Generate a Chebyshev series with given roots.
The function returns the coefficients of the polynomial
in Chebyshev form, where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must appear in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots looks something like [2, 2, 2, 3, 3]. The roots can appear in any order.
If the returned coefficients are c, then
The coefficient of the last term is not generally 1 for monic polynomials in Chebyshev form.
Parameters : | roots : array_like
|
---|---|
Returns : | out : ndarray
|
See also
polyfromroots, legfromroots, lagfromroots, hermfromroots, hermefromroots.
Examples
>>> import numpy.polynomial.chebyshev as C
>>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis
array([ 0. , -0.25, 0. , 0.25])
>>> j = complex(0,1)
>>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis
array([ 1.5+0.j, 0.0+0.j, 0.5+0.j])