
NumPy Reference
Release 1.15.1

Written by the NumPy community

August 23, 2018





CONTENTS

1 Array objects 3
1.1 The N-dimensional array (ndarray) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.3 Data type objects (dtype) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
1.4 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
1.5 Iterating Over Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1.6 Standard array subclasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
1.7 Masked arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
1.8 The Array Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
1.9 Datetimes and Timedeltas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

2 Constants 363

3 Universal functions (ufunc) 371
3.1 Broadcasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
3.2 Output type determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
3.3 Use of internal buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
3.4 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
3.5 Casting Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
3.6 Overriding Ufunc behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
3.7 ufunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
3.8 Available ufuncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

4 Routines 395
4.1 Array creation routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
4.2 Array manipulation routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
4.3 Binary operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
4.4 String operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
4.5 C-Types Foreign Function Interface (numpy.ctypeslib) . . . . . . . . . . . . . . . . . . . . . . 518
4.6 Datetime Support Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
4.7 Data type routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
4.8 Optionally Scipy-accelerated routines (numpy.dual) . . . . . . . . . . . . . . . . . . . . . . . . . 540
4.9 Mathematical functions with automatic domain (numpy.emath) . . . . . . . . . . . . . . . . . . . 541
4.10 Floating point error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
4.11 Discrete Fourier Transform (numpy.fft) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
4.12 Financial functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
4.13 Functional programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
4.14 NumPy-specific help functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
4.15 Indexing routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
4.16 Input and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

i



4.17 Linear algebra (numpy.linalg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650
4.18 Logic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
4.19 Mathematical functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
4.20 Matrix library (numpy.matlib) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
4.21 Miscellaneous routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805
4.22 Padding Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808
4.23 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
4.24 Random sampling (numpy.random) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987
4.25 Set routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1098
4.26 Sorting, searching, and counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103
4.27 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117
4.28 Test Support (numpy.testing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1158
4.29 Window functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1178

5 Packaging (numpy.distutils) 1187
5.1 Modules in numpy.distutils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187
5.2 Building Installable C libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197
5.3 Conversion of .src files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199

6 NumPy C-API 1201
6.1 Python Types and C-Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201
6.2 System configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1215
6.3 Data Type API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217
6.4 Array API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221
6.5 Array Iterator API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262
6.6 UFunc API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279
6.7 Generalized Universal Function API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284
6.8 NumPy core libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286
6.9 C API Deprecations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292

7 NumPy internals 1295
7.1 NumPy C Code Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295
7.2 Internal organization of numpy arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302
7.3 Multidimensional Array Indexing Order Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303

8 NumPy and SWIG 1305
8.1 Testing the numpy.i Typemaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1320

9 Acknowledgements 1323

Bibliography 1325

Python Module Index 1335

Index 1337

ii



NumPy Reference, Release 1.15.1

Release 1.15

Date August 23, 2018

This reference manual details functions, modules, and objects included in NumPy, describing what they are and what
they do. For learning how to use NumPy, see also user.

CONTENTS 1



NumPy Reference, Release 1.15.1

2 CONTENTS



CHAPTER

ONE

ARRAY OBJECTS

NumPy provides an N-dimensional array type, the ndarray, which describes a collection of “items” of the same type.
The items can be indexed using for example N integers.

All ndarrays are homogenous: every item takes up the same size block of memory, and all blocks are interpreted in
exactly the same way. How each item in the array is to be interpreted is specified by a separate data-type object, one
of which is associated with every array. In addition to basic types (integers, floats, etc.), the data type objects can also
represent data structures.

An item extracted from an array, e.g., by indexing, is represented by a Python object whose type is one of the array
scalar types built in NumPy. The array scalars allow easy manipulation of also more complicated arrangements of
data.

Fig. 1: Figure Conceptual diagram showing the relationship between the three fundamental objects used to describe
the data in an array: 1) the ndarray itself, 2) the data-type object that describes the layout of a single fixed-size element
of the array, 3) the array-scalar Python object that is returned when a single element of the array is accessed.

1.1 The N-dimensional array (ndarray)

An ndarray is a (usually fixed-size) multidimensional container of items of the same type and size. The number
of dimensions and items in an array is defined by its shape, which is a tuple of N positive integers that specify
the sizes of each dimension. The type of items in the array is specified by a separate data-type object (dtype), one of
which is associated with each ndarray.

As with other container objects in Python, the contents of an ndarray can be accessed and modified by indexing or
slicing the array (using, for example, N integers), and via the methods and attributes of the ndarray .

3

https://docs.python.org/dev/library/stdtypes.html#tuple


NumPy Reference, Release 1.15.1

Different ndarrays can share the same data, so that changes made in one ndarray may be visible in another. That
is, an ndarray can be a “view” to another ndarray, and the data it is referring to is taken care of by the “base” ndarray.
ndarrays can also be views to memory owned by Python strings or objects implementing the buffer or array
interfaces.

Example

A 2-dimensional array of size 2 x 3, composed of 4-byte integer elements:

>>> x = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
>>> type(x)
<type 'numpy.ndarray'>
>>> x.shape
(2, 3)
>>> x.dtype
dtype('int32')

The array can be indexed using Python container-like syntax:

>>> # The element of x in the *second* row, *third* column, namely, 6.
>>> x[1, 2]

For example slicing can produce views of the array:

>>> y = x[:,1]
>>> y
array([2, 5])
>>> y[0] = 9 # this also changes the corresponding element in x
>>> y
array([9, 5])
>>> x
array([[1, 9, 3],

[4, 5, 6]])

1.1.1 Constructing arrays

New arrays can be constructed using the routines detailed in Array creation routines, and also by using the low-level
ndarray constructor:

ndarray(shape[, dtype, buffer, offset, . . . ]) An array object represents a multidimensional, homoge-
neous array of fixed-size items.

class numpy.ndarray(shape, dtype=float, buffer=None, offset=0, strides=None, order=None)
An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)

Arrays should be constructed using array , zeros or empty (refer to the See Also section below). The
parameters given here refer to a low-level method (ndarray(. . . )) for instantiating an array.

For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters

(for the __new__ method; see Notes below)

4 Chapter 1. Array objects

https://docs.python.org/dev/library/stdtypes.html#str


NumPy Reference, Release 1.15.1

shape [tuple of ints] Shape of created array.

dtype [data-type, optional] Any object that can be interpreted as a numpy data type.

buffer [object exposing buffer interface, optional] Used to fill the array with data.

offset [int, optional] Offset of array data in buffer.

strides [tuple of ints, optional] Strides of data in memory.

order [{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.

See also:

array Construct an array.

zeros Create an array, each element of which is zero.

empty Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype Create a data-type.

Notes

There are two modes of creating an array using __new__:

1. If buffer is None, then only shape, dtype, and order are used.

2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier
ways of constructing an ndarray.

First mode, buffer is None:

>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[ -1.13698227e+002, 4.25087011e-303],

[ 2.88528414e-306, 3.27025015e-309]]) #random

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes

T [ndarray] Same as self.transpose(), except that self is returned if self.ndim < 2.

data [buffer] Python buffer object pointing to the start of the array’s data.

dtype [dtype object] Data-type of the array’s elements.

flags [dict] Information about the memory layout of the array.

flat [numpy.flatiter object] A 1-D iterator over the array.

1.1. The N-dimensional array (ndarray) 5



NumPy Reference, Release 1.15.1

imag [ndarray] The imaginary part of the array.

real [ndarray] The real part of the array.

size [int] Number of elements in the array.

itemsize [int] Length of one array element in bytes.

nbytes [int] Total bytes consumed by the elements of the array.

ndim [int] Number of array dimensions.

shape [tuple of ints] Tuple of array dimensions.

strides [tuple of ints] Tuple of bytes to step in each dimension when traversing an array.

ctypes [ctypes object] An object to simplify the interaction of the array with the ctypes mod-
ule.

base [ndarray] Base object if memory is from some other object.

Methods

all([axis, out, keepdims]) Returns True if all elements evaluate to True.
any([axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.
argmax([axis, out]) Return indices of the maximum values along the given

axis.
argmin([axis, out]) Return indices of the minimum values along the given

axis of a.
argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
argsort([axis, kind, order]) Returns the indices that would sort this array.
astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
byteswap([inplace]) Swap the bytes of the array elements
choose(choices[, out, mode]) Use an index array to construct a new array from a set

of choices.
clip([min, max, out]) Return an array whose values are limited to [min,

max].
compress(condition[, axis, out]) Return selected slices of this array along given axis.
conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.
cumprod([axis, dtype, out]) Return the cumulative product of the elements along the

given axis.
cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the

given axis.
diagonal([offset, axis1, axis2]) Return specified diagonals.
dot(b[, out]) Dot product of two arrays.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
fill(value) Fill the array with a scalar value.
flatten([order]) Return a copy of the array collapsed into one dimension.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
item(*args) Copy an element of an array to a standard Python scalar

and return it.
Continued on next page

6 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Table 2 – continued from previous page
itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype,

if possible)
max([axis, out, keepdims]) Return the maximum along a given axis.
mean([axis, dtype, out, keepdims]) Returns the average of the array elements along given

axis.
min([axis, out, keepdims]) Return the minimum along a given axis.
newbyteorder([new_order]) Return the array with the same data viewed with a dif-

ferent byte order.
nonzero() Return the indices of the elements that are non-zero.
partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way that

the value of the element in kth position is in the position
it would be in a sorted array.

prod([axis, dtype, out, keepdims]) Return the product of the array elements over the given
axis

ptp([axis, out, keepdims]) Peak to peak (maximum - minimum) value along a
given axis.

put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
reshape(shape[, order]) Returns an array containing the same data with a new

shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
round([decimals, out]) Return a with each element rounded to the given number

of decimals.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in

a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by a

data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, (WRITE-

BACKIFCOPY and UPDATEIFCOPY), respectively.
sort([axis, kind, order]) Sort an array, in-place.
squeeze([axis]) Remove single-dimensional entries from the shape of a.
std([axis, dtype, out, ddof, keepdims]) Returns the standard deviation of the array elements

along given axis.
sum([axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the

given indices.
tobytes([order]) Construct Python bytes containing the raw data bytes in

the array.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as a (possibly nested) list.
tostring([order]) Construct Python bytes containing the raw data bytes in

the array.
trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(*axes) Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof, keepdims]) Returns the variance of the array elements, along given

axis.
view([dtype, type]) New view of array with the same data.

1.1. The N-dimensional array (ndarray) 7



NumPy Reference, Release 1.15.1

ndarray.all(axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also:

numpy.all equivalent function

ndarray.any(axis=None, out=None, keepdims=False)
Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also:

numpy.any equivalent function

ndarray.argmax(axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also:

numpy.argmax equivalent function

ndarray.argmin(axis=None, out=None)
Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

See also:

numpy.argmin equivalent function

ndarray.argpartition(kth, axis=-1, kind=’introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also:

numpy.argpartition equivalent function

ndarray.argsort(axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also:

numpy.argsort equivalent function

ndarray.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters

8 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’
means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran
contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements
appear in memory as possible. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is
set to false, and the dtype, order, and subok requirements are satisfied, the input array is
returned instead of a copy.

Returns

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array
are satisfied (see description for copy input parameter), arr_t is a new array of the same
shape as the input array, with dtype, order given by dtype, order.

Raises

ComplexWarning When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([ 1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

ndarray.byteswap(inplace=False)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

1.1. The N-dimensional array (ndarray) 9



NumPy Reference, Release 1.15.1

Parameters

inplace [bool, optional] If True, swap bytes in-place, default is False.

Returns

out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([ 256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],

dtype='|S3')

ndarray.choose(choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also:

numpy.choose equivalent function

ndarray.clip(min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

See also:

numpy.clip equivalent function

ndarray.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also:

numpy.compress equivalent function

ndarray.conj()
Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also:

10 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

numpy.conjugate equivalent function

ndarray.conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate equivalent function

ndarray.copy(order=’C’)
Return a copy of the array.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means
C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible. (Note that this function and numpy.
copy are very similar, but have different default values for their order= arguments.)

