Block Sparse Row matrix
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Summary of BSR format:
- The Block Compressed Row (BSR) format is very similar to the Compressed Sparse Row (CSR) format. BSR is appropriate for sparse matrices with dense sub matrices like the last example below. Block matrices often arise in vector-valued finite element discretizations. In such cases, BSR is considerably more efficient than CSR and CSC for many sparse arithmetic operations.
Examples
>>> from scipy.sparse import *
>>> from scipy import *
>>> bsr_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = array([0,0,1,2,2,2])
>>> col = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> bsr_matrix( (data,(row,col)), shape=(3,3) ).todense()
matrix([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6]).repeat(4).reshape(6,2,2)
>>> bsr_matrix( (data,indices,indptr), shape=(6,6) ).todense()
matrix([[1, 1, 0, 0, 2, 2],
[1, 1, 0, 0, 2, 2],
[0, 0, 0, 0, 3, 3],
[0, 0, 0, 0, 3, 3],
[4, 4, 5, 5, 6, 6],
[4, 4, 5, 5, 6, 6]])
Attributes
dtype | |
shape | |
ndim | int(x[, base]) -> integer |
nnz | |
blocksize | |
has_sorted_indices | Determine whether the matrix has sorted indices |
data | Data array of the matrix |
indices | BSR format index array |
indptr | BSR format index pointer array |
Methods
asformat(format) | Return this matrix in a given sparse format |
asfptype() | Upcast matrix to a floating point format (if necessary) |
astype(t) | |
check_format([full_check]) | check whether the matrix format is valid |
conj() | |
conjugate() | |
copy() | |
diagonal() | Returns the main diagonal of the matrix |
dot(other) | |
eliminate_zeros() | |
getH() | |
get_shape() | |
getcol(j) | Returns a copy of column j of the matrix, as an (m x 1) sparse |
getdata(ind) | |
getformat() | |
getmaxprint() | |
getnnz() | |
getrow(i) | Returns a copy of row i of the matrix, as a (1 x n) sparse |
matmat(other) | |
matvec(other) | |
mean([axis]) | Average the matrix over the given axis. |
multiply(other) | Point-wise multiplication by another matrix |
nonzero() | nonzero indices |
prune() | Remove empty space after all non-zero elements. |
reshape(shape) | |
set_shape(shape) | |
setdiag(values[, k]) | Fills the diagonal elements {a_ii} with the values from the given sequence. |
sort_indices() | Sort the indices of this matrix in place |
sorted_indices() | Return a copy of this matrix with sorted indices |
sum([axis]) | Sum the matrix over the given axis. |
sum_duplicates() | |
toarray() | |
tobsr([blocksize, copy]) | |
tocoo([copy]) | Convert this matrix to COOrdinate format. |
tocsc() | |
tocsr() | |
todense() | |
todia() | |
todok() | |
tolil() | |
transpose() |