Mask the array x where the data are exactly equal to value.
This function is similar to masked_values, but only suitable for object arrays: for floating point, use masked_values instead.
| Parameters : | x : array_like 
 value : object 
 copy : {True, False}, optional 
 shrink : {True, False}, optional 
  | 
|---|---|
| Returns : | result : MaskedArray 
  | 
See also
Examples
>>> import numpy.ma as ma
>>> food = np.array(['green_eggs', 'ham'], dtype=object)
>>> # don't eat spoiled food
>>> eat = ma.masked_object(food, 'green_eggs')
>>> print eat
[-- ham]
>>> # plain ol` ham is boring
>>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object)
>>> eat = ma.masked_object(fresh_food, 'green_eggs')
>>> print eat
[cheese ham pineapple]
Note that mask is set to nomask if possible.
>>> eat
masked_array(data = [cheese ham pineapple],
      mask = False,
      fill_value=?)