See also:

numpy.copy , numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

ndarray.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also:

numpy.cumprod equivalent function

ndarray.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

1.1. The N-dimensional array (ndarray) 11



NumPy Reference, Release 1.15.1

See also:

numpy.cumsum equivalent function

ndarray.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also:

numpy.diagonal equivalent function

ndarray.dot(b, out=None)
Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also:

numpy.dot equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[ 2., 2.],

[ 2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[ 8., 8.],

[ 8., 8.]])

ndarray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters

file [str] A string naming the dump file.

ndarray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters

None

ndarray.fill(value)
Fill the array with a scalar value.

Parameters

value [scalar] All elements of a will be assigned this value.

12 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([ 1., 1.])

ndarray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’
means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-
major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means
to flatten a in the order the elements occur in memory. The default is ‘C’.

Returns

y [ndarray] A copy of the input array, flattened to one dimension.

See also:

ravel Return a flattened array.

flat A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

ndarray.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset [int] Number of bytes to skip before beginning the element view.

1.1. The N-dimensional array (ndarray) 13



NumPy Reference, Release 1.15.1

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[ 1.+1.j, 0.+0.j],

[ 0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[ 1., 0.],

[ 0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[ 1., 0.],

[ 0., 4.]])

ndarray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters

*args [Arguments (variable number and type)]

• none: in this case, the method only works for arrays with one element (a.size == 1),
which element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which
element to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argu-
ment is interpreted as an nd-index into the array.

Returns

z [Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)

(continues on next page)

14 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

ndarray.itemset(*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is
equivalent to but faster than a[args] = item. The item should be a scalar value and args must select
a single item in the array a.

Parameters

*args [Arguments] If one argument: a scalar, only used in case a is of size 1. If two ar-
guments: the last argument is the value to be set and must be a scalar, the first argument
specifies a single array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray , if you must do this. However, generally this is discouraged: among other
problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a
loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],

[2, 0, 3],
[8, 5, 9]])

ndarray.max(axis=None, out=None, keepdims=False)
Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also:

numpy.amax equivalent function

ndarray.mean(axis=None, dtype=None, out=None, keepdims=False)
Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

1.1. The N-dimensional array (ndarray) 15



NumPy Reference, Release 1.15.1

See also:

numpy.mean equivalent function

ndarray.min(axis=None, out=None, keepdims=False)
Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also:

numpy.amin equivalent function

ndarray.newbyteorder(new_order=’S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters

new_order [string, optional] Byte order to force; a value from the byte order specifications
below. new_order codes can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a case-
insensitive check on the first letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns

new_arr [array] New array object with the dtype reflecting given change to the byte order.

ndarray.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also:

numpy.nonzero equivalent function

ndarray.partition(kth, axis=-1, kind=’introselect’, order=None)
Rearranges the elements in the array in such a way that the value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

Parameters

16 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

kth [int or sequence of ints] Element index to partition by. The kth element value will be
in its final sorted position and all smaller elements will be moved before it and all equal
or greater elements behind it. The order of all elements in the partitions is undefined. If
provided with a sequence of kth it will partition all elements indexed by kth of them into
their sorted position at once.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order [str or list of str, optional] When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need to be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy.partition Return a parititioned copy of an array.

argpartition Indirect partition.

sort Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

ndarray.prod(axis=None, dtype=None, out=None, keepdims=False)
Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also:

numpy.prod equivalent function

ndarray.ptp(axis=None, out=None, keepdims=False)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also:

numpy.ptp equivalent function

1.1. The N-dimensional array (ndarray) 17



NumPy Reference, Release 1.15.1

ndarray.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also:

numpy.put equivalent function

ndarray.ravel([order ])
Return a flattened array.

Refer to numpy.ravel for full documentation.

See also:

numpy.ravel equivalent function

ndarray.flat a flat iterator on the array.

ndarray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also:

numpy.repeat equivalent function

ndarray.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also:

numpy.reshape equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to
a.reshape((10, 11)).

ndarray.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters

new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.

Returns

None

Raises

18 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

ValueError If a does not own its own data or references or views to it exist, and the data
memory must be changed. PyPy only: will always raise if the data memory must be
changed, since there is no reliable way to determine if references or views to it exist.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing. . .

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

1.1. The N-dimensional array (ndarray) 19



NumPy Reference, Release 1.15.1

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

ndarray.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also:

numpy.around equivalent function

ndarray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted equivalent function

ndarray.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

Parameters

val [object] Value to be placed in field.

dtype [dtype object] Data-type of the field in which to place val.

offset [int, optional] The number of bytes into the field at which to place val.

Returns

None

See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]])

>>> x
array([[ 1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

(continues on next page)

20 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

[ 1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[ 1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

ndarray.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a
writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done
without copying memory.)

Parameters

write [bool, optional] Describes whether or not a can be written to.

align [bool, optional] Describes whether or not a is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UP-
DATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of
this array.

All flags can be accessed using the single (upper case) letter as well as the full name.

Examples

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True

(continues on next page)

1.1. The N-dimensional array (ndarray) 21



NumPy Reference, Release 1.15.1

(continued from previous page)

ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set WRITEBACKIFCOPY flag to True

ndarray.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

Parameters

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. Default
is ‘quicksort’.

order [str or list of str, optional] When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy.sort Return a sorted copy of an array.

argsort Indirect sort.

lexsort Indirect stable sort on multiple keys.

searchsorted Find elements in sorted array.

partition Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])

(continues on next page)

22 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

ndarray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also:

numpy.squeeze equivalent function

ndarray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also:

numpy.std equivalent function

ndarray.sum(axis=None, dtype=None, out=None, keepdims=False)
Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also:

numpy.sum equivalent function

ndarray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes equivalent function

ndarray.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also:

numpy.take equivalent function

1.1. The N-dimensional array (ndarray) 23



NumPy Reference, Release 1.15.1

ndarray.tobytes(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.

Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,
or the same as for the original array.

Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

ndarray.tofile(fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters

fid [file or str] An open file object, or a string containing a filename.

sep [str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text by
first converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or
file-like objects that do not support fileno() (e.g., BytesIO).

ndarray.tolist()
Return the array as a (possibly nested) list.

24 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

Parameters

none

Returns

y [list] The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

ndarray.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,
or the same as for the original array.

Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

ndarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

1.1. The N-dimensional array (ndarray) 25



NumPy Reference, Release 1.15.1

Refer to numpy.trace for full documentation.

See also:

numpy.trace equivalent function

ndarray.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D ar-
ray into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape =
(i[n-1], i[n-2], ... i[1], i[0]).

Parameters

axes [None, tuple of ints, or n ints]

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s
j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “conve-
nience” alternative to the tuple form)

Returns

out [ndarray] View of a, with axes suitably permuted.

See also:

ndarray.T Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

ndarray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also:

numpy.var equivalent function

26 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

ndarray.view(dtype=None, type=None)
New view of array with the same data.

Parameters

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view,
e.g., float32 or int16. The default, None, results in the view having the same data-type as
a. This argument can also be specified as an ndarray sub-class, which then specifies the
type of the returned object (this is equivalent to setting the type parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([ 2., 3.])

Making changes to the view changes the underlying array

1.1. The N-dimensional array (ndarray) 27



NumPy Reference, Release 1.15.1

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

1.1.2 Indexing arrays

Arrays can be indexed using an extended Python slicing syntax, array[selection]. Similar syntax is also used
for accessing fields in a structured array.

See also:

Array Indexing.

1.1.3 Internal memory layout of an ndarray

An instance of class ndarray consists of a contiguous one-dimensional segment of computer memory (owned by
the array, or by some other object), combined with an indexing scheme that maps N integers into the location of an
item in the block. The ranges in which the indices can vary is specified by the shape of the array. How many bytes
each item takes and how the bytes are interpreted is defined by the data-type object associated with the array.

A segment of memory is inherently 1-dimensional, and there are many different schemes for arranging the items of
an N-dimensional array in a 1-dimensional block. NumPy is flexible, and ndarray objects can accommodate any
strided indexing scheme. In a strided scheme, the N-dimensional index (𝑛0, 𝑛1, ..., 𝑛𝑁−1) corresponds to the offset

28 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(in bytes):

𝑛offset =

𝑁−1∑︁
𝑘=0

𝑠𝑘𝑛𝑘

from the beginning of the memory block associated with the array. Here, 𝑠𝑘 are integers which specify the strides
of the array. The column-major order (used, for example, in the Fortran language and in Matlab) and row-major order
(used in C) schemes are just specific kinds of strided scheme, and correspond to memory that can be addressed by the
strides:

𝑠column
𝑘 = itemsize

𝑘−1∏︁
𝑗=0

𝑑𝑗 , 𝑠row𝑘 = itemsize

𝑁−1∏︁
𝑗=𝑘+1

𝑑𝑗 .

where 𝑑𝑗 = self.shape[j].

Both the C and Fortran orders are contiguous, i.e., single-segment, memory layouts, in which every part of the memory
block can be accessed by some combination of the indices.

While a C-style and Fortran-style contiguous array, which has the corresponding flags set, can be addressed with the
above strides, the actual strides may be different. This can happen in two cases:

1. If self.shape[k] == 1 then for any legal index index[k] == 0. This means that in the formula for
the offset 𝑛𝑘 = 0 and thus 𝑠𝑘𝑛𝑘 = 0 and the value of 𝑠𝑘 = self.strides[k] is arbitrary.

2. If an array has no elements (self.size == 0) there is no legal index and the strides are never used. Any
array with no elements may be considered C-style and Fortran-style contiguous.

Point 1. means that self and self.squeeze() always have the same contiguity and aligned flags value. This
also means that even a high dimensional array could be C-style and Fortran-style contiguous at the same time.

An array is considered aligned if the memory offsets for all elements and the base offset itself is a multiple of
self.itemsize.

Note: Points (1) and (2) are not yet applied by default. Beginning with NumPy 1.8.0, they are applied consistently
only if the environment variable NPY_RELAXED_STRIDES_CHECKING=1 was defined when NumPy was built.
Eventually this will become the default.

You can check whether this option was enabled when your NumPy was built by looking at the value of np.
ones((10,1), order='C').flags.f_contiguous. If this is True, then your NumPy has relaxed strides
checking enabled.

Warning: It does not generally hold that self.strides[-1] == self.itemsize for C-style contiguous
arrays or self.strides[0] == self.itemsize for Fortran-style contiguous arrays is true.

Data in new ndarrays is in the row-major (C) order, unless otherwise specified, but, for example, basic array slicing
often produces views in a different scheme.

Note: Several algorithms in NumPy work on arbitrarily strided arrays. However, some algorithms require single-
segment arrays. When an irregularly strided array is passed in to such algorithms, a copy is automatically made.

1.1.4 Array attributes

Array attributes reflect information that is intrinsic to the array itself. Generally, accessing an array through its at-
tributes allows you to get and sometimes set intrinsic properties of the array without creating a new array. The exposed

1.1. The N-dimensional array (ndarray) 29

https://docs.python.org/dev/glossary.html#term-contiguous


NumPy Reference, Release 1.15.1

attributes are the core parts of an array and only some of them can be reset meaningfully without creating a new array.
Information on each attribute is given below.

Memory layout

The following attributes contain information about the memory layout of the array:

ndarray.flags Information about the memory layout of the array.
ndarray.shape Tuple of array dimensions.
ndarray.strides Tuple of bytes to step in each dimension when traversing

an array.
ndarray.ndim Number of array dimensions.
ndarray.data Python buffer object pointing to the start of the array’s data.
ndarray.size Number of elements in the array.
ndarray.itemsize Length of one array element in bytes.
ndarray.nbytes Total bytes consumed by the elements of the array.
ndarray.base Base object if memory is from some other object.

ndarray.flags
Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lowercased
attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary access.

Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by
the user, via direct assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

• UPDATEIFCOPY can only be set False.

• WRITEBACKIFCOPY can only be set False.

• ALIGNED can only be set True if the data is truly aligned.

• WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the memory
exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays,
but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary if arr.
shape[dim] == 1 or the array has no elements. It does not generally hold that self.strides[-1]
== self.itemsize for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Attributes

C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment.

F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment.

OWNDATA (O) The array owns the memory it uses or borrows it from another object.

WRITEABLE (W) The data area can be written to. Setting this to False locks the data, making
it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time,

30 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

but a view of a writeable array may be subsequently locked while the base array remains
writeable. (The opposite is not true, in that a view of a locked array may not be made
writeable. However, currently, locking a base object does not lock any views that already
reference it, so under that circumstance it is possible to alter the contents of a locked array
via a previously created writeable view onto it.) Attempting to change a non-writeable array
raises a RuntimeError exception.

