SciPy

numpy.ldexp

numpy.ldexp(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'ldexp'>

Returns x1 * 2**x2, element-wise.

The mantissas x1 and twos exponents x2 are used to construct floating point numbers x1 * 2**x2.

Parameters:
x1 : array_like

Array of multipliers.

x2 : array_like, int

Array of twos exponents.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns:
y : ndarray or scalar

The result of x1 * 2**x2. This is a scalar if both x1 and x2 are scalars.

See also

frexp
Return (y1, y2) from x = y1 * 2**y2, inverse to ldexp.

Notes

Complex dtypes are not supported, they will raise a TypeError.

ldexp is useful as the inverse of frexp, if used by itself it is more clear to simply use the expression x1 * 2**x2.

Examples

>>> np.ldexp(5, np.arange(4))
array([  5.,  10.,  20.,  40.], dtype=float32)
>>> x = np.arange(6)
>>> np.ldexp(*np.frexp(x))
array([ 0.,  1.,  2.,  3.,  4.,  5.])

Previous topic

numpy.frexp

Next topic

numpy.nextafter