Evaluate a polynomial at points x.
If c is of length n + 1, this function returns the value

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In either case, either x or its elements must support multiplication and addition both with themselves and with the elements of c.
If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the shape will be c.shape[1:]. Note that scalars have shape (,).
Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a concern.
| Parameters : | x : array_like, compatible object 
 c : array_like 
 tensor : boolean, optional 
  | 
|---|---|
| Returns : | values : ndarray, compatible object 
  | 
See also
Notes
The evaluation uses Horner’s method.
Examples
>>> from numpy.polynomial.polynomial import polyval
>>> polyval(1, [1,2,3])
6.0
>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],
       [2, 3]])
>>> polyval(a, [1,2,3])
array([[  1.,   6.],
       [ 17.,  34.]])
>>> coef = np.arange(4).reshape(2,2) # multidimensional coefficients
>>> coef
array([[0, 1],
       [2, 3]])
>>> polyval([1,2], coef, tensor=True)
array([[ 2.,  4.],
       [ 4.,  7.]])
>>> polyval([1,2], coef, tensor=False)
array([ 2.,  7.])