General Kolmogorov-Smirnov one-sided test.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters : | x : array_like
q : array_like
n : array_like
loc : array_like, optional
scale : array_like, optional
size : int or tuple of ints, optional
moments : str, optional
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = ksone(n, loc=0, scale=1) :
Examples : ——– : >>> from scipy.stats import ksone : >>> numargs = ksone.numargs : >>> [ n ] = [0.9,] * numargs : >>> rv = ksone(n) : Display frozen pdf : >>> x = np.linspace(0, np.minimum(rv.dist.b, 3)) : >>> h = plt.plot(x, rv.pdf(x)) : Check accuracy of cdf and ppf : >>> prb = ksone.cdf(x, n) : >>> h = plt.semilogy(np.abs(x - ksone.ppf(prb, n)) + 1e-20) : Random number generation : >>> R = ksone.rvs(n, size=100) : |
---|
Methods
rvs(n, loc=0, scale=1, size=1) | Random variates. |
pdf(x, n, loc=0, scale=1) | Probability density function. |
logpdf(x, n, loc=0, scale=1) | Log of the probability density function. |
cdf(x, n, loc=0, scale=1) | Cumulative density function. |
logcdf(x, n, loc=0, scale=1) | Log of the cumulative density function. |
sf(x, n, loc=0, scale=1) | Survival function (1-cdf — sometimes more accurate). |
logsf(x, n, loc=0, scale=1) | Log of the survival function. |
ppf(q, n, loc=0, scale=1) | Percent point function (inverse of cdf — percentiles). |
isf(q, n, loc=0, scale=1) | Inverse survival function (inverse of sf). |
moment(n, n, loc=0, scale=1) | Non-central moment of order n |
stats(n, loc=0, scale=1, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(n, loc=0, scale=1) | (Differential) entropy of the RV. |
fit(data, n, loc=0, scale=1) | Parameter estimates for generic data. |
expect(func, n, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
median(n, loc=0, scale=1) | Median of the distribution. |
mean(n, loc=0, scale=1) | Mean of the distribution. |
var(n, loc=0, scale=1) | Variance of the distribution. |
std(n, loc=0, scale=1) | Standard deviation of the distribution. |
interval(alpha, n, loc=0, scale=1) | Endpoints of the range that contains alpha percent of the distribution |