Cholesky decomposition.
Return the Cholesky decomposition, of a Hermitian positive-definite matrix .
Parameters: | a : array_like, shape (M, M)
|
---|---|
Returns: | L : array_like, shape (M, M)
|
Raises: | LinAlgError :
|
Notes
The Cholesky decomposition is often used as a fast way of solving
First, we solve for in
and then for in
Examples
>>> A = np.array([[1,-2j],[2j,5]])
>>> L = np.linalg.cholesky(A)
>>> L
array([[ 1.+0.j, 0.+0.j],
[ 0.+2.j, 1.+0.j]])
>>> np.dot(L, L.T.conj())
array([[ 1.+0.j, 0.-2.j],
[ 0.+2.j, 5.+0.j]])