# Polynomial Module (`numpy.polynomial.polynomial`)¶

New in version 1.4.0.

This module provides a number of objects (mostly functions) useful for dealing with Polynomial series, including a `Polynomial` class that encapsulates the usual arithmetic operations. (General information on how this module represents and works with such polynomials is in the docstring for its “parent” sub-package, `numpy.polynomial`).

## Polynomial Class¶

 `Polynomial`(coef[, domain, window]) A power series class.

## Basics¶

 `polyval`(x, c[, tensor]) Evaluate a polynomial at points x. `polyval2d`(x, y, c) Evaluate a 2-D polynomial at points (x, y). `polyval3d`(x, y, z, c) Evaluate a 3-D polynomial at points (x, y, z). `polygrid2d`(x, y, c) Evaluate a 2-D polynomial on the Cartesian product of x and y. `polygrid3d`(x, y, z, c) Evaluate a 3-D polynomial on the Cartesian product of x, y and z. `polyroots`(c) Compute the roots of a polynomial. `polyfromroots`(roots) Generate a monic polynomial with given roots. `polyvalfromroots`(x, r[, tensor]) Evaluate a polynomial specified by its roots at points x.

## Fitting¶

 `polyfit`(x, y, deg[, rcond, full, w]) Least-squares fit of a polynomial to data. `polyvander`(x, deg) Vandermonde matrix of given degree. `polyvander2d`(x, y, deg) Pseudo-Vandermonde matrix of given degrees. `polyvander3d`(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.

## Calculus¶

 `polyder`(c[, m, scl, axis]) Differentiate a polynomial. `polyint`(c[, m, k, lbnd, scl, axis]) Integrate a polynomial.

## Algebra¶

 `polyadd`(c1, c2) Add one polynomial to another. `polysub`(c1, c2) Subtract one polynomial from another. `polymul`(c1, c2) Multiply one polynomial by another. `polymulx`(c) Multiply a polynomial by x. `polydiv`(c1, c2) Divide one polynomial by another. `polypow`(c, pow[, maxpower]) Raise a polynomial to a power.

## Miscellaneous¶

 `polycompanion`(c) Return the companion matrix of c. `polydomain` `polyzero` `polyone` `polyx` `polytrim`(c[, tol]) Remove “small” “trailing” coefficients from a polynomial. `polyline`(off, scl) Returns an array representing a linear polynomial.