# numpy.linalg.eigvals¶

numpy.linalg.eigvals(a)[source]

Compute the eigenvalues of a general matrix.

Main difference between eigvals and eig: the eigenvectors aren’t returned.

Parameters : a : (..., M, M) array_like A complex- or real-valued matrix whose eigenvalues will be computed. w : (..., M,) ndarray The eigenvalues, each repeated according to its multiplicity. They are not necessarily ordered, nor are they necessarily real for real matrices. LinAlgError If the eigenvalue computation does not converge.

eig
eigenvalues and right eigenvectors of general arrays
eigvalsh
eigenvalues of symmetric or Hermitian arrays.
eigh
eigenvalues and eigenvectors of symmetric/Hermitian arrays.

Notes

Broadcasting rules apply, see the numpy.linalg documentation for details.

This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays.

Examples

Illustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a matrix on the left by an orthogonal matrix, Q, and on the right by Q.T (the transpose of Q), preserves the eigenvalues of the “middle” matrix. In other words, if Q is orthogonal, then Q * A * Q.T has the same eigenvalues as A:

```>>> from numpy import linalg as LA
>>> x = np.random.random()
>>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]])
>>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :])
(1.0, 1.0, 0.0)
```

Now multiply a diagonal matrix by Q on one side and by Q.T on the other:

```>>> D = np.diag((-1,1))
>>> LA.eigvals(D)
array([-1.,  1.])
>>> A = np.dot(Q, D)
>>> A = np.dot(A, Q.T)
>>> LA.eigvals(A)
array([ 1., -1.])
```

#### Previous topic

numpy.linalg.eigh

#### Next topic

numpy.linalg.eigvalsh