SciPy

numpy.testing.Tester.bench

method

Tester.bench(self, label='fast', verbose=1, extra_argv=None)[source]

Run benchmarks for module using nose.

Parameters:
label : {‘fast’, ‘full’, ‘’, attribute identifier}, optional

Identifies the benchmarks to run. This can be a string to pass to the nosetests executable with the ‘-A’ option, or one of several special values. Special values are:

  • ‘fast’ - the default - which corresponds to the nosetests -A option of ‘not slow’.
  • ‘full’ - fast (as above) and slow benchmarks as in the ‘no -A’ option to nosetests - this is the same as ‘’.
  • None or ‘’ - run all tests.
  • attribute_identifier - string passed directly to nosetests as ‘-A’.
verbose : int, optional

Verbosity value for benchmark outputs, in the range 1-10. Default is 1.

extra_argv : list, optional

List with any extra arguments to pass to nosetests.

Returns:
success : bool

Returns True if running the benchmarks works, False if an error occurred.

Notes

Benchmarks are like tests, but have names starting with “bench” instead of “test”, and can be found under the “benchmarks” sub-directory of the module.

Each NumPy module exposes bench in its namespace to run all benchmarks for it.

Examples

>>> success = np.lib.bench() #doctest: +SKIP
Running benchmarks for numpy.lib
...
using 562341 items:
unique:
0.11
unique1d:
0.11
ratio: 1.0
nUnique: 56230 == 56230
...
OK
>>> success #doctest: +SKIP
True