ALIGNED (A) The data and all elements are aligned appropriately for the hardware.

WRITEBACKIFCOPY (X) This array is a copy of some other array. The C-API function
PyArray_ResolveWritebackIfCopy must be called before deallocating to the base array will
be updated with the contents of this array.

UPDATEIFCOPY (U) (Deprecated, use WRITEBACKIFCOPY) This array is a copy of some
other array. When this array is deallocated, the base array will be updated with the contents
of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED (B) ALIGNED and WRITEABLE.

CARRAY (CA) BEHAVED and C_CONTIGUOUS.

FARRAY (FA) BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

ndarray.shape
Tuple of array dimensions.

The shape property is usually used to get the current shape of an array, but may also be used to reshape the
array in-place by assigning a tuple of array dimensions to it. As with numpy.reshape, one of the new shape
dimensions can be -1, in which case its value is inferred from the size of the array and the remaining dimensions.
Reshaping an array in-place will fail if a copy is required.

See also:

numpy.reshape similar function

ndarray.reshape similar method

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[ 0., 0., 0., 0., 0., 0., 0., 0.],

[ 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: total size of new array must be unchanged
>>> np.zeros((4,2))[::2].shape = (-1,)

(continues on next page)

1.1. The N-dimensional array (ndarray) 31



NumPy Reference, Release 1.15.1

(continued from previous page)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: incompatible shape for a non-contiguous array

ndarray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

See also:

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The
strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain
axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get
to the same position in the next row. As such, the strides for the array x will be (20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]

(continues on next page)

32 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

813
>>> offset / x.itemsize
813

ndarray.ndim
Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

ndarray.data
Python buffer object pointing to the start of the array’s data.

ndarray.size
Number of elements in the array.

Equal to np.prod(a.shape), i.e., the product of the array’s dimensions.

Notes

a.size returns a standard arbitrary precision Python integer. This may not be the case with other methods of
obtaining the same value (like the suggested np.prod(a.shape), which returns an instance of np.int_),
and may be relevant if the value is used further in calculations that may overflow a fixed size integer type.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

ndarray.itemsize
Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

1.1. The N-dimensional array (ndarray) 33



NumPy Reference, Release 1.15.1

ndarray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

ndarray.base
Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

Data type

See also:

Data type objects

The data type object associated with the array can be found in the dtype attribute:

ndarray.dtype Data-type of the array’s elements.

ndarray.dtype
Data-type of the array’s elements.

Parameters

None

Returns

d [numpy dtype object]

See also:

34 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

numpy.dtype

Examples

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

Other attributes

ndarray.T Same as self.transpose(), except that self is returned if
self.ndim < 2.

ndarray.real The real part of the array.
ndarray.imag The imaginary part of the array.
ndarray.flat A 1-D iterator over the array.
ndarray.ctypes An object to simplify the interaction of the array with the

ctypes module.

ndarray.T
Same as self.transpose(), except that self is returned if self.ndim < 2.

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[ 1., 2.],

[ 3., 4.]])
>>> x.T
array([[ 1., 3.],

[ 2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([ 1., 2., 3., 4.])
>>> x.T
array([ 1., 2., 3., 4.])

ndarray.real
The real part of the array.

See also:

numpy.real equivalent function

1.1. The N-dimensional array (ndarray) 35



NumPy Reference, Release 1.15.1

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([ 1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

ndarray.imag
The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([ 0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

ndarray.flat
A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.

See also:

flatten Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])

(continues on next page)

36 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

ndarray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes
module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which
themselves return ctypes objects that can be used as arguments to a shared library.

Parameters

None

Returns

c [Python object] Possessing attributes data, shape, strides, etc.

See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted
undocumented public attributes, as well as documented private attributes):

• data: A pointer to the memory area of the array as a Python integer. This memory area may contain data
that is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid
trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as
self._array_interface_[‘data’][0].

• shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corre-
sponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong depending
on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes array contains the
shape of the underlying array.

• strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the
shape attribute. This ctypes array contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to get to the next element in the
array.

• data_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data as
a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

• shape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

• strides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory that is
invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid this
problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a reference to the array
until ct is deleted or re-assigned.

1.1. The N-dimensional array (ndarray) 37



NumPy Reference, Release 1.15.1

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful, but
ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the as
parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],

[2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

Array interface

See also:

The Array Interface.

__array_interface__ Python-side of the array interface
__array_struct__ C-side of the array interface

ctypes foreign function interface

ndarray.ctypes An object to simplify the interaction of the array with the
ctypes module.

1.1.5 Array methods

An ndarray object has many methods which operate on or with the array in some fashion, typically returning an
array result. These methods are briefly explained below. (Each method’s docstring has a more complete description.)

For the following methods there are also corresponding functions in numpy: all, any , argmax, argmin,
argpartition, argsort, choose, clip, compress, copy , cumprod, cumsum, diagonal, imag,
max, mean, min, nonzero, partition, prod, ptp, put, ravel, real, repeat, reshape, round,
searchsorted, sort, squeeze, std, sum, swapaxes, take, trace, transpose, var.

38 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Array conversion

ndarray.item(*args) Copy an element of an array to a standard Python scalar
and return it.

ndarray.tolist() Return the array as a (possibly nested) list.
ndarray.itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype, if

possible)
ndarray.tostring([order]) Construct Python bytes containing the raw data bytes in the

array.
ndarray.tobytes([order]) Construct Python bytes containing the raw data bytes in the

array.
ndarray.tofile(fid[, sep, format]) Write array to a file as text or binary (default).
ndarray.dump(file) Dump a pickle of the array to the specified file.
ndarray.dumps() Returns the pickle of the array as a string.
ndarray.astype(dtype[, order, casting, . . . ]) Copy of the array, cast to a specified type.
ndarray.byteswap([inplace]) Swap the bytes of the array elements
ndarray.copy([order]) Return a copy of the array.
ndarray.view([dtype, type]) New view of array with the same data.
ndarray.getfield(dtype[, offset]) Returns a field of the given array as a certain type.
ndarray.setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, (WRITEBACK-

IFCOPY and UPDATEIFCOPY), respectively.
ndarray.fill(value) Fill the array with a scalar value.

Shape manipulation

For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted
as an n-tuple.

ndarray.reshape(shape[, order]) Returns an array containing the same data with a new
shape.

ndarray.resize(new_shape[, refcheck]) Change shape and size of array in-place.
ndarray.transpose(*axes) Returns a view of the array with axes transposed.
ndarray.swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
ndarray.flatten([order]) Return a copy of the array collapsed into one dimension.
ndarray.ravel([order]) Return a flattened array.
ndarray.squeeze([axis]) Remove single-dimensional entries from the shape of a.

Item selection and manipulation

For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D
array. Any other value for axis represents the dimension along which the operation should proceed.

ndarray.take(indices[, axis, out, mode]) Return an array formed from the elements of a at the given
indices.

ndarray.put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ndarray.repeat(repeats[, axis]) Repeat elements of an array.
ndarray.choose(choices[, out, mode]) Use an index array to construct a new array from a set of

choices.
Continued on next page

1.1. The N-dimensional array (ndarray) 39



NumPy Reference, Release 1.15.1

Table 9 – continued from previous page
ndarray.sort([axis, kind, order]) Sort an array, in-place.
ndarray.argsort([axis, kind, order]) Returns the indices that would sort this array.
ndarray.partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way that

the value of the element in kth position is in the position it
would be in a sorted array.

ndarray.argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
ndarray.searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in a to

maintain order.
ndarray.nonzero() Return the indices of the elements that are non-zero.
ndarray.compress(condition[, axis, out]) Return selected slices of this array along given axis.
ndarray.diagonal([offset, axis1, axis2]) Return specified diagonals.

Calculation

Many of these methods take an argument named axis. In such cases,

• If axis is None (the default), the array is treated as a 1-D array and the operation is performed over the entire
array. This behavior is also the default if self is a 0-dimensional array or array scalar. (An array scalar is
an instance of the types/classes float32, float64, etc., whereas a 0-dimensional array is an ndarray instance
containing precisely one array scalar.)

• If axis is an integer, then the operation is done over the given axis (for each 1-D subarray that can be created
along the given axis).

Example of the axis argument

A 3-dimensional array of size 3 x 3 x 3, summed over each of its three axes

>>> x
array([[[ 0, 1, 2],

[ 3, 4, 5],
[ 6, 7, 8]],

[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]],

[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]])

>>> x.sum(axis=0)
array([[27, 30, 33],

[36, 39, 42],
[45, 48, 51]])

>>> # for sum, axis is the first keyword, so we may omit it,
>>> # specifying only its value
>>> x.sum(0), x.sum(1), x.sum(2)
(array([[27, 30, 33],

[36, 39, 42],
[45, 48, 51]]),

array([[ 9, 12, 15],
[36, 39, 42],
[63, 66, 69]]),

array([[ 3, 12, 21],
[30, 39, 48],
[57, 66, 75]]))

40 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

The parameter dtype specifies the data type over which a reduction operation (like summing) should take place. The
default reduce data type is the same as the data type of self. To avoid overflow, it can be useful to perform the reduction
using a larger data type.

For several methods, an optional out argument can also be provided and the result will be placed into the output array
given. The out argument must be an ndarray and have the same number of elements. It can have a different data
type in which case casting will be performed.

ndarray.argmax([axis, out]) Return indices of the maximum values along the given axis.
ndarray.min([axis, out, keepdims]) Return the minimum along a given axis.
ndarray.argmin([axis, out]) Return indices of the minimum values along the given axis

of a.
ndarray.ptp([axis, out, keepdims]) Peak to peak (maximum - minimum) value along a given

axis.
ndarray.clip([min, max, out]) Return an array whose values are limited to [min, max].
ndarray.conj() Complex-conjugate all elements.
ndarray.round([decimals, out]) Return a with each element rounded to the given number

of decimals.
ndarray.trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
ndarray.sum([axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.
ndarray.cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the given

axis.
ndarray.mean([axis, dtype, out, keepdims]) Returns the average of the array elements along given axis.
ndarray.var([axis, dtype, out, ddof, keepdims]) Returns the variance of the array elements, along given

axis.
ndarray.std([axis, dtype, out, ddof, keepdims]) Returns the standard deviation of the array elements along

given axis.
ndarray.prod([axis, dtype, out, keepdims]) Return the product of the array elements over the given axis
ndarray.cumprod([axis, dtype, out]) Return the cumulative product of the elements along the

given axis.
ndarray.all([axis, out, keepdims]) Returns True if all elements evaluate to True.
ndarray.any([axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.

1.1.6 Arithmetic, matrix multiplication, and comparison operations

Arithmetic and comparison operations on ndarrays are defined as element-wise operations, and generally yield
ndarray objects as results.

Each of the arithmetic operations (+, -, *, /, //, %, divmod(), ** or pow(), <<, >>, &, ^, |, ~) and the
comparisons (==, <, >, <=, >=, !=) is equivalent to the corresponding universal function (or ufunc for short) in
NumPy. For more information, see the section on Universal Functions.

Comparison operators:

ndarray.__lt__($self, value, /) Return self<value.
ndarray.__le__($self, value, /) Return self<=value.
ndarray.__gt__($self, value, /) Return self>value.
ndarray.__ge__($self, value, /) Return self>=value.
ndarray.__eq__($self, value, /) Return self==value.
ndarray.__ne__($self, value, /) Return self!=value.

1.1. The N-dimensional array (ndarray) 41



NumPy Reference, Release 1.15.1

ndarray.__lt__($self, value, /)
Return self<value.

ndarray.__le__($self, value, /)
Return self<=value.

ndarray.__gt__($self, value, /)
Return self>value.

ndarray.__ge__($self, value, /)
Return self>=value.

ndarray.__eq__($self, value, /)
Return self==value.

ndarray.__ne__($self, value, /)
Return self!=value.

Truth value of an array (bool):

ndarray.__nonzero__

Note: Truth-value testing of an array invokes ndarray.__nonzero__, which raises an error if the number of
elements in the array is larger than 1, because the truth value of such arrays is ambiguous. Use .any() and .all()
instead to be clear about what is meant in such cases. (If the number of elements is 0, the array evaluates to False.)

