Cholesky decomposition.
Return the Cholesky decomposition, 
 of a Hermitian
positive-definite matrix 
.
| Parameters: | a : array_like, shape (M, M) 
  | 
|---|---|
| Returns: | L : array_like, shape (M, M) 
  | 
| Raises: | LinAlgError : 
  | 
Notes
The Cholesky decomposition is often used as a fast way of solving
First, we solve for 
 in
and then for 
 in
Examples
>>> A = np.array([[1,-2j],[2j,5]])
>>> L = np.linalg.cholesky(A)
>>> L
array([[ 1.+0.j,  0.+0.j],
       [ 0.+2.j,  1.+0.j]])
>>> np.dot(L, L.T.conj())
array([[ 1.+0.j,  0.-2.j],
       [ 0.+2.j,  5.+0.j]])