# numpy.matrix.view¶

matrix.view(dtype=None, type=None)

New view of array with the same data.

Parameters : dtype : data-type, optional Data-type descriptor of the returned view, e.g., float32 or int16. The default, None, results in the view having the same data-type as a. type : Python type, optional Type of the returned view, e.g., ndarray or matrix. Again, the default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation of the memory.

Examples

```>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
```

Viewing array data using a different type and dtype:

```>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print type(y)
<class 'numpy.matrixlib.defmatrix.matrix'>
```

Creating a view on a structured array so it can be used in calculations

```>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
[3, 4]], dtype=int8)
>>> xv.mean(0)
array([ 2.,  3.])
```

Making changes to the view changes the underlying array

```>>> xv[0,1] = 20
>>> print x
[(1, 20) (3, 4)]
```

Using a view to convert an array to a record array:

```>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)
```

Views share data:

```>>> x[0] = (9, 10)
>>> z[0]
(9, 10)
```