This is documentation for an old release of SciPy (version 0.10.1). Read this page in the documentation of the latest stable release (version 1.15.1).
Solve symmetric partial eigenproblems with optional preconditioning
This function implements the Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG).
Parameters : | A : {sparse matrix, dense matrix, LinearOperator}
X : array_like
B : {dense matrix, sparse matrix, LinearOperator}, optional
M : {dense matrix, sparse matrix, LinearOperator}, optional
Y : array_like, optional
|
---|---|
Returns : | w : array
v : array
|
Other Parameters: | |
tol : scalar, optional
maxiter: integer, optional :
largest : boolean, optional
verbosityLevel : integer, optional
retLambdaHistory : boolean, optional
retResidualNormsHistory : boolean, optional
|
Notes
If both retLambdaHistory and retResidualNormsHistory are True, the return tuple has the following format (lambda, V, lambda history, residual norms history)