This is documentation for an old release of SciPy (version 0.10.1). Read this page in the documentation of the latest stable release (version 1.15.0).
A logarithmic discrete random variable.
Discrete random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters : | x : array_like
q : array_like
pr : array_like
loc : array_like, optional
scale : array_like, optional
size : int or tuple of ints, optional
moments : str, optional
Alternatively, the object may be called (as a function) to fix the shape and : location parameters returning a “frozen” discrete RV object: : rv = logser(pr, loc=0) :
|
---|
Notes
Logarithmic (Log-Series, Series) distribution
logser.pmf(k,p) = - p**k / (k*log(1-p)) for k >= 1
Examples
>>> from scipy.stats import logser
>>> numargs = logser.numargs
>>> [ pr ] = Replace with reasonable value * numargs
>>> rv = logser(pr)
Display frozen pdf
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = logser.cdf(x, pr)
>>> h = plt.semilogy(np.abs(x - logser.ppf(prb, pr)) + 1e-20)
Random number generation
>>> R = logser.rvs(pr, size=100)
Methods
rvs(pr, loc=0, size=1) | Random variates. |
pmf(x, pr, loc=0) | Probability mass function. |
logpmf(x, pr, loc=0) | Log of the probability mass function. |
cdf(x, pr, loc=0) | Cumulative density function. |
logcdf(x, pr, loc=0) | Log of the cumulative density function. |
sf(x, pr, loc=0) | Survival function (1-cdf — sometimes more accurate). |
logsf(x, pr, loc=0) | Log of the survival function. |
ppf(q, pr, loc=0) | Percent point function (inverse of cdf — percentiles). |
isf(q, pr, loc=0) | Inverse survival function (inverse of sf). |
stats(pr, loc=0, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(pr, loc=0) | (Differential) entropy of the RV. |
fit(data, pr, loc=0) | Parameter estimates for generic data. |
expect(func, pr, loc=0, lb=None, ub=None, conditional=False) | Expected value of a function (of one argument) with respect to the distribution. |
median(pr, loc=0) | Median of the distribution. |
mean(pr, loc=0) | Mean of the distribution. |
var(pr, loc=0) | Variance of the distribution. |
std(pr, loc=0) | Standard deviation of the distribution. |
interval(alpha, pr, loc=0) | Endpoints of the range that contains alpha percent of the distribution |