This is documentation for an old release of SciPy (version 0.10.1). Read this page Search for this page in the documentation of the latest stable release (version 1.15.1).
scipy.interpolate.LSQBivariateSpline
-
class scipy.interpolate.LSQBivariateSpline(x, y, z, tx, ty, w=None, bbox=[None, None, None, None], kx=3, ky=3, eps=None)
Weighted least-squares bivariate spline approximation.
Parameters : | x, y, z : array_like
1-D sequences of data points (order is not important).
tx, ty : array_like
Strictly ordered 1-D sequences of knots coordinates.
w : array_lie, optional
Positive 1-D sequence of weights.
bbox : array_like, optional
Sequence of length 4 specifying the boundary of the rectangular
approximation domain. By default,
bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)].
kx, ky : ints, optional
Degrees of the bivariate spline. Default is 3.
s : float, optional
Positive smoothing factor defined for estimation condition:
sum((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0) <= s
Default s=len(w) which should be a good value if 1/w[i] is an
estimate of the standard deviation of z[i].
eps : float, optional
A threshold for determining the effective rank of an over-determined
linear system of equations. eps should have a value between 0 and 1,
the default is 1e-16.
|
See also
bisplrep, bisplev
- UnivariateSpline
- a similar class for univariate spline interpolation
- SmoothUnivariateSpline
- To create a BivariateSpline through the given points
Notes
The length of x, y and z should be at least (kx+1) * (ky+1).
Methods
__call__(x, y[, mth]) |
Evaluate spline at positions x,y. |
ev(xi, yi) |
Evaluate spline at points (x[i], y[i]), i=0,...,len(x)-1 |
get_coeffs() |
Return spline coefficients. |
get_knots() |
Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively. |
get_residual() |
Return weighted sum of squared residuals of the spline |
integral(xa, xb, ya, yb) |
Evaluate the integral of the spline over area [xa,xb] x [ya,yb]. |