Return the product of array elements over a given axis.
Parameters: | a : array_like
axis : int, optional
dtype : data-type, optional
out : ndarray, optional
|
---|---|
Returns: | product_along_axis : ndarray, see dtype parameter above.
|
See also
Notes
Arithmetic is modular when using integer types, and no error is raised on overflow. That means that, on a 32-bit platform:
>>> x = np.array([536870910, 536870910, 536870910, 536870910])
>>> np.prod(x) #random
16
Examples
By default, calculate the product of all elements:
>>> np.prod([1.,2.])
2.0
Even when the input array is two-dimensional:
>>> np.prod([[1.,2.],[3.,4.]])
24.0
But we can also specify the axis over which to multiply:
>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([ 2., 12.])
If the type of x is unsigned, then the output type is the unsigned platform integer:
>>> x = np.array([1, 2, 3], dtype=np.uint8)
>>> np.prod(x).dtype == np.uint
True
If x is of a signed integer type, then the output type is the default platform integer:
>>> x = np.array([1, 2, 3], dtype=np.int8)
>>> np.prod(x).dtype == np.int
True