SciPy

numpy.isclose

numpy.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)[source]

Returns a boolean array where two arrays are element-wise equal within a tolerance.

The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and the absolute difference atol are added together to compare against the absolute difference between a and b.

Warning

The default atol is not appropriate for comparing numbers that are much smaller than one (see Notes).

Parameters:
a, b : array_like

Input arrays to compare.

rtol : float

The relative tolerance parameter (see Notes).

atol : float

The absolute tolerance parameter (see Notes).

equal_nan : bool

Whether to compare NaN’s as equal. If True, NaN’s in a will be considered equal to NaN’s in b in the output array.

Returns:
y : array_like

Returns a boolean array of where a and b are equal within the given tolerance. If both a and b are scalars, returns a single boolean value.

See also

allclose

Notes

New in version 1.7.0.

For finite values, isclose uses the following equation to test whether two floating point values are equivalent.

absolute(a - b) <= (atol + rtol * absolute(b))

Unlike the built-in math.isclose, the above equation is not symmetric in a and b – it assumes b is the reference value – so that isclose(a, b) might be different from isclose(b, a). Furthermore, the default value of atol is not zero, and is used to determine what small values should be considered close to zero. The default value is appropriate for expected values of order unity: if the expected values are significantly smaller than one, it can result in false positives. atol should be carefully selected for the use case at hand. A zero value for atol will result in False if either a or b is zero.

Examples

>>> np.isclose([1e10,1e-7], [1.00001e10,1e-8])
array([ True, False])
>>> np.isclose([1e10,1e-8], [1.00001e10,1e-9])
array([ True, True])
>>> np.isclose([1e10,1e-8], [1.0001e10,1e-9])
array([False,  True])
>>> np.isclose([1.0, np.nan], [1.0, np.nan])
array([ True, False])
>>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
array([ True, True])
>>> np.isclose([1e-8, 1e-7], [0.0, 0.0])
array([ True, False])
>>> np.isclose([1e-100, 1e-7], [0.0, 0.0], atol=0.0)
array([False, False])
>>> np.isclose([1e-10, 1e-10], [1e-20, 0.0])
array([ True,  True])
>>> np.isclose([1e-10, 1e-10], [1e-20, 0.999999e-10], atol=0.0)
array([False,  True])

Previous topic

numpy.allclose

Next topic

numpy.array_equal