Unary operations:

ndarray.__neg__($self, /) -self
ndarray.__pos__($self, /) +self
ndarray.__abs__(self)
ndarray.__invert__($self, /) ~self

ndarray.__neg__($self, /)
-self

ndarray.__pos__($self, /)
+self

ndarray.__abs__(self)

ndarray.__invert__($self, /)
~self

Arithmetic:

ndarray.__add__($self, value, /) Return self+value.
ndarray.__sub__($self, value, /) Return self-value.
ndarray.__mul__($self, value, /) Return self*value.
ndarray.__div__
ndarray.__truediv__($self, value, /) Return self/value.
ndarray.__floordiv__($self, value, /) Return self//value.
ndarray.__mod__($self, value, /) Return self%value.
ndarray.__divmod__($self, value, /) Return divmod(self, value).
ndarray.__pow__($self, value[, mod]) Return pow(self, value, mod).

Continued on next page

42 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Table 14 – continued from previous page
ndarray.__lshift__($self, value, /) Return self<<value.
ndarray.__rshift__($self, value, /) Return self>>value.
ndarray.__and__($self, value, /) Return self&value.
ndarray.__or__($self, value, /) Return self|value.
ndarray.__xor__($self, value, /) Return self^value.

ndarray.__add__($self, value, /)
Return self+value.

ndarray.__sub__($self, value, /)
Return self-value.

ndarray.__mul__($self, value, /)
Return self*value.

ndarray.__truediv__($self, value, /)
Return self/value.

ndarray.__floordiv__($self, value, /)
Return self//value.

ndarray.__mod__($self, value, /)
Return self%value.

ndarray.__divmod__($self, value, /)
Return divmod(self, value).

ndarray.__pow__($self, value, mod=None, /)
Return pow(self, value, mod).

ndarray.__lshift__($self, value, /)
Return self<<value.

ndarray.__rshift__($self, value, /)
Return self>>value.

ndarray.__and__($self, value, /)
Return self&value.

ndarray.__or__($self, value, /)
Return self|value.

ndarray.__xor__($self, value, /)
Return self^value.

Note:

• Any third argument to pow is silently ignored, as the underlying ufunc takes only two arguments.

• The three division operators are all defined; div is active by default, truediv is active when __future__
division is in effect.

• Because ndarray is a built-in type (written in C), the __r{op}__ special methods are not directly defined.

• The functions called to implement many arithmetic special methods for arrays can be modified using
set_numeric_ops.

Arithmetic, in-place:

1.1. The N-dimensional array (ndarray) 43

https://docs.python.org/dev/library/functions.html#pow
https://docs.python.org/dev/library/__future__.html#module-__future__


NumPy Reference, Release 1.15.1

ndarray.__iadd__($self, value, /) Return self+=value.
ndarray.__isub__($self, value, /) Return self-=value.
ndarray.__imul__($self, value, /) Return self*=value.
ndarray.__idiv__
ndarray.__itruediv__($self, value, /) Return self/=value.
ndarray.__ifloordiv__($self, value, /) Return self//=value.
ndarray.__imod__($self, value, /) Return self%=value.
ndarray.__ipow__($self, value, /) Return self**=value.
ndarray.__ilshift__($self, value, /) Return self<<=value.
ndarray.__irshift__($self, value, /) Return self>>=value.
ndarray.__iand__($self, value, /) Return self&=value.
ndarray.__ior__($self, value, /) Return self|=value.
ndarray.__ixor__($self, value, /) Return self^=value.

ndarray.__iadd__($self, value, /)
Return self+=value.

ndarray.__isub__($self, value, /)
Return self-=value.

ndarray.__imul__($self, value, /)
Return self*=value.

ndarray.__itruediv__($self, value, /)
Return self/=value.

ndarray.__ifloordiv__($self, value, /)
Return self//=value.

ndarray.__imod__($self, value, /)
Return self%=value.

ndarray.__ipow__($self, value, /)
Return self**=value.

ndarray.__ilshift__($self, value, /)
Return self<<=value.

ndarray.__irshift__($self, value, /)
Return self>>=value.

ndarray.__iand__($self, value, /)
Return self&=value.

ndarray.__ior__($self, value, /)
Return self|=value.

ndarray.__ixor__($self, value, /)
Return self^=value.

Warning: In place operations will perform the calculation using the precision decided by the data type of the
two operands, but will silently downcast the result (if necessary) so it can fit back into the array. Therefore, for
mixed precision calculations, A {op}= B can be different than A = A {op} B. For example, suppose a =
ones((3,3)). Then, a += 3j is different than a = a + 3j: while they both perform the same computa-
tion, a += 3 casts the result to fit back in a, whereas a = a + 3j re-binds the name a to the result.

Matrix Multiplication:

44 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

ndarray.__matmul__($self, value, /) Return self@value.

ndarray.__matmul__($self, value, /)
Return self@value.

Note: Matrix operators @ and @= were introduced in Python 3.5 following PEP465. NumPy 1.10.0 has a preliminary
implementation of @ for testing purposes. Further documentation can be found in the matmul documentation.

1.1.7 Special methods

For standard library functions:

ndarray.__copy__() Used if copy.copy is called on an array.
ndarray.__deepcopy__(memo, /) Used if copy.deepcopy is called on an array.
ndarray.__reduce__() For pickling.
ndarray.__setstate__(state, /) For unpickling.

ndarray.__copy__()
Used if copy.copy is called on an array. Returns a copy of the array.

Equivalent to a.copy(order='K').

ndarray.__deepcopy__(memo, /)→ Deep copy of array.
Used if copy.deepcopy is called on an array.

ndarray.__reduce__()
For pickling.

ndarray.__setstate__(state, /)
For unpickling.

The state argument must be a sequence that contains the following elements:

Parameters

version [int] optional pickle version. If omitted defaults to 0.

shape [tuple]

dtype [data-type]

isFortran [bool]

rawdata [string or list] a binary string with the data (or a list if ‘a’ is an object array)

Basic customization:

ndarray.__new__($type, *args, **kwargs) Create and return a new object.
ndarray.__array__(|dtype) Returns either a new reference to self if dtype is not given

or a new array of provided data type if dtype is different
from the current dtype of the array.

ndarray.__array_wrap__(obj)

ndarray.__new__($type, *args, **kwargs)
Create and return a new object. See help(type) for accurate signature.

1.1. The N-dimensional array (ndarray) 45

mailto:self@value
mailto:self@value
https://docs.python.org/dev/library/copy.html#copy.copy
https://docs.python.org/dev/library/copy.html#copy.deepcopy
https://docs.python.org/dev/library/copy.html#copy.copy
https://docs.python.org/dev/library/copy.html#copy.deepcopy


NumPy Reference, Release 1.15.1

ndarray.__array__(|dtype)→ reference if type unchanged, copy otherwise.
Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is
different from the current dtype of the array.

ndarray.__array_wrap__(obj)→ Object of same type as ndarray object a.

Container customization: (see Indexing)

ndarray.__len__($self, /) Return len(self).
ndarray.__getitem__($self, key, /) Return self[key].
ndarray.__setitem__($self, key, value, /) Set self[key] to value.
ndarray.__contains__($self, key, /) Return key in self.

ndarray.__len__($self, /)
Return len(self).

ndarray.__getitem__($self, key, /)
Return self[key].

ndarray.__setitem__($self, key, value, /)
Set self[key] to value.

ndarray.__contains__($self, key, /)
Return key in self.

Conversion; the operations complex, int, long, float, oct, and hex. They work only on arrays that have one
element in them and return the appropriate scalar.

ndarray.__int__(self)
ndarray.__long__
ndarray.__float__(self)
ndarray.__oct__
ndarray.__hex__

ndarray.__int__(self)

ndarray.__float__(self)

String representations:

ndarray.__str__($self, /) Return str(self).
ndarray.__repr__($self, /) Return repr(self).

ndarray.__str__($self, /)
Return str(self).

ndarray.__repr__($self, /)
Return repr(self).

1.2 Scalars

Python defines only one type of a particular data class (there is only one integer type, one floating-point type, etc.).
This can be convenient in applications that don’t need to be concerned with all the ways data can be represented in a
computer. For scientific computing, however, more control is often needed.

46 Chapter 1. Array objects

https://docs.python.org/dev/library/functions.html#oct
https://docs.python.org/dev/library/functions.html#hex


NumPy Reference, Release 1.15.1

In NumPy, there are 24 new fundamental Python types to describe different types of scalars. These type descriptors
are mostly based on the types available in the C language that CPython is written in, with several additional types
compatible with Python’s types.

Array scalars have the same attributes and methods as ndarrays.1 This allows one to treat items of an array partly
on the same footing as arrays, smoothing out rough edges that result when mixing scalar and array operations.

Array scalars live in a hierarchy (see the Figure below) of data types. They can be detected using the hierarchy:
For example, isinstance(val, np.generic) will return True if val is an array scalar object. Alternatively,
what kind of array scalar is present can be determined using other members of the data type hierarchy. Thus, for
example isinstance(val, np.complexfloating) will return True if val is a complex valued type, while
isinstance(val, np.flexible) will return true if val is one of the flexible itemsize array types (string,
unicode, void).

Fig. 2: Figure: Hierarchy of type objects representing the array data types. Not shown are the two integer types intp
and uintp which just point to the integer type that holds a pointer for the platform. All the number types can be
obtained using bit-width names as well.

1 However, array scalars are immutable, so none of the array scalar attributes are settable.

1.2. Scalars 47



NumPy Reference, Release 1.15.1

1.2.1 Built-in scalar types

The built-in scalar types are shown below. Along with their (mostly) C-derived names, the integer, float, and complex
data-types are also available using a bit-width convention so that an array of the right size can always be ensured (e.g.
int8, float64, complex128). Two aliases (intp and uintp) pointing to the integer type that is sufficiently
large to hold a C pointer are also provided. The C-like names are associated with character codes, which are shown in
the table. Use of the character codes, however, is discouraged.

Some of the scalar types are essentially equivalent to fundamental Python types and therefore inherit from them as
well as from the generic array scalar type:

Array scalar type Related Python type
int_ IntType (Python 2 only)
float_ FloatType
complex_ ComplexType
bytes_ BytesType
unicode_ UnicodeType

The bool_ data type is very similar to the Python BooleanType but does not inherit from it because Python’s
BooleanType does not allow itself to be inherited from, and on the C-level the size of the actual bool data is not the
same as a Python Boolean scalar.

Warning: The bool_ type is not a subclass of the int_ type (the bool_ is not even a number type). This is
different than Python’s default implementation of bool as a sub-class of int.

Warning: The int_ type does not inherit from the int built-in under Python 3, because type int is no longer
a fixed-width integer type.

Tip: The default data type in NumPy is float_.

In the tables below, platform? means that the type may not be available on all platforms. Compatibility with
different C or Python types is indicated: two types are compatible if their data is of the same size and interpreted in
the same way.

Booleans:

Type Remarks Character code
bool_ compatible: Python bool '?'
bool8 8 bits

Integers:

48 Chapter 1. Array objects

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int


NumPy Reference, Release 1.15.1

byte compatible: C char 'b'
short compatible: C short 'h'
intc compatible: C int 'i'
int_ compatible: Python int 'l'
longlong compatible: C long long 'q'
intp large enough to fit a pointer 'p'
int8 8 bits
int16 16 bits
int32 32 bits
int64 64 bits

Unsigned integers:

ubyte compatible: C unsigned char 'B'
ushort compatible: C unsigned short 'H'
uintc compatible: C unsigned int 'I'
uint compatible: Python int 'L'
ulonglong compatible: C long long 'Q'
uintp large enough to fit a pointer 'P'
uint8 8 bits
uint16 16 bits
uint32 32 bits
uint64 64 bits

Floating-point numbers:

half 'e'
single compatible: C float 'f'
double compatible: C double
float_ compatible: Python float 'd'
longfloat compatible: C long float 'g'
float16 16 bits
float32 32 bits
float64 64 bits
float96 96 bits, platform?
float128 128 bits, platform?

Complex floating-point numbers:

csingle 'F'
complex_ compatible: Python complex 'D'
clongfloat 'G'
complex64 two 32-bit floats
complex128 two 64-bit floats
complex192 two 96-bit floats, platform?
complex256 two 128-bit floats, platform?

Any Python object:

object_ any Python object 'O'

1.2. Scalars 49



NumPy Reference, Release 1.15.1

Note: The data actually stored in object arrays (i.e., arrays having dtype object_) are references to Python objects,
not the objects themselves. Hence, object arrays behave more like usual Python lists, in the sense that their contents
need not be of the same Python type.

