Inner product of two arrays.
Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes.
| Parameters : | a, b : array_like 
  | 
|---|---|
| Returns : | out : ndarray 
  | 
| Raises : | ValueError : 
  | 
See also
Notes
For vectors (1-D arrays) it computes the ordinary inner-product:
np.inner(a, b) = sum(a[:]*b[:])
More generally, if ndim(a) = r > 0 and ndim(b) = s > 0:
np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))
or explicitly:
np.inner(a, b)[i0,...,ir-1,j0,...,js-1]
     = sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:])
In addition a or b may be scalars, in which case:
np.inner(a,b) = a*b
Examples
Ordinary inner product for vectors:
>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2
A multidimensional example:
>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> np.inner(a, b)
array([[ 14,  38,  62],
       [ 86, 110, 134]])
An example where b is a scalar:
>>> np.inner(np.eye(2), 7)
array([[ 7.,  0.],
       [ 0.,  7.]])