Construct an array from data in a text or binary file.
A highly efficient way of reading binary data with a known data-type, as well as parsing simply formatted text files. Data written using the tofile method can be read using this function.
Parameters : | file : file or str
dtype : data-type
count : int
sep : str
|
---|
Notes
Do not rely on the combination of tofile and fromfile for data storage, as the binary files generated are are not platform independent. In particular, no byte-order or data-type information is saved. Data can be stored in the platform independent .npy format using save and load instead.
Examples
Construct an ndarray:
>>> dt = np.dtype([('time', [('min', int), ('sec', int)]),
... ('temp', float)])
>>> x = np.zeros((1,), dtype=dt)
>>> x['time']['min'] = 10; x['temp'] = 98.25
>>> x
array([((10, 0), 98.25)],
dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])
Save the raw data to disk:
>>> import os
>>> fname = os.tmpnam()
>>> x.tofile(fname)
Read the raw data from disk:
>>> np.fromfile(fname, dtype=dt)
array([((10, 0), 98.25)],
dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])
The recommended way to store and load data:
>>> np.save(fname, x)
>>> np.load(fname + '.npy')
array([((10, 0), 98.25)],
dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])