The object type is also special because an array containing object_ items does not return an object_ object on
item access, but instead returns the actual object that the array item refers to.

The following data types are flexible. They have no predefined size: the data they describe can be of different length
in different arrays. (In the character codes # is an integer denoting how many elements the data type consists of.)

bytes_ compatible: Python bytes 'S#'
unicode_ compatible: Python unicode/str 'U#'
void 'V#'

Warning: See Note on string types.

Numeric Compatibility: If you used old typecode characters in your Numeric code (which was never recom-
mended), you will need to change some of them to the new characters. In particular, the needed changes are c
-> S1, b -> B, 1 -> b, s -> h, w -> H, and u -> I. These changes make the type character convention
more consistent with other Python modules such as the struct module.

1.2.2 Attributes

The array scalar objects have an array priority of NPY_SCALAR_PRIORITY (-1,000,000.0). They also do
not (yet) have a ctypes attribute. Otherwise, they share the same attributes as arrays:

generic.flags integer value of flags
generic.shape tuple of array dimensions
generic.strides tuple of bytes steps in each dimension
generic.ndim number of array dimensions
generic.data pointer to start of data
generic.size number of elements in the gentype
generic.itemsize length of one element in bytes
generic.base base object
generic.dtype get array data-descriptor
generic.real real part of scalar
generic.imag imaginary part of scalar
generic.flat a 1-d view of scalar
generic.T transpose
generic.__array_interface__ Array protocol: Python side
generic.__array_struct__ Array protocol: struct
generic.__array_priority__ Array priority.
generic.__array_wrap__ sc.__array_wrap__(obj) return scalar from array

generic.flags
integer value of flags

generic.shape
tuple of array dimensions

50 Chapter 1. Array objects

https://docs.python.org/dev/library/stdtypes.html#list
https://docs.python.org/dev/library/struct.html#module-struct


NumPy Reference, Release 1.15.1

generic.strides
tuple of bytes steps in each dimension

generic.ndim
number of array dimensions

generic.data
pointer to start of data

generic.size
number of elements in the gentype

generic.itemsize
length of one element in bytes

generic.base
base object

generic.dtype
get array data-descriptor

generic.real
real part of scalar

generic.imag
imaginary part of scalar

generic.flat
a 1-d view of scalar

generic.T
transpose

generic.__array_interface__
Array protocol: Python side

generic.__array_struct__
Array protocol: struct

generic.__array_priority__
Array priority.

generic.__array_wrap__()
sc.__array_wrap__(obj) return scalar from array

1.2.3 Indexing

See also:

Indexing, Data type objects (dtype)

Array scalars can be indexed like 0-dimensional arrays: if x is an array scalar,

• x[()] returns a copy of array scalar

• x[...] returns a 0-dimensional ndarray

• x['field-name'] returns the array scalar in the field field-name. (x can have fields, for example, when it
corresponds to a structured data type.)

1.2. Scalars 51



NumPy Reference, Release 1.15.1

1.2.4 Methods

Array scalars have exactly the same methods as arrays. The default behavior of these methods is to internally convert
the scalar to an equivalent 0-dimensional array and to call the corresponding array method. In addition, math operations
on array scalars are defined so that the same hardware flags are set and used to interpret the results as for ufunc, so that
the error state used for ufuncs also carries over to the math on array scalars.

The exceptions to the above rules are given below:

generic Base class for numpy scalar types.
generic.__array__ sc.__array__(dtype) return 0-dim array from scalar with

specified dtype
generic.__array_wrap__ sc.__array_wrap__(obj) return scalar from array
generic.squeeze Not implemented (virtual attribute)
generic.byteswap Not implemented (virtual attribute)
generic.__reduce__ helper for pickle
generic.__setstate__
generic.setflags Not implemented (virtual attribute)

class numpy.generic
Base class for numpy scalar types.

Class from which most (all?) numpy scalar types are derived. For consistency, exposes the same API as
ndarray , despite many consequent attributes being either “get-only,” or completely irrelevant. This is the
class from which it is strongly suggested users should derive custom scalar types.

Attributes

T transpose

base base object

data pointer to start of data

dtype get array data-descriptor

flags integer value of flags

flat a 1-d view of scalar

imag imaginary part of scalar

itemsize length of one element in bytes

nbytes length of item in bytes

ndim number of array dimensions

real real part of scalar

shape tuple of array dimensions

size number of elements in the gentype

strides tuple of bytes steps in each dimension

Methods

52 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

all Not implemented (virtual attribute)
any Not implemented (virtual attribute)
argmax Not implemented (virtual attribute)
argmin Not implemented (virtual attribute)
argsort Not implemented (virtual attribute)
astype Not implemented (virtual attribute)
byteswap Not implemented (virtual attribute)
choose Not implemented (virtual attribute)
clip Not implemented (virtual attribute)
compress Not implemented (virtual attribute)
conjugate Not implemented (virtual attribute)
copy Not implemented (virtual attribute)
cumprod Not implemented (virtual attribute)
cumsum Not implemented (virtual attribute)
diagonal Not implemented (virtual attribute)
dump Not implemented (virtual attribute)
dumps Not implemented (virtual attribute)
fill Not implemented (virtual attribute)
flatten Not implemented (virtual attribute)
getfield Not implemented (virtual attribute)
item Not implemented (virtual attribute)
itemset Not implemented (virtual attribute)
max Not implemented (virtual attribute)
mean Not implemented (virtual attribute)
min Not implemented (virtual attribute)
newbyteorder([new_order]) Return a new dtype with a different byte order.
nonzero Not implemented (virtual attribute)
prod Not implemented (virtual attribute)
ptp Not implemented (virtual attribute)
put Not implemented (virtual attribute)
ravel Not implemented (virtual attribute)
repeat Not implemented (virtual attribute)
reshape Not implemented (virtual attribute)
resize Not implemented (virtual attribute)
round Not implemented (virtual attribute)
searchsorted Not implemented (virtual attribute)
setfield Not implemented (virtual attribute)
setflags Not implemented (virtual attribute)
sort Not implemented (virtual attribute)
squeeze Not implemented (virtual attribute)
std Not implemented (virtual attribute)
sum Not implemented (virtual attribute)
swapaxes Not implemented (virtual attribute)
take Not implemented (virtual attribute)
tofile Not implemented (virtual attribute)
tolist Not implemented (virtual attribute)
tostring Not implemented (virtual attribute)
trace Not implemented (virtual attribute)
transpose Not implemented (virtual attribute)
var Not implemented (virtual attribute)

Continued on next page

1.2. Scalars 53



NumPy Reference, Release 1.15.1

Table 24 – continued from previous page
view Not implemented (virtual attribute)

generic.all()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.any()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.argmax()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.argmin()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.argsort()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.astype()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.byteswap()
Not implemented (virtual attribute)

54 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.choose()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.clip()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.compress()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.conjugate()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.copy()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.cumprod()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

1.2. Scalars 55



NumPy Reference, Release 1.15.1

generic.cumsum()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.diagonal()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.dump()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.dumps()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.fill()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.flatten()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.getfield()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

56 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

The

generic.item()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.itemset()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.max()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.mean()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.min()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.newbyteorder(new_order=’S’)
Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

The new_order code can be any from the following:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

1.2. Scalars 57



NumPy Reference, Release 1.15.1

Parameters

new_order [str, optional] Byte order to force; a value from the byte order specifications
above. The default value (‘S’) results in swapping the current byte order. The code does
a case-insensitive check on the first letter of new_order for the alternatives above. For
example, any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns

new_dtype [dtype] New dtype object with the given change to the byte order.

generic.nonzero()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.prod()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.ptp()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.put()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.ravel()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.repeat()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

58 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

See also:

The

generic.reshape()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.resize()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.round()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.searchsorted()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.setfield()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.setflags()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.sort()
Not implemented (virtual attribute)

1.2. Scalars 59



NumPy Reference, Release 1.15.1

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.squeeze()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.std()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.sum()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.swapaxes()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.take()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.tofile()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

60 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

generic.tolist()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.tostring()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.trace()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.transpose()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.var()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.view()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

conj
tobytes

generic.__array__()
sc.__array__(dtype) return 0-dim array from scalar with specified dtype

1.2. Scalars 61



NumPy Reference, Release 1.15.1

generic.__reduce__()
helper for pickle

generic.__setstate__()

1.2.5 Defining new types

There are two ways to effectively define a new array scalar type (apart from composing structured types dtypes from
the built-in scalar types): One way is to simply subclass the ndarray and overwrite the methods of interest. This
will work to a degree, but internally certain behaviors are fixed by the data type of the array. To fully customize the
data type of an array you need to define a new data-type, and register it with NumPy. Such new types can only be
defined in C, using the NumPy C-API.

1.3 Data type objects (dtype)

A data type object (an instance of numpy.dtype class) describes how the bytes in the fixed-size block of memory
corresponding to an array item should be interpreted. It describes the following aspects of the data:

1. Type of the data (integer, float, Python object, etc.)

2. Size of the data (how many bytes is in e.g. the integer)

3. Byte order of the data (little-endian or big-endian)

4. If the data type is structured, an aggregate of other data types, (e.g., describing an array item consisting of an
integer and a float),

(a) what are the names of the “fields” of the structure, by which they can be accessed,

(b) what is the data-type of each field, and

(c) which part of the memory block each field takes.

5. If the data type is a sub-array, what is its shape and data type.

To describe the type of scalar data, there are several built-in scalar types in NumPy for various precision of integers,
floating-point numbers, etc. An item extracted from an array, e.g., by indexing, will be a Python object whose type is
the scalar type associated with the data type of the array.

Note that the scalar types are not dtype objects, even though they can be used in place of one whenever a data type
specification is needed in NumPy.

Structured data types are formed by creating a data type whose fields contain other data types. Each field has a name
by which it can be accessed. The parent data type should be of sufficient size to contain all its fields; the parent is
nearly always based on the void type which allows an arbitrary item size. Structured data types may also contain
nested structured sub-array data types in their fields.

Finally, a data type can describe items that are themselves arrays of items of another data type. These sub-arrays must,
however, be of a fixed size.

If an array is created using a data-type describing a sub-array, the dimensions of the sub-array are appended to the
shape of the array when the array is created. Sub-arrays in a field of a structured type behave differently, see Field
Access.

Sub-arrays always have a C-contiguous memory layout.

Example

62 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

A simple data type containing a 32-bit big-endian integer: (see Specifying and constructing data types for details on
construction)

>>> dt = np.dtype('>i4')
>>> dt.byteorder
'>'
>>> dt.itemsize
4
>>> dt.name
'int32'
>>> dt.type is np.int32
True

The corresponding array scalar type is int32.

Example

A structured data type containing a 16-character string (in field ‘name’) and a sub-array of two 64-bit floating-point
number (in field ‘grades’):

>>> dt = np.dtype([('name', np.unicode_, 16), ('grades', np.float64, (2,))])
>>> dt['name']
dtype('|U16')
>>> dt['grades']
dtype(('float64',(2,)))

Items of an array of this data type are wrapped in an array scalar type that also has two fields:

>>> x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
>>> x[1]
('John', [6.0, 7.0])
>>> x[1]['grades']
array([ 6., 7.])
>>> type(x[1])
<type 'numpy.void'>
>>> type(x[1]['grades'])
<type 'numpy.ndarray'>

1.3.1 Specifying and constructing data types

Whenever a data-type is required in a NumPy function or method, either a dtype object or something that can be
converted to one can be supplied. Such conversions are done by the dtype constructor:

dtype(obj[, align, copy]) Create a data type object.

class numpy.dtype(obj, align=False, copy=False)
Create a data type object.

A numpy array is homogeneous, and contains elements described by a dtype object. A dtype object can be
constructed from different combinations of fundamental numeric types.

Parameters

obj Object to be converted to a data type object.

1.3. Data type objects (dtype) 63



NumPy Reference, Release 1.15.1

align [bool, optional] Add padding to the fields to match what a C compiler would output for a
similar C-struct. Can be True only if obj is a dictionary or a comma-separated string. If a
struct dtype is being created, this also sets a sticky alignment flag isalignedstruct.

copy [bool, optional] Make a new copy of the data-type object. If False, the result may just
be a reference to a built-in data-type object.

