numpy.ma.allclose¶
- 
numpy.ma.allclose(a, b, masked_equal=True, rtol=1e-05, atol=1e-08)[source]¶ Returns True if two arrays are element-wise equal within a tolerance.
This function is equivalent to
allcloseexcept that masked values are treated as equal (default) or unequal, depending on themasked_equalargument.Parameters: - a, b : array_like
 Input arrays to compare.
- masked_equal : bool, optional
 Whether masked values in a and b are considered equal (True) or not (False). They are considered equal by default.
- rtol : float, optional
 Relative tolerance. The relative difference is equal to
rtol * b. Default is 1e-5.- atol : float, optional
 Absolute tolerance. The absolute difference is equal to atol. Default is 1e-8.
Returns: - y : bool
 Returns True if the two arrays are equal within the given tolerance, False otherwise. If either array contains NaN, then False is returned.
Notes
If the following equation is element-wise True, then
allclosereturns True:absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
Return True if all elements of a and b are equal subject to given tolerances.
Examples
>>> a = ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1]) >>> a masked_array(data = [10000000000.0 1e-07 --], mask = [False False True], fill_value = 1e+20) >>> b = ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1]) >>> ma.allclose(a, b) False
>>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) >>> b = ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1]) >>> ma.allclose(a, b) True >>> ma.allclose(a, b, masked_equal=False) False
Masked values are not compared directly.
>>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) >>> b = ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1]) >>> ma.allclose(a, b) True >>> ma.allclose(a, b, masked_equal=False) False
