Apply a function to 1-D slices along the given axis.
Execute func1d(a, *args) where func1d operates on 1-D arrays and a is a 1-D slice of arr along axis.
Parameters : | func1d : function
axis : integer
arr : ndarray
args : any
|
---|---|
Returns : | outarr : ndarray
|
See also
Examples
>>> def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
array([ 4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
array([ 2., 5., 8.])
For a function that doesn’t return a scalar, the number of dimensions in outarr is the same as arr.
>>> def new_func(a):
... """Divide elements of a by 2."""
... return a * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(new_func, 0, b)
array([[ 0.5, 1. , 1.5],
[ 2. , 2.5, 3. ],
[ 3.5, 4. , 4.5]])