numpy.log2¶
- numpy.log2(x[, out]) = <ufunc 'log2'>¶
Base-2 logarithm of x.
Parameters: x : array_like
Input values.
Returns: y : ndarray
Base-2 logarithm of x.
Notes
New in version 1.3.0.
Logarithm is a multivalued function: for each x there is an infinite number of z such that 2**z = x. The convention is to return the z whose imaginary part lies in [-pi, pi].
For real-valued input data types, log2 always returns real output. For each value that cannot be expressed as a real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, log2 is a complex analytical function that has a branch cut [-inf, 0] and is continuous from above on it. log2 handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard.
Examples
>>> x = np.array([0, 1, 2, 2**4]) >>> np.log2(x) array([-Inf, 0., 1., 4.])
>>> xi = np.array([0+1.j, 1, 2+0.j, 4.j]) >>> np.log2(xi) array([ 0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j])