This is documentation for an old release of NumPy (version 1.7.0). Read this page in the documentation of the latest stable release (version > 1.17).
Compute the 2-dimensional discrete Fourier Transform
This function computes the n-dimensional discrete Fourier Transform over any axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of the input array, i.e., a 2-dimensional FFT.
Parameters : | a : array_like
s : sequence of ints, optional
axes : sequence of ints, optional
|
---|---|
Returns : | out : complex ndarray
|
Raises : | ValueError :
IndexError :
|
See also
Notes
fft2 is just fftn with a different default for axes.
The output, analogously to fft, contains the term for zero frequency in the low-order corner of the transformed axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative frequency.
See fftn for details and a plotting example, and numpy.fft for definitions and conventions used.
Examples
>>> a = np.mgrid[:5, :5][0]
>>> np.fft.fft2(a)
array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 5.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 10.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 15.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 20.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]])