Estimate a covariance matrix, given data.
Covariance indicates the level to which two variables vary together.
If we examine N-dimensional samples, 
,
then the covariance matrix element 
 is the covariance of
 and 
. The element 
 is the variance
of 
.
| Parameters : | m : array_like 
 y : array_like, optional 
 rowvar : int, optional 
 bias : int, optional 
 ddof : int, optional 
  | 
|---|---|
| Returns : | out : ndarray 
  | 
See also
Examples
Consider two variables, 
 and 
, which
correlate perfectly, but in opposite directions:
>>> x = np.array([[0, 2], [1, 1], [2, 0]]).T
>>> x
array([[0, 1, 2],
       [2, 1, 0]])
Note how 
 increases while 
 decreases. The covariance
matrix shows this clearly:
>>> np.cov(x)
array([[ 1., -1.],
       [-1.,  1.]])
Note that element 
, which shows the correlation between
 and 
, is negative.
Further, note how x and y are combined:
>>> x = [-2.1, -1,  4.3]
>>> y = [3,  1.1,  0.12]
>>> X = np.vstack((x,y))
>>> print np.cov(X)
[[ 11.71        -4.286     ]
 [ -4.286        2.14413333]]
>>> print np.cov(x, y)
[[ 11.71        -4.286     ]
 [ -4.286        2.14413333]]
>>> print np.cov(x)
11.71