numpy.gradient¶
- numpy.gradient(f, *varargs, **kwargs)[source]¶
Return the gradient of an N-dimensional array.
The gradient is computed using second order accurate central differences in the interior and either first differences or second order accurate one-sides (forward or backwards) differences at the boundaries. The returned gradient hence has the same shape as the input array.
Parameters: f : array_like
An N-dimensional array containing samples of a scalar function.
varargs : list of scalar, optional
N scalars specifying the sample distances for each dimension, i.e. dx, dy, dz, ... Default distance: 1.
edge_order : {1, 2}, optional
Gradient is calculated using Nth order accurate differences at the boundaries. Default: 1.
New in version 1.9.1.
Returns: gradient : ndarray
N arrays of the same shape as f giving the derivative of f with respect to each dimension.
Examples
>>> x = np.array([1, 2, 4, 7, 11, 16], dtype=np.float) >>> np.gradient(x) array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ]) >>> np.gradient(x, 2) array([ 0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ])
>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float)) [array([[ 2., 2., -1.], [ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ], [ 1. , 1. , 1. ]])]
>>> x = np.array([0, 1, 2, 3, 4]) >>> dx = np.gradient(x) >>> y = x**2 >>> np.gradient(y, dx, edge_order=2) array([-0., 2., 4., 6., 8.])