Filter data along one-dimension with an IIR or FIR filter.
Filter a data sequence, x, using a digital filter. This works for many fundamental data types (including Object type). The filter is a direct form II transposed implementation of the standard difference equation (see Notes).
Parameters : | b : array_like
a : array_like
x : array_like
axis : int
zi : array_like (optional)
|
---|---|
Returns : | y : array
zf : array (optional)
|
Notes
The filter function is implemented as a direct II transposed structure. This means that the filter implements
a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[nb]*x[n-nb]
- a[1]*y[n-1] - ... - a[na]*y[n-na]
using the following difference equations:
y[m] = b[0]*x[m] + z[0,m-1]
z[0,m] = b[1]*x[m] + z[1,m-1] - a[1]*y[m]
...
z[n-3,m] = b[n-2]*x[m] + z[n-2,m-1] - a[n-2]*y[m]
z[n-2,m] = b[n-1]*x[m] - a[n-1]*y[m]
where m is the output sample number and n=max(len(a),len(b)) is the model order.
The rational transfer function describing this filter in the z-transform domain is:
-1 -nb
b[0] + b[1]z + ... + b[nb] z
Y(z) = ---------------------------------- X(z)
-1 -na
a[0] + a[1]z + ... + a[na] z