Load data from a text file, with missing values handled as specified.
Each line past the first skip_header lines is split at the delimiter character, and characters following the comments character are discarded.
| Parameters : | fname : file or str 
 dtype : dtype, optional 
 comments : str, optional 
 delimiter : str, int, or sequence, optional 
 skip_header : int, optional 
 skip_footer : int, optional 
 converters : variable, optional 
 missing_values : variable, optional 
 filling_values : variable, optional 
 usecols : sequence, optional 
 names : {None, True, str, sequence}, optional 
 excludelist : sequence, optional 
 deletechars : str, optional 
 defaultfmt : str, optional 
 autostrip : bool, optional 
 replace_space : char, optional 
 case_sensitive : {True, False, ‘upper’, ‘lower’}, optional 
 unpack : bool, optional 
 usemask : bool, optional 
 invalid_raise : bool, optional 
  | 
|---|---|
| Returns : | out : ndarray 
  | 
See also
Notes
References
| [R20] | Numpy User Guide, section I/O with Numpy. | 
Examples
>>> from StringIO import StringIO
>>> import numpy as np
Comma delimited file with mixed dtype
>>> s = StringIO("1,1.3,abcde")
>>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'),
... ('mystring','S5')], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),
      dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])
Using dtype = None
>>> s.seek(0) # needed for StringIO example only
>>> data = np.genfromtxt(s, dtype=None,
... names = ['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),
      dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])
Specifying dtype and names
>>> s.seek(0)
>>> data = np.genfromtxt(s, dtype="i8,f8,S5",
... names=['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),
      dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])
An example with fixed-width columns
>>> s = StringIO("11.3abcde")
>>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'],
...     delimiter=[1,3,5])
>>> data
array((1, 1.3, 'abcde'),
      dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')])