Raise an assertion if two items are not equal up to desired precision.
Note
It is recommended to use one of assert_allclose, assert_array_almost_equal_nulp or assert_array_max_ulp instead of this function for more consistent floating point comparisons.
The test is equivalent to abs(desired-actual) < 0.5 * 10**(-decimal).
Given two objects (numbers or ndarrays), check that all elements of these objects are almost equal. An exception is raised at conflicting values. For ndarrays this delegates to assert_array_almost_equal
| Parameters : | actual : array_like 
 desired : array_like 
 decimal : int, optional 
 err_msg : str, optional 
 verbose : bool, optional 
  | 
|---|---|
| Raises : | AssertionError : 
  | 
See also
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
Examples
>>> import numpy.testing as npt
>>> npt.assert_almost_equal(2.3333333333333, 2.33333334)
>>> npt.assert_almost_equal(2.3333333333333, 2.33333334, decimal=10)
...
<type 'exceptions.AssertionError'>:
Items are not equal:
 ACTUAL: 2.3333333333333002
 DESIRED: 2.3333333399999998
>>> npt.assert_almost_equal(np.array([1.0,2.3333333333333]),
...                         np.array([1.0,2.33333334]), decimal=9)
...
<type 'exceptions.AssertionError'>:
Arrays are not almost equal
(mismatch 50.0%)
 x: array([ 1.        ,  2.33333333])
 y: array([ 1.        ,  2.33333334])