Integrate a Legendre series.
Returns the Legendre series coefficients c integrated m times from lbnd along axis. At each iteration the resulting series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a linear change of variable. (“Buyer beware”: note that, depending on what one is doing, one may want scl to be the reciprocal of what one might expect; for more information, see the Notes section below.) The argument c is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series L_0 + 2*L_1 + 3*L_2 while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is y.
Parameters : | c : array_like
m : int, optional
k : {[], list, scalar}, optional
lbnd : scalar, optional
scl : scalar, optional
axis : int, optional
|
---|---|
Returns : | S : ndarray
|
Raises : | ValueError :
|
See also
Notes
Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a linear change of variable in an integral relative to x. Then .. math::dx = du/a, so one will need to set scl equal to - perhaps not what one would have first thought.
Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis set. Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.
Examples
>>> from numpy.polynomial import legendre as L
>>> c = (1,2,3)
>>> L.legint(c)
array([ 0.33333333, 0.4 , 0.66666667, 0.6 ])
>>> L.legint(c, 3)
array([ 1.66666667e-02, -1.78571429e-02, 4.76190476e-02,
-1.73472348e-18, 1.90476190e-02, 9.52380952e-03])
>>> L.legint(c, k=3)
array([ 3.33333333, 0.4 , 0.66666667, 0.6 ])
>>> L.legint(c, lbnd=-2)
array([ 7.33333333, 0.4 , 0.66666667, 0.6 ])
>>> L.legint(c, scl=2)
array([ 0.66666667, 0.8 , 1.33333333, 1.2 ])