See also:

result_type

Examples

Using array-scalar type:

>>> np.dtype(np.int16)
dtype('int16')

Structured type, one field name ‘f1’, containing int16:

>>> np.dtype([('f1', np.int16)])
dtype([('f1', '<i2')])

Structured type, one field named ‘f1’, in itself containing a structured type with one field:

>>> np.dtype([('f1', [('f1', np.int16)])])
dtype([('f1', [('f1', '<i2')])])

Structured type, two fields: the first field contains an unsigned int, the second an int32:

>>> np.dtype([('f1', np.uint), ('f2', np.int32)])
dtype([('f1', '<u4'), ('f2', '<i4')])

Using array-protocol type strings:

>>> np.dtype([('a','f8'),('b','S10')])
dtype([('a', '<f8'), ('b', '|S10')])

Using comma-separated field formats. The shape is (2,3):

>>> np.dtype("i4, (2,3)f8")
dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])

Using tuples. int is a fixed type, 3 the field’s shape. void is a flexible type, here of size 10:

>>> np.dtype([('hello',(int,3)),('world',np.void,10)])
dtype([('hello', '<i4', 3), ('world', '|V10')])

Subdivide int16 into 2 int8’s, called x and y. 0 and 1 are the offsets in bytes:

>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))

Using dictionaries. Two fields named ‘gender’ and ‘age’:

>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
dtype([('gender', '|S1'), ('age', '|u1')])

64 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Offsets in bytes, here 0 and 25:

>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
dtype([('surname', '|S25'), ('age', '|u1')])

Attributes

alignment The required alignment (bytes) of this data-type according to the compiler.

More information is available in the C-API section of the manual.

base

byteorder A character indicating the byte-order of this data-type object.

One of:

‘=’ native
‘<’ little-endian
‘>’ big-endian
‘|’ not applicable

All built-in data-type objects have byteorder either ‘=’ or ‘|’.

>>> dt = np.dtype('i2')
>>> dt.byteorder
'='
>>> # endian is not relevant for 8 bit numbers
>>> np.dtype('i1').byteorder
'|'
>>> # or ASCII strings
>>> np.dtype('S2').byteorder
'|'
>>> # Even if specific code is given, and it is native
>>> # '=' is the byteorder
>>> import sys
>>> sys_is_le = sys.byteorder == 'little'
>>> native_code = sys_is_le and '<' or '>'
>>> swapped_code = sys_is_le and '>' or '<'
>>> dt = np.dtype(native_code + 'i2')
>>> dt.byteorder
'='
>>> # Swapped code shows up as itself
>>> dt = np.dtype(swapped_code + 'i2')
>>> dt.byteorder == swapped_code
True

char A unique character code for each of the 21 different built-in types.

descr PEP3118 interface description of the data-type.

fields Dictionary of named fields defined for this data type, or None.

flags Bit-flags describing how this data type is to be interpreted.

Bit-masks are in numpy.core.multiarray as the constants ITEM_HASOBJECT,
LIST_PICKLE, ITEM_IS_POINTER, NEEDS_INIT, NEEDS_PYAPI, USE_GETITEM,
USE_SETITEM. A full explanation of these flags is in C-API documentation; they are
largely useful for user-defined data-types.

1.3. Data type objects (dtype) 65



NumPy Reference, Release 1.15.1

hasobject Boolean indicating whether this dtype contains any reference-counted objects in
any fields or sub-dtypes.

isalignedstruct Boolean indicating whether the dtype is a struct which maintains field
alignment.

isbuiltin Integer indicating how this dtype relates to the built-in dtypes.

isnative Boolean indicating whether the byte order of this dtype is native to the platform.

itemsize The element size of this data-type object.

For 18 of the 21 types this number is fixed by the data-type. For the flexible data-types, this
number can be anything.

kind A character code (one of ‘biufcmMOSUV’) identifying the general kind of data.

b boolean
i signed integer
u unsigned integer
f floating-point
c complex floating-point
m timedelta
M datetime
O object
S (byte-)string
U Unicode
V void

metadata

name A bit-width name for this data-type.

names Ordered list of field names, or None if there are no fields.

ndim Number of dimensions of the sub-array if this data type describes a sub-array, and 0
otherwise.

num A unique number for each of the 21 different built-in types.

These are roughly ordered from least-to-most precision.

shape Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.

str The array-protocol typestring of this data-type object.

subdtype Tuple (item_dtype, shape) if this dtype describes a sub-array, and None
otherwise.

type The type object used to instantiate a scalar of this data-type.

Methods

newbyteorder([new_order]) Return a new dtype with a different byte order.

dtype.newbyteorder(new_order=’S’)
Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

66 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Parameters

new_order [string, optional] Byte order to force; a value from the byte order specifications
below. The default value (‘S’) results in swapping the current byte order. new_order codes
can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

The code does a case-insensitive check on the first letter of new_order for these alterna-
tives. For example, any of ‘>’ or ‘B’ or ‘b’ or ‘brian’ are valid to specify big-endian.

Returns

new_dtype [dtype] New dtype object with the given change to the byte order.

Notes

Changes are also made in all fields and sub-arrays of the data type.

Examples

>>> import sys
>>> sys_is_le = sys.byteorder == 'little'
>>> native_code = sys_is_le and '<' or '>'
>>> swapped_code = sys_is_le and '>' or '<'
>>> native_dt = np.dtype(native_code+'i2')
>>> swapped_dt = np.dtype(swapped_code+'i2')
>>> native_dt.newbyteorder('S') == swapped_dt
True
>>> native_dt.newbyteorder() == swapped_dt
True
>>> native_dt == swapped_dt.newbyteorder('S')
True
>>> native_dt == swapped_dt.newbyteorder('=')
True
>>> native_dt == swapped_dt.newbyteorder('N')
True
>>> native_dt == native_dt.newbyteorder('|')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('<')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('L')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('>')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('B')
True

What can be converted to a data-type object is described below:

dtype object

1.3. Data type objects (dtype) 67



NumPy Reference, Release 1.15.1

Used as-is.

None

The default data type: float_.

Array-scalar types

The 24 built-in array scalar type objects all convert to an associated data-type object. This is true for their
sub-classes as well.

Note that not all data-type information can be supplied with a type-object: for example, flexible data-types
have a default itemsize of 0, and require an explicitly given size to be useful.

Example

>>> dt = np.dtype(np.int32) # 32-bit integer
>>> dt = np.dtype(np.complex128) # 128-bit complex floating-point number

Generic types

The generic hierarchical type objects convert to corresponding type objects according to the associations:

number, inexact, floating float
complexfloating cfloat
integer, signedinteger int_
unsignedinteger uint
character string
generic, flexible void

Built-in Python types

Several python types are equivalent to a corresponding array scalar when used to generate a dtype object:

int int_
bool bool_
float float_
complex cfloat
bytes bytes_
str bytes_ (Python2) or unicode_ (Python3)
unicode unicode_
buffer void
(all others) object_

Note that str refers to either null terminated bytes or unicode strings depending on the Python version.
In code targeting both Python 2 and 3 np.unicode_ should be used as a dtype for strings. See Note on
string types.

Example

>>> dt = np.dtype(float) # Python-compatible floating-point number
>>> dt = np.dtype(int) # Python-compatible integer
>>> dt = np.dtype(object) # Python object

68 Chapter 1. Array objects

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#complex
https://docs.python.org/dev/library/stdtypes.html#bytes
https://docs.python.org/dev/library/stdtypes.html#str


NumPy Reference, Release 1.15.1

Types with .dtype

Any type object with a dtype attribute: The attribute will be accessed and used directly. The attribute
must return something that is convertible into a dtype object.

Several kinds of strings can be converted. Recognized strings can be prepended with '>' (big-endian), '<' (little-
endian), or '=' (hardware-native, the default), to specify the byte order.

One-character strings

Each built-in data-type has a character code (the updated Numeric typecodes), that uniquely identifies it.

Example

>>> dt = np.dtype('b') # byte, native byte order
>>> dt = np.dtype('>H') # big-endian unsigned short
>>> dt = np.dtype('<f') # little-endian single-precision float
>>> dt = np.dtype('d') # double-precision floating-point number

Array-protocol type strings (see The Array Interface)

The first character specifies the kind of data and the remaining characters specify the number of bytes
per item, except for Unicode, where it is interpreted as the number of characters. The item size must
correspond to an existing type, or an error will be raised. The supported kinds are

'?' boolean
'b' (signed) byte
'B' unsigned byte
'i' (signed) integer
'u' unsigned integer
'f' floating-point
'c' complex-floating point
'm' timedelta
'M' datetime
'O' (Python) objects
'S', 'a' zero-terminated bytes (not recommended)
'U' Unicode string
'V' raw data (void)

Example

>>> dt = np.dtype('i4') # 32-bit signed integer
>>> dt = np.dtype('f8') # 64-bit floating-point number
>>> dt = np.dtype('c16') # 128-bit complex floating-point number
>>> dt = np.dtype('a25') # 25-length zero-terminated bytes
>>> dt = np.dtype('U25') # 25-character string

Note on string types

For backward compatibility with Python 2 the S and a typestrings remain zero-terminated bytes and np.
string_ continues to map to np.bytes_. To use actual strings in Python 3 use U or np.unicode_.
For signed bytes that do not need zero-termination b or i1 can be used.

1.3. Data type objects (dtype) 69



NumPy Reference, Release 1.15.1

String with comma-separated fields

A short-hand notation for specifying the format of a structured data type is a comma-separated string of
basic formats.

A basic format in this context is an optional shape specifier followed by an array-protocol type string.
Parenthesis are required on the shape if it has more than one dimension. NumPy allows a modification
on the format in that any string that can uniquely identify the type can be used to specify the data-type
in a field. The generated data-type fields are named 'f0', 'f1', . . . , 'f<N-1>' where N (>1) is the
number of comma-separated basic formats in the string. If the optional shape specifier is provided, then
the data-type for the corresponding field describes a sub-array.

Example

• field named f0 containing a 32-bit integer

• field named f1 containing a 2 x 3 sub-array of 64-bit floating-point numbers

• field named f2 containing a 32-bit floating-point number

>>> dt = np.dtype("i4, (2,3)f8, f4")

• field named f0 containing a 3-character string

• field named f1 containing a sub-array of shape (3,) containing 64-bit unsigned integers

• field named f2 containing a 3 x 4 sub-array containing 10-character strings

>>> dt = np.dtype("a3, 3u8, (3,4)a10")

Type strings

Any string in numpy.sctypeDict.keys():

Example

>>> dt = np.dtype('uint32') # 32-bit unsigned integer
>>> dt = np.dtype('Float64') # 64-bit floating-point number

(flexible_dtype, itemsize)

The first argument must be an object that is converted to a zero-sized flexible data-type object, the second
argument is an integer providing the desired itemsize.

Example

>>> dt = np.dtype((np.void, 10)) # 10-byte wide data block
>>> dt = np.dtype(('U', 10)) # 10-character unicode string

(fixed_dtype, shape)

The first argument is any object that can be converted into a fixed-size data-type object. The second
argument is the desired shape of this type. If the shape parameter is 1, then the data-type object is
equivalent to fixed dtype. If shape is a tuple, then the new dtype defines a sub-array of the given shape.

70 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Example

>>> dt = np.dtype((np.int32, (2,2))) # 2 x 2 integer sub-array
>>> dt = np.dtype(('U10', 1)) # 10-character string
>>> dt = np.dtype(('i4, (2,3)f8, f4', (2,3))) # 2 x 3 structured sub-array

[(field_name, field_dtype, field_shape), ...]

obj should be a list of fields where each field is described by a tuple of length 2 or 3. (Equivalent to the
descr item in the __array_interface__ attribute.)

The first element, field_name, is the field name (if this is '' then a standard field name, 'f#', is as-
signed). The field name may also be a 2-tuple of strings where the first string is either a “title” (which
may be any string or unicode string) or meta-data for the field which can be any object, and the second
string is the “name” which must be a valid Python identifier.

The second element, field_dtype, can be anything that can be interpreted as a data-type.

The optional third element field_shape contains the shape if this field represents an array of the data-type
in the second element. Note that a 3-tuple with a third argument equal to 1 is equivalent to a 2-tuple.

This style does not accept align in the dtype constructor as it is assumed that all of the memory is
accounted for by the array interface description.

