Fill the main diagonal of the given array of any dimensionality.
For an array a with a.ndim > 2, the diagonal is the list of locations with indices a[i, i, ..., i] all identical. This function modifies the input array in-place, it does not return a value.
Parameters : | a : array, at least 2-D.
val : scalar
wrap: bool For tall matrices in NumPy version up to 1.6.2, the :
|
---|
See also
Notes
New in version 1.4.0.
This functionality can be obtained via diag_indices, but internally this version uses a much faster implementation that never constructs the indices and uses simple slicing.
Examples
>>> a = np.zeros((3, 3), int)
>>> np.fill_diagonal(a, 5)
>>> a
array([[5, 0, 0],
[0, 5, 0],
[0, 0, 5]])
The same function can operate on a 4-D array:
>>> a = np.zeros((3, 3, 3, 3), int)
>>> np.fill_diagonal(a, 4)
We only show a few blocks for clarity:
>>> a[0, 0]
array([[4, 0, 0],
[0, 0, 0],
[0, 0, 0]])
>>> a[1, 1]
array([[0, 0, 0],
[0, 4, 0],
[0, 0, 0]])
>>> a[2, 2]
array([[0, 0, 0],
[0, 0, 0],
[0, 0, 4]])
# tall matrices no wrap >>> a = np.zeros((5, 3),int) >>> fill_diagonal(a, 4) array([[4, 0, 0],
[0, 4, 0], [0, 0, 4], [0, 0, 0], [0, 0, 0]])
# tall matrices wrap >>> a = np.zeros((5, 3),int) >>> fill_diagonal(a, 4) array([[4, 0, 0],
[0, 4, 0], [0, 0, 4], [0, 0, 0], [4, 0, 0]])
# wide matrices >>> a = np.zeros((3, 5),int) >>> fill_diagonal(a, 4) array([[4, 0, 0, 0, 0],
[0, 4, 0, 0, 0], [0, 0, 4, 0, 0]])