Dictionary Of Keys based sparse matrix.
This is an efficient structure for constructing sparse matrices incrementally.
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Allows for efficient O(1) access of individual elements. Duplicates are not allowed. Can be efficiently converted to a coo_matrix once constructed.
Examples
>>> from scipy.sparse import *
>>> from scipy import *
>>> S = dok_matrix((5,5), dtype=float32)
>>> for i in range(5):
>>> for j in range(5):
>>> S[i,j] = i+j # Update element
Attributes
| shape | |
| ndim | int(x[, base]) -> integer |
| nnz |
| dtype | dtype | Data type of the matrix |
Methods
| asformat(format) | Return this matrix in a given sparse format |
| asfptype() | Upcast matrix to a floating point format (if necessary) |
| astype(t) | |
| clear | D.clear() -> None. Remove all items from D. |
| conj() | |
| conjtransp() | Return the conjugate transpose |
| conjugate() | |
| copy() | |
| diagonal() | Returns the main diagonal of the matrix |
| dot(other) | |
| fromkeys(...) | v defaults to None. |
| get(key[, default]) | This overrides the dict.get method, providing type checking |
| getH() | |
| get_shape() | |
| getcol(j) | Returns a copy of column j of the matrix, as an (m x 1) sparse |
| getformat() | |
| getmaxprint() | |
| getnnz() | |
| getrow(i) | Returns a copy of row i of the matrix, as a (1 x n) sparse |
| has_key | D.has_key(k) -> True if D has a key k, else False |
| items | D.items() -> list of D’s (key, value) pairs, as 2-tuples |
| iteritems | D.iteritems() -> an iterator over the (key, value) items of D |
| iterkeys | D.iterkeys() -> an iterator over the keys of D |
| itervalues | D.itervalues() -> an iterator over the values of D |
| keys | D.keys() -> list of D’s keys |
| mean([axis]) | Average the matrix over the given axis. |
| multiply(other) | Point-wise multiplication by another matrix |
| nonzero() | nonzero indices |
| pop | D.pop(k[,d]) -> v, remove specified key and return the corresponding value. |
| popitem | D.popitem() -> (k, v), remove and return some (key, value) pair as a |
| reshape(shape) | |
| resize(shape) | Resize the matrix in-place to dimensions given by ‘shape’. |
| set_shape(shape) | |
| setdefault | D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D |
| setdiag(values[, k]) | Fills the diagonal elements {a_ii} with the values from the given sequence. |
| split(cols_or_rows[, columns]) | |
| sum([axis]) | Sum the matrix over the given axis. |
| take(cols_or_rows[, columns]) | |
| toarray() | |
| tobsr([blocksize]) | |
| tocoo() | Return a copy of this matrix in COOrdinate format |
| tocsc() | Return a copy of this matrix in Compressed Sparse Column format |
| tocsr() | Return a copy of this matrix in Compressed Sparse Row format |
| todense() | |
| todia() | |
| todok([copy]) | |
| tolil() | |
| transpose() | Return the transpose |
| update | D.update(E, **F) -> None. Update D from dict/iterable E and F. |
| values | D.values() -> list of D’s values |
| viewitems | D.viewitems() -> a set-like object providing a view on D’s items |
| viewkeys | D.viewkeys() -> a set-like object providing a view on D’s keys |
| viewvalues | D.viewvalues() -> an object providing a view on D’s values |