Example

Data-type with fields big (big-endian 32-bit integer) and little (little-endian 32-bit integer):

>>> dt = np.dtype([('big', '>i4'), ('little', '<i4')])

Data-type with fields R, G, B, A, each being an unsigned 8-bit integer:

>>> dt = np.dtype([('R','u1'), ('G','u1'), ('B','u1'), ('A','u1')])

{'names': ..., 'formats': ..., 'offsets': ..., 'titles': ...,
'itemsize': ...}

This style has two required and three optional keys. The names and formats keys are required. Their
respective values are equal-length lists with the field names and the field formats. The field names must
be strings and the field formats can be any object accepted by dtype constructor.

When the optional keys offsets and titles are provided, their values must each be lists of the same length
as the names and formats lists. The offsets value is a list of byte offsets (integers) for each field, while the
titles value is a list of titles for each field (None can be used if no title is desired for that field). The titles
can be any string or unicode object and will add another entry to the fields dictionary keyed by the
title and referencing the same field tuple which will contain the title as an additional tuple member.

The itemsize key allows the total size of the dtype to be set, and must be an integer large enough so all the
fields are within the dtype. If the dtype being constructed is aligned, the itemsize must also be divisible
by the struct alignment.

Example

Data type with fields r, g, b, a, each being an 8-bit unsigned integer:

1.3. Data type objects (dtype) 71



NumPy Reference, Release 1.15.1

>>> dt = np.dtype({'names': ['r','g','b','a'],
... 'formats': [uint8, uint8, uint8, uint8]})

Data type with fields r and b (with the given titles), both being 8-bit unsigned integers, the first at byte
position 0 from the start of the field and the second at position 2:

>>> dt = np.dtype({'names': ['r','b'], 'formats': ['u1', 'u1'],
... 'offsets': [0, 2],
... 'titles': ['Red pixel', 'Blue pixel']})

{'field1': ..., 'field2': ..., ...}

This usage is discouraged, because it is ambiguous with the other dict-based construction method. If you
have a field called ‘names’ and a field called ‘formats’ there will be a conflict.

This style allows passing in the fields attribute of a data-type object.

obj should contain string or unicode keys that refer to (data-type, offset) or (data-type,
offset, title) tuples.

Example

Data type containing field col1 (10-character string at byte position 0), col2 (32-bit float at byte posi-
tion 10), and col3 (integers at byte position 14):

>>> dt = np.dtype({'col1': ('U10', 0), 'col2': (float32, 10),
'col3': (int, 14)})

(base_dtype, new_dtype)

In NumPy 1.7 and later, this form allows base_dtype to be interpreted as a structured dtype. Arrays
created with this dtype will have underlying dtype base_dtype but will have fields and flags taken from
new_dtype. This is useful for creating custom structured dtypes, as done in record arrays.

This form also makes it possible to specify struct dtypes with overlapping fields, functioning like the
‘union’ type in C. This usage is discouraged, however, and the union mechanism is preferred.

Both arguments must be convertible to data-type objects with the same total size. .. admonition:: Example

32-bit integer, whose first two bytes are interpreted as an integer via field real, and the fol-
lowing two bytes via field imag.

>>> dt = np.dtype((np.int32,{'real':(np.int16, 0),'imag':(np.int16,
→˓2)})

32-bit integer, which is interpreted as consisting of a sub-array of shape (4,) containing 8-bit
integers:

>>> dt = np.dtype((np.int32, (np.int8, 4)))

32-bit integer, containing fields r, g, b, a that interpret the 4 bytes in the integer as four
unsigned integers:

>>> dt = np.dtype(('i4', [('r','u1'),('g','u1'),('b','u1'),('a','u1
→˓')]))

72 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

1.3.2 dtype

NumPy data type descriptions are instances of the dtype class.

Attributes

The type of the data is described by the following dtype attributes:

dtype.type The type object used to instantiate a scalar of this data-type.
dtype.kind A character code (one of ‘biufcmMOSUV’) identifying the

general kind of data.
dtype.char A unique character code for each of the 21 different built-in

types.
dtype.num A unique number for each of the 21 different built-in types.
dtype.str The array-protocol typestring of this data-type object.

dtype.type
The type object used to instantiate a scalar of this data-type.

dtype.kind
A character code (one of ‘biufcmMOSUV’) identifying the general kind of data.

b boolean
i signed integer
u unsigned integer
f floating-point
c complex floating-point
m timedelta
M datetime
O object
S (byte-)string
U Unicode
V void

dtype.char
A unique character code for each of the 21 different built-in types.

dtype.num
A unique number for each of the 21 different built-in types.

These are roughly ordered from least-to-most precision.

dtype.str
The array-protocol typestring of this data-type object.

Size of the data is in turn described by:

dtype.name A bit-width name for this data-type.
dtype.itemsize The element size of this data-type object.

dtype.name
A bit-width name for this data-type.

Un-sized flexible data-type objects do not have this attribute.

1.3. Data type objects (dtype) 73



NumPy Reference, Release 1.15.1

dtype.itemsize
The element size of this data-type object.

For 18 of the 21 types this number is fixed by the data-type. For the flexible data-types, this number can be
anything.

Endianness of this data:

dtype.byteorder A character indicating the byte-order of this data-type ob-
ject.

dtype.byteorder
A character indicating the byte-order of this data-type object.

One of:

‘=’ native
‘<’ little-endian
‘>’ big-endian
‘|’ not applicable

All built-in data-type objects have byteorder either ‘=’ or ‘|’.

Examples

>>> dt = np.dtype('i2')
>>> dt.byteorder
'='
>>> # endian is not relevant for 8 bit numbers
>>> np.dtype('i1').byteorder
'|'
>>> # or ASCII strings
>>> np.dtype('S2').byteorder
'|'
>>> # Even if specific code is given, and it is native
>>> # '=' is the byteorder
>>> import sys
>>> sys_is_le = sys.byteorder == 'little'
>>> native_code = sys_is_le and '<' or '>'
>>> swapped_code = sys_is_le and '>' or '<'
>>> dt = np.dtype(native_code + 'i2')
>>> dt.byteorder
'='
>>> # Swapped code shows up as itself
>>> dt = np.dtype(swapped_code + 'i2')
>>> dt.byteorder == swapped_code
True

Information about sub-data-types in a structured data type:

dtype.fields Dictionary of named fields defined for this data type, or
None.

dtype.names Ordered list of field names, or None if there are no fields.

74 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

dtype.fields
Dictionary of named fields defined for this data type, or None.

The dictionary is indexed by keys that are the names of the fields. Each entry in the dictionary is a tuple fully
describing the field:

(dtype, offset[, title])

If present, the optional title can be any object (if it is a string or unicode then it will also be a key in the fields
dictionary, otherwise it’s meta-data). Notice also that the first two elements of the tuple can be passed directly
as arguments to the ndarray.getfield and ndarray.setfield methods.

See also:

ndarray.getfield, ndarray.setfield

Examples

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> print(dt.fields)
{'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)}

dtype.names
Ordered list of field names, or None if there are no fields.

The names are ordered according to increasing byte offset. This can be used, for example, to walk through all
of the named fields in offset order.

Examples

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt.names
('name', 'grades')

For data types that describe sub-arrays:

dtype.subdtype Tuple (item_dtype, shape) if this dtype describes
a sub-array, and None otherwise.

dtype.shape Shape tuple of the sub-array if this data type describes a
sub-array, and () otherwise.

dtype.subdtype
Tuple (item_dtype, shape) if this dtype describes a sub-array, and None otherwise.

The shape is the fixed shape of the sub-array described by this data type, and item_dtype the data type of the
array.

If a field whose dtype object has this attribute is retrieved, then the extra dimensions implied by shape are tacked
on to the end of the retrieved array.

dtype.shape
Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.

Attributes providing additional information:

1.3. Data type objects (dtype) 75



NumPy Reference, Release 1.15.1

dtype.hasobject Boolean indicating whether this dtype contains any
reference-counted objects in any fields or sub-dtypes.

dtype.flags Bit-flags describing how this data type is to be interpreted.
dtype.isbuiltin Integer indicating how this dtype relates to the built-in

dtypes.
dtype.isnative Boolean indicating whether the byte order of this dtype is

native to the platform.
dtype.descr PEP3118 interface description of the data-type.
dtype.alignment The required alignment (bytes) of this data-type according

to the compiler.

dtype.hasobject
Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.

Recall that what is actually in the ndarray memory representing the Python object is the memory address of that
object (a pointer). Special handling may be required, and this attribute is useful for distinguishing data types
that may contain arbitrary Python objects and data-types that won’t.

dtype.flags
Bit-flags describing how this data type is to be interpreted.

Bit-masks are in numpy.core.multiarray as the constants ITEM_HASOBJECT, LIST_PICKLE,
ITEM_IS_POINTER, NEEDS_INIT, NEEDS_PYAPI, USE_GETITEM, USE_SETITEM. A full explanation of
these flags is in C-API documentation; they are largely useful for user-defined data-types.

dtype.isbuiltin
Integer indicating how this dtype relates to the built-in dtypes.

Read-only.

0 if this is a structured array type, with fields
1 if this is a dtype compiled into numpy (such as ints, floats etc)
2 if the dtype is for a user-defined numpy type A user-defined type uses the numpy C-API machinery to

extend numpy to handle a new array type. See user.user-defined-data-types in the NumPy manual.

Examples

>>> dt = np.dtype('i2')
>>> dt.isbuiltin
1
>>> dt = np.dtype('f8')
>>> dt.isbuiltin
1
>>> dt = np.dtype([('field1', 'f8')])
>>> dt.isbuiltin
0

dtype.isnative
Boolean indicating whether the byte order of this dtype is native to the platform.

dtype.descr
PEP3118 interface description of the data-type.

The format is that required by the ‘descr’ key in the PEP3118 __array_interface__ attribute.

76 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Warning: This attribute exists specifically for PEP3118 compliance, and is not a datatype description compatible
with np.dtype.

dtype.alignment
The required alignment (bytes) of this data-type according to the compiler.

More information is available in the C-API section of the manual.

Methods

Data types have the following method for changing the byte order:

dtype.newbyteorder([new_order]) Return a new dtype with a different byte order.

The following methods implement the pickle protocol:

dtype.__reduce__ helper for pickle
dtype.__setstate__

dtype.__reduce__()
helper for pickle

dtype.__setstate__()

1.4 Indexing

ndarrays can be indexed using the standard Python x[obj] syntax, where x is the array and obj the selection.
There are three kinds of indexing available: field access, basic slicing, advanced indexing. Which one occurs depends
on obj.

Note: In Python, x[(exp1, exp2, ..., expN)] is equivalent to x[exp1, exp2, ..., expN]; the
latter is just syntactic sugar for the former.

1.4.1 Basic Slicing and Indexing

Basic slicing extends Python’s basic concept of slicing to N dimensions. Basic slicing occurs when obj is a slice
object (constructed by start:stop:step notation inside of brackets), an integer, or a tuple of slice objects and
integers. Ellipsis and newaxis objects can be interspersed with these as well.

Deprecated since version 1.15.0: In order to remain backward compatible with a common usage in Numeric, basic
slicing is also initiated if the selection object is any non-ndarray and non-tuple sequence (such as a list) contain-
ing slice objects, the Ellipsis object, or the newaxis object, but not for integer arrays or other embedded
sequences.

The simplest case of indexing with N integers returns an array scalar representing the corresponding item. As in
Python, all indices are zero-based: for the i-th index 𝑛𝑖, the valid range is 0 ≤ 𝑛𝑖 < 𝑑𝑖 where 𝑑𝑖 is the i-th element of
the shape of the array. Negative indices are interpreted as counting from the end of the array (i.e., if 𝑛𝑖 < 0, it means
𝑛𝑖 + 𝑑𝑖).

All arrays generated by basic slicing are always views of the original array.

1.4. Indexing 77

https://docs.python.org/dev/library/functions.html#slice
https://docs.python.org/dev/library/stdtypes.html#list
https://docs.python.org/dev/library/functions.html#slice


NumPy Reference, Release 1.15.1

The standard rules of sequence slicing apply to basic slicing on a per-dimension basis (including using a step index).
Some useful concepts to remember include:

• The basic slice syntax is i:j:k where i is the starting index, j is the stopping index, and k is the step (𝑘 ̸= 0).
This selects the m elements (in the corresponding dimension) with index values i, i + k, . . . , i + (m - 1) k where
𝑚 = 𝑞 + (𝑟 ̸= 0) and q and r are the quotient and remainder obtained by dividing j - i by k: j - i = q k + r, so
that i + (m - 1) k < j.

Example

>>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> x[1:7:2]
array([1, 3, 5])

• Negative i and j are interpreted as n + i and n + j where n is the number of elements in the corresponding
dimension. Negative k makes stepping go towards smaller indices.

