This is documentation for an old release of SciPy (version 0.10.1). Read this page in the documentation of the latest stable release (version 1.15.1).
Dictionary Of Keys based sparse matrix.
This is an efficient structure for constructing sparse matrices incrementally.
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Allows for efficient O(1) access of individual elements. Duplicates are not allowed. Can be efficiently converted to a coo_matrix once constructed.
Examples
>>> from scipy.sparse import *
>>> from scipy import *
>>> S = dok_matrix((5,5), dtype=float32)
>>> for i in range(5):
>>> for j in range(5):
>>> S[i,j] = i+j # Update element
Attributes
shape | |
ndim | int(x[, base]) -> integer |
nnz |
dtype | dtype | Data type of the matrix |
Methods
asformat(format) | Return this matrix in a given sparse format |
asfptype() | Upcast matrix to a floating point format (if necessary) |
astype(t) | |
clear | D.clear() -> None. Remove all items from D. |
conj() | |
conjtransp() | Return the conjugate transpose |
conjugate() | |
copy() | |
diagonal() | Returns the main diagonal of the matrix |
dot(other) | |
fromkeys(...) | v defaults to None. |
get(key[, default]) | This overrides the dict.get method, providing type checking |
getH() | |
get_shape() | |
getcol(j) | Returns a copy of column j of the matrix, as an (m x 1) sparse |
getformat() | |
getmaxprint() | |
getnnz() | |
getrow(i) | Returns a copy of row i of the matrix, as a (1 x n) sparse |
has_key | D.has_key(k) -> True if D has a key k, else False |
items | D.items() -> list of D’s (key, value) pairs, as 2-tuples |
iteritems | D.iteritems() -> an iterator over the (key, value) items of D |
iterkeys | D.iterkeys() -> an iterator over the keys of D |
itervalues | D.itervalues() -> an iterator over the values of D |
keys | D.keys() -> list of D’s keys |
mean([axis]) | Average the matrix over the given axis. |
multiply(other) | Point-wise multiplication by another matrix |
nonzero() | nonzero indices |
pop | D.pop(k[,d]) -> v, remove specified key and return the corresponding value. |
popitem | D.popitem() -> (k, v), remove and return some (key, value) pair as a |
reshape(shape) | |
resize(shape) | Resize the matrix in-place to dimensions given by ‘shape’. |
set_shape(shape) | |
setdefault | D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D |
setdiag(values[, k]) | Fills the diagonal elements {a_ii} with the values from the given sequence. |
split(cols_or_rows[, columns]) | |
sum([axis]) | Sum the matrix over the given axis. |
take(cols_or_rows[, columns]) | |
toarray() | |
tobsr([blocksize]) | |
tocoo() | Return a copy of this matrix in COOrdinate format |
tocsc() | Return a copy of this matrix in Compressed Sparse Column format |
tocsr() | Return a copy of this matrix in Compressed Sparse Row format |
todense() | |
todia() | |
todok([copy]) | |
tolil() | |
transpose() | Return the transpose |
update | D.update(E, **F) -> None. Update D from dict/iterable E and F. |
values | D.values() -> list of D’s values |
viewitems | D.viewitems() -> a set-like object providing a view on D’s items |
viewkeys | D.viewkeys() -> a set-like object providing a view on D’s keys |
viewvalues | D.viewvalues() -> an object providing a view on D’s values |