Parameters : | func : callable
should take at least one (possibly length N vector) argument and
returns M floating point numbers.
x0 : ndarray
The starting estimate for the minimization.
args : tuple
Any extra arguments to func are placed in this tuple.
Dfun : callable
A function or method to compute the Jacobian of func with derivatives
across the rows. If this is None, the Jacobian will be estimated.
full_output : bool
non-zero to return all optional outputs.
col_deriv : bool
non-zero to specify that the Jacobian function computes derivatives
down the columns (faster, because there is no transpose operation).
ftol : float
Relative error desired in the sum of squares.
xtol : float
Relative error desired in the approximate solution.
gtol : float
Orthogonality desired between the function vector and the columns of
the Jacobian.
maxfev : int
The maximum number of calls to the function. If zero, then 100*(N+1) is
the maximum where N is the number of elements in x0.
epsfcn : float
A suitable step length for the forward-difference approximation of the
Jacobian (for Dfun=None). If epsfcn is less than the machine precision,
it is assumed that the relative errors in the functions are of the
order of the machine precision.
factor : float
A parameter determining the initial step bound
(factor * || diag * x||). Should be in interval (0.1, 100).
diag : sequence
N positive entries that serve as a scale factors for the variables.
|
Returns : | x : ndarray
The solution (or the result of the last iteration for an unsuccessful
call).
cov_x : ndarray
Uses the fjac and ipvt optional outputs to construct an
estimate of the jacobian around the solution. None if a
singular matrix encountered (indicates very flat curvature in
some direction). This matrix must be multiplied by the
residual standard deviation to get the covariance of the
parameter estimates – see curve_fit.
infodict : dict
a dictionary of optional outputs with the key s:
- 'nfev' : the number of function calls
- 'fvec' : the function evaluated at the output
- 'fjac' : A permutation of the R matrix of a QR
factorization of the final approximate
Jacobian matrix, stored column wise.
Together with ipvt, the covariance of the
estimate can be approximated.
- 'ipvt' : an integer array of length N which defines
a permutation matrix, p, such that
fjac*p = q*r, where r is upper triangular
with diagonal elements of nonincreasing
magnitude. Column j of p is column ipvt(j)
of the identity matrix.
- 'qtf' : the vector (transpose(q) * fvec).
mesg : str
A string message giving information about the cause of failure.
ier : int
An integer flag. If it is equal to 1, 2, 3 or 4, the solution was
found. Otherwise, the solution was not found. In either case, the
optional output variable ‘mesg’ gives more information.
|