numpy.ndarray.view¶
-
ndarray.
view
(dtype=None, type=None)¶ New view of array with the same data.
Parameters: - dtype : data-type or ndarray sub-class, optional
Data-type descriptor of the returned view, e.g., float32 or int16. The default, None, results in the view having the same data-type as a. This argument can also be specified as an ndarray sub-class, which then specifies the type of the returned object (this is equivalent to setting the
type
parameter).- type : Python type, optional
Type of the returned view, e.g., ndarray or matrix. Again, the default None results in type preservation.
Notes
a.view()
is used two different ways:a.view(some_dtype)
ora.view(dtype=some_dtype)
constructs a view of the array’s memory with a different data-type. This can cause a reinterpretation of the bytes of memory.a.view(ndarray_subclass)
ora.view(type=ndarray_subclass)
just returns an instance of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation of the memory.For
a.view(some_dtype)
, ifsome_dtype
has a different number of bytes per entry than the previous dtype (for example, converting a regular array to a structured array), then the behavior of the view cannot be predicted just from the superficial appearance ofa
(shown byprint(a)
). It also depends on exactly howa
is stored in memory. Therefore ifa
is C-ordered versus fortran-ordered, versus defined as a slice or transpose, etc., the view may give different results.Examples
>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
Viewing array data using a different type and dtype:
>>> y = x.view(dtype=np.int16, type=np.matrix) >>> y matrix([[513]], dtype=int16) >>> print(type(y)) <class 'numpy.matrixlib.defmatrix.matrix'>
Creating a view on a structured array so it can be used in calculations
>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)]) >>> xv = x.view(dtype=np.int8).reshape(-1,2) >>> xv array([[1, 2], [3, 4]], dtype=int8) >>> xv.mean(0) array([ 2., 3.])
Making changes to the view changes the underlying array
>>> xv[0,1] = 20 >>> print(x) [(1, 20) (3, 4)]
Using a view to convert an array to a recarray:
>>> z = x.view(np.recarray) >>> z.a array([1], dtype=int8)
Views share data:
>>> x[0] = (9, 10) >>> z[0] (9, 10)
Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices, transposes, fortran-ordering, etc.:
>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16) >>> y = x[:, 0:2] >>> y array([[1, 2], [4, 5]], dtype=int16) >>> y.view(dtype=[('width', np.int16), ('length', np.int16)]) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: new type not compatible with array. >>> z = y.copy() >>> z.view(dtype=[('width', np.int16), ('length', np.int16)]) array([[(1, 2)], [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])