : array_like
alpha : float, optional
beta : float, optional
|
---|---|
Returns : | positions : MaskedArray
|