This is documentation for an old release of NumPy (version 1.16.0). Read this page in the documentation of the latest stable release (version > 1.17).
numpy.array2string¶
-
numpy.
array2string
(a, max_line_width=None, precision=None, suppress_small=None, separator=' ', prefix='', style=<no value>, formatter=None, threshold=None, edgeitems=None, sign=None, floatmode=None, suffix='', **kwarg)[source]¶ Return a string representation of an array.
Parameters: - a : array_like
Input array.
- max_line_width : int, optional
The maximum number of columns the string should span. Newline characters splits the string appropriately after array elements.
- precision : int or None, optional
Floating point precision. Default is the current printing precision (usually 8), which can be altered using
set_printoptions
.- suppress_small : bool, optional
Represent very small numbers as zero. A number is “very small” if it is smaller than the current printing precision.
- separator : str, optional
Inserted between elements.
- prefix : str, optional
- suffix: str, optional
The length of the prefix and suffix strings are used to respectively align and wrap the output. An array is typically printed as:
prefix + array2string(a) + suffix
The output is left-padded by the length of the prefix string, and wrapping is forced at the column
max_line_width - len(suffix)
. It should be noted that the content of prefix and suffix strings are not included in the output.- style : _NoValue, optional
Has no effect, do not use.
Deprecated since version 1.14.0.
- formatter : dict of callables, optional
If not None, the keys should indicate the type(s) that the respective formatting function applies to. Callables should return a string. Types that are not specified (by their corresponding keys) are handled by the default formatters. Individual types for which a formatter can be set are:
- ‘bool’
- ‘int’
- ‘timedelta’ : a
numpy.timedelta64
- ‘datetime’ : a
numpy.datetime64
- ‘float’
- ‘longfloat’ : 128-bit floats
- ‘complexfloat’
- ‘longcomplexfloat’ : composed of two 128-bit floats
- ‘void’ : type
numpy.void
- ‘numpystr’ : types
numpy.string_
andnumpy.unicode_
- ‘str’ : all other strings
Other keys that can be used to set a group of types at once are:
- ‘all’ : sets all types
- ‘int_kind’ : sets ‘int’
- ‘float_kind’ : sets ‘float’ and ‘longfloat’
- ‘complex_kind’ : sets ‘complexfloat’ and ‘longcomplexfloat’
- ‘str_kind’ : sets ‘str’ and ‘numpystr’
- threshold : int, optional
Total number of array elements which trigger summarization rather than full repr.
- edgeitems : int, optional
Number of array items in summary at beginning and end of each dimension.
- sign : string, either ‘-‘, ‘+’, or ‘ ‘, optional
Controls printing of the sign of floating-point types. If ‘+’, always print the sign of positive values. If ‘ ‘, always prints a space (whitespace character) in the sign position of positive values. If ‘-‘, omit the sign character of positive values.
- floatmode : str, optional
Controls the interpretation of the precision option for floating-point types. Can take the following values:
- ‘fixed’: Always print exactly precision fractional digits, even if this would print more or fewer digits than necessary to specify the value uniquely.
- ‘unique’: Print the minimum number of fractional digits necessary to represent each value uniquely. Different elements may have a different number of digits. The value of the precision option is ignored.
- ‘maxprec’: Print at most precision fractional digits, but if an element can be uniquely represented with fewer digits only print it with that many.
- ‘maxprec_equal’: Print at most precision fractional digits, but if every element in the array can be uniquely represented with an equal number of fewer digits, use that many digits for all elements.
- legacy : string or False, optional
If set to the string ‘1.13’ enables 1.13 legacy printing mode. This approximates numpy 1.13 print output by including a space in the sign position of floats and different behavior for 0d arrays. If set to False, disables legacy mode. Unrecognized strings will be ignored with a warning for forward compatibility.
New in version 1.14.0.
Returns: - array_str : str
String representation of the array.
Raises: - TypeError
if a callable in
formatter
does not return a string.
See also
Notes
If a formatter is specified for a certain type, the precision keyword is ignored for that type.
This is a very flexible function;
array_repr
andarray_str
are usingarray2string
internally so keywords with the same name should work identically in all three functions.Examples
>>> x = np.array([1e-16,1,2,3]) >>> print(np.array2string(x, precision=2, separator=',', ... suppress_small=True)) [ 0., 1., 2., 3.]
>>> x = np.arange(3.) >>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x}) '[0.00 1.00 2.00]'
>>> x = np.arange(3) >>> np.array2string(x, formatter={'int':lambda x: hex(x)}) '[0x0L 0x1L 0x2L]'