numpy.ma.masked_values¶
- 
numpy.ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)[source]¶ Mask using floating point equality.
Return a MaskedArray, masked where the data in array x are approximately equal to value, determined using isclose. The default tolerances for
masked_valuesare the same as those for isclose.For integer types, exact equality is used, in the same way as
masked_equal.The fill_value is set to value and the mask is set to
nomaskif possible.Parameters: - x : array_like
 Array to mask.
- value : float
 Masking value.
- rtol, atol : float, optional
 Tolerance parameters passed on to isclose
- copy : bool, optional
 Whether to return a copy of x.
- shrink : bool, optional
 Whether to collapse a mask full of False to
nomask.
Returns: - result : MaskedArray
 The result of masking x where approximately equal to value.
See also
masked_where- Mask where a condition is met.
 masked_equal- Mask where equal to a given value (integers).
 
Examples
>>> import numpy.ma as ma >>> x = np.array([1, 1.1, 2, 1.1, 3]) >>> ma.masked_values(x, 1.1) masked_array(data = [1.0 -- 2.0 -- 3.0], mask = [False True False True False], fill_value=1.1)
Note that mask is set to
nomaskif possible.>>> ma.masked_values(x, 1.5) masked_array(data = [ 1. 1.1 2. 1.1 3. ], mask = False, fill_value=1.5)
For integers, the fill value will be different in general to the result of
masked_equal.>>> x = np.arange(5) >>> x array([0, 1, 2, 3, 4]) >>> ma.masked_values(x, 2) masked_array(data = [0 1 -- 3 4], mask = [False False True False False], fill_value=2) >>> ma.masked_equal(x, 2) masked_array(data = [0 1 -- 3 4], mask = [False False True False False], fill_value=999999)
