This is documentation for an old release of SciPy (version 0.10.1). Read this page in the documentation of the latest stable release (version 1.15.1).
Compressed Sparse Column matrix
This can be instantiated in several ways:
- csc_matrix(D)
- with a dense matrix or rank-2 ndarray D
- csc_matrix(S)
- with another sparse matrix S (equivalent to S.tocsc())
- csc_matrix((M, N), [dtype])
- to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.
- csc_matrix((data, ij), [shape=(M, N)])
- where data and ij satisfy the relationship a[ij[0, k], ij[1, k]] = data[k]
- csc_matrix((data, indices, indptr), [shape=(M, N)])
- is the standard CSC representation where the row indices for column i are stored in indices[indptr[i]:indices[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Examples
>>> from scipy.sparse import *
>>> from scipy import *
>>> csc_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = array([0,2,2,0,1,2])
>>> col = array([0,0,1,2,2,2])
>>> data = array([1,2,3,4,5,6])
>>> csc_matrix( (data,(row,col)), shape=(3,3) ).todense()
matrix([[1, 0, 4],
[0, 0, 5],
[2, 3, 6]])
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csc_matrix( (data,indices,indptr), shape=(3,3) ).todense()
matrix([[1, 0, 4],
[0, 0, 5],
[2, 3, 6]])
Attributes
dtype | |
shape | |
ndim | int(x[, base]) -> integer |
nnz | |
has_sorted_indices | Determine whether the matrix has sorted indices |
data | Data array of the matrix |
indices | CSC format index array |
indptr | CSC format index pointer array |
Methods
asformat(format) | Return this matrix in a given sparse format |
asfptype() | Upcast matrix to a floating point format (if necessary) |
astype(t) | |
check_format([full_check]) | check whether the matrix format is valid |
conj() | |
conjugate() | |
copy() | |
diagonal() | Returns the main diagonal of the matrix |
dot(other) | |
eliminate_zeros() | Remove zero entries from the matrix |
getH() | |
get_shape() | |
getcol(j) | Returns a copy of column j of the matrix, as an (m x 1) sparse |
getformat() | |
getmaxprint() | |
getnnz() | |
getrow(i) | Returns a copy of row i of the matrix, as a (1 x n) sparse |
mean([axis]) | Average the matrix over the given axis. |
multiply(other) | Point-wise multiplication by another matrix |
nonzero() | nonzero indices |
prune() | Remove empty space after all non-zero elements. |
reshape(shape) | |
set_shape(shape) | |
setdiag(values[, k]) | Fills the diagonal elements {a_ii} with the values from the given sequence. |
sort_indices() | Sort the indices of this matrix in place |
sorted_indices() | Return a copy of this matrix with sorted indices |
sum([axis]) | Sum the matrix over the given axis. |
sum_duplicates() | Eliminate duplicate matrix entries by adding them together |
toarray() | |
tobsr([blocksize]) | |
tocoo([copy]) | Return a COOrdinate representation of this matrix |
tocsc([copy]) | |
tocsr() | |
todense() | |
todia() | |
todok() | |
tolil() | |
transpose([copy]) |