Example

>>> x[-2:10]
array([8, 9])
>>> x[-3:3:-1]
array([7, 6, 5, 4])

• Assume n is the number of elements in the dimension being sliced. Then, if i is not given it defaults to 0 for k >
0 and n - 1 for k < 0 . If j is not given it defaults to n for k > 0 and -n-1 for k < 0 . If k is not given it defaults to
1. Note that :: is the same as : and means select all indices along this axis.

Example

>>> x[5:]
array([5, 6, 7, 8, 9])

• If the number of objects in the selection tuple is less than N , then : is assumed for any subsequent dimensions.

Example

>>> x = np.array([[[1],[2],[3]], [[4],[5],[6]]])
>>> x.shape
(2, 3, 1)
>>> x[1:2]
array([[[4],

[5],
[6]]])

• Ellipsis expand to the number of : objects needed to make a selection tuple of the same length as x.ndim.
There may only be a single ellipsis present.

Example

78 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> x[...,0]
array([[1, 2, 3],

[4, 5, 6]])

• Each newaxis object in the selection tuple serves to expand the dimensions of the resulting selection by one
unit-length dimension. The added dimension is the position of the newaxis object in the selection tuple.

Example

>>> x[:,np.newaxis,:,:].shape
(2, 1, 3, 1)

• An integer, i, returns the same values as i:i+1 except the dimensionality of the returned object is reduced by 1.
In particular, a selection tuple with the p-th element an integer (and all other entries :) returns the corresponding
sub-array with dimension N - 1. If N = 1 then the returned object is an array scalar. These objects are explained
in Scalars.

• If the selection tuple has all entries : except the p-th entry which is a slice object i:j:k, then the returned
array has dimension N formed by concatenating the sub-arrays returned by integer indexing of elements i, i+k,
. . . , i + (m - 1) k < j,

• Basic slicing with more than one non-: entry in the slicing tuple, acts like repeated application of slicing using
a single non-: entry, where the non-: entries are successively taken (with all other non-: entries replaced by
:). Thus, x[ind1,...,ind2,:] acts like x[ind1][...,ind2,:] under basic slicing.

Warning: The above is not true for advanced indexing.

• You may use slicing to set values in the array, but (unlike lists) you can never grow the array. The size of the
value to be set in x[obj] = value must be (broadcastable) to the same shape as x[obj].

Note: Remember that a slicing tuple can always be constructed as obj and used in the x[obj] notation. Slice objects
can be used in the construction in place of the [start:stop:step] notation. For example, x[1:10:5,::-1]
can also be implemented as obj = (slice(1,10,5), slice(None,None,-1)); x[obj] . This can be
useful for constructing generic code that works on arrays of arbitrary dimension.

numpy.newaxis
The newaxis object can be used in all slicing operations to create an axis of length one. newaxis is an alias
for ‘None’, and ‘None’ can be used in place of this with the same result.

1.4.2 Advanced Indexing

Advanced indexing is triggered when the selection object, obj, is a non-tuple sequence object, an ndarray (of data
type integer or bool), or a tuple with at least one sequence object or ndarray (of data type integer or bool). There are
two types of advanced indexing: integer and Boolean.

Advanced indexing always returns a copy of the data (contrast with basic slicing that returns a view).

1.4. Indexing 79



NumPy Reference, Release 1.15.1

Warning: The definition of advanced indexing means that x[(1,2,3),] is fundamentally different than
x[(1,2,3)]. The latter is equivalent to x[1,2,3] which will trigger basic selection while the former will
trigger advanced indexing. Be sure to understand why this occurs.

Also recognize that x[[1,2,3]] will trigger advanced indexing, whereas due to the deprecated Numeric com-
patibility mentioned above, x[[1,2,slice(None)]] will trigger basic slicing.

Integer array indexing

Integer array indexing allows selection of arbitrary items in the array based on their N-dimensional index. Each integer
array represents a number of indexes into that dimension.

Purely integer array indexing

When the index consists of as many integer arrays as the array being indexed has dimensions, the indexing is straight
forward, but different from slicing.

Advanced indexes always are broadcast and iterated as one:

result[i_1, ..., i_M] == x[ind_1[i_1, ..., i_M], ind_2[i_1, ..., i_M],
..., ind_N[i_1, ..., i_M]]

Note that the result shape is identical to the (broadcast) indexing array shapes ind_1, ..., ind_N.

Example

From each row, a specific element should be selected. The row index is just [0, 1, 2] and the column index
specifies the element to choose for the corresponding row, here [0, 1, 0]. Using both together the task can be
solved using advanced indexing:

>>> x = np.array([[1, 2], [3, 4], [5, 6]])
>>> x[[0, 1, 2], [0, 1, 0]]
array([1, 4, 5])

To achieve a behaviour similar to the basic slicing above, broadcasting can be used. The function ix_ can help with
this broadcasting. This is best understood with an example.

Example

From a 4x3 array the corner elements should be selected using advanced indexing. Thus all elements for which the
column is one of [0, 2] and the row is one of [0, 3] need to be selected. To use advanced indexing one needs to
select all elements explicitly. Using the method explained previously one could write:

>>> x = array([[ 0, 1, 2],
... [ 3, 4, 5],
... [ 6, 7, 8],
... [ 9, 10, 11]])
>>> rows = np.array([[0, 0],
... [3, 3]], dtype=np.intp)
>>> columns = np.array([[0, 2],
... [0, 2]], dtype=np.intp)
>>> x[rows, columns]

(continues on next page)

80 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

array([[ 0, 2],
[ 9, 11]])

However, since the indexing arrays above just repeat themselves, broadcasting can be used (compare operations such
as rows[:, np.newaxis] + columns) to simplify this:

>>> rows = np.array([0, 3], dtype=np.intp)
>>> columns = np.array([0, 2], dtype=np.intp)
>>> rows[:, np.newaxis]
array([[0],

[3]])
>>> x[rows[:, np.newaxis], columns]
array([[ 0, 2],

[ 9, 11]])

This broadcasting can also be achieved using the function ix_:

>>> x[np.ix_(rows, columns)]
array([[ 0, 2],

[ 9, 11]])

Note that without the np.ix_ call, only the diagonal elements would be selected, as was used in the previous example.
This difference is the most important thing to remember about indexing with multiple advanced indexes.

Combining advanced and basic indexing

When there is at least one slice (:), ellipsis (...) or np.newaxis in the index (or the array has more dimensions
than there are advanced indexes), then the behaviour can be more complicated. It is like concatenating the indexing
result for each advanced index element

In the simplest case, there is only a single advanced index. A single advanced index can for example replace a slice and
the result array will be the same, however, it is a copy and may have a different memory layout. A slice is preferable
when it is possible.

Example

>>> x[1:2, 1:3]
array([[4, 5]])
>>> x[1:2, [1, 2]]
array([[4, 5]])

The easiest way to understand the situation may be to think in terms of the result shape. There are two parts to
the indexing operation, the subspace defined by the basic indexing (excluding integers) and the subspace from the
advanced indexing part. Two cases of index combination need to be distinguished:

• The advanced indexes are separated by a slice, ellipsis or newaxis. For example x[arr1, :, arr2].

• The advanced indexes are all next to each other. For example x[..., arr1, arr2, :] but not x[arr1,
:, 1] since 1 is an advanced index in this regard.

In the first case, the dimensions resulting from the advanced indexing operation come first in the result array, and the
subspace dimensions after that. In the second case, the dimensions from the advanced indexing operations are inserted

1.4. Indexing 81



NumPy Reference, Release 1.15.1

into the result array at the same spot as they were in the initial array (the latter logic is what makes simple advanced
indexing behave just like slicing).

Example

Suppose x.shape is (10,20,30) and ind is a (2,3,4)-shaped indexing intp array, then result = x[...,ind,
:] has shape (10,2,3,4,30) because the (20,)-shaped subspace has been replaced with a (2,3,4)-shaped broadcasted
indexing subspace. If we let i, j, k loop over the (2,3,4)-shaped subspace then result[...,i,j,k,:] = x[.
..,ind[i,j,k],:]. This example produces the same result as x.take(ind, axis=-2).

Example

Let x.shape be (10,20,30,40,50) and suppose ind_1 and ind_2 can be broadcast to the shape (2,3,4). Then x[:,
ind_1,ind_2] has shape (10,2,3,4,40,50) because the (20,30)-shaped subspace from X has been replaced with the
(2,3,4) subspace from the indices. However, x[:,ind_1,:,ind_2] has shape (2,3,4,10,30,50) because there is no
unambiguous place to drop in the indexing subspace, thus it is tacked-on to the beginning. It is always possible to use
.transpose() to move the subspace anywhere desired. Note that this example cannot be replicated using take.

Boolean array indexing

This advanced indexing occurs when obj is an array object of Boolean type, such as may be returned from comparison
operators. A single boolean index array is practically identical to x[obj.nonzero()] where, as described above,
obj.nonzero() returns a tuple (of length obj.ndim) of integer index arrays showing the True elements of obj.
However, it is faster when obj.shape == x.shape.

If obj.ndim == x.ndim, x[obj] returns a 1-dimensional array filled with the elements of x corresponding to
the True values of obj. The search order will be row-major, C-style. If obj has True values at entries that are outside
of the bounds of x, then an index error will be raised. If obj is smaller than x it is identical to filling it with False.

Example

A common use case for this is filtering for desired element values. For example one may wish to select all entries from
an array which are not NaN:

>>> x = np.array([[1., 2.], [np.nan, 3.], [np.nan, np.nan]])
>>> x[~np.isnan(x)]
array([ 1., 2., 3.])

Or wish to add a constant to all negative elements:

>>> x = np.array([1., -1., -2., 3])
>>> x[x < 0] += 20
>>> x
array([ 1., 19., 18., 3.])

In general if an index includes a Boolean array, the result will be identical to inserting obj.nonzero() into the
same position and using the integer array indexing mechanism described above. x[ind_1, boolean_array,
ind_2] is equivalent to x[(ind_1,) + boolean_array.nonzero() + (ind_2,)].

If there is only one Boolean array and no integer indexing array present, this is straight forward. Care must only be
taken to make sure that the boolean index has exactly as many dimensions as it is supposed to work with.

82 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Example

From an array, select all rows which sum up to less or equal two:

>>> x = np.array([[0, 1], [1, 1], [2, 2]])
>>> rowsum = x.sum(-1)
>>> x[rowsum <= 2, :]
array([[0, 1],

[1, 1]])

But if rowsum would have two dimensions as well:

>>> rowsum = x.sum(-1, keepdims=True)
>>> rowsum.shape
(3, 1)
>>> x[rowsum <= 2, :] # fails
IndexError: too many indices
>>> x[rowsum <= 2]
array([0, 1])

The last one giving only the first elements because of the extra dimension. Compare rowsum.nonzero() to
understand this example.

Combining multiple Boolean indexing arrays or a Boolean with an integer indexing array can best be understood with
the obj.nonzero() analogy. The function ix_ also supports boolean arrays and will work without any surprises.

Example

Use boolean indexing to select all rows adding up to an even number. At the same time columns 0 and 2 should be
selected with an advanced integer index. Using the ix_ function this can be done with:

>>> x = array([[ 0, 1, 2],
... [ 3, 4, 5],
... [ 6, 7, 8],
... [ 9, 10, 11]])
>>> rows = (x.sum(-1) % 2) == 0
>>> rows
array([False, True, False, True])
>>> columns = [0, 2]
>>> x[np.ix_(rows, columns)]
array([[ 3, 5],

[ 9, 11]])

Without the np.ix_ call or only the diagonal elements would be selected.

Or without np.ix_ (compare the integer array examples):

>>> rows = rows.nonzero()[0]
>>> x[rows[:, np.newaxis], columns]
array([[ 3, 5],

[ 9, 11]])

1.4. Indexing 83



NumPy Reference, Release 1.15.1

1.4.3 Detailed notes

These are some detailed notes, which are not of importance for day to day indexing (in no particular order):

• The native NumPy indexing type is intp and may differ from the default integer array type. intp is the
smallest data type sufficient to safely index any array; for advanced indexing it may be faster than other types.

• For advanced assignments, there is in general no guarantee for the iteration order. This means that if an element
is set more than once, it is not possible to predict the final result.

• An empty (tuple) index is a full scalar index into a zero dimensional array. x[()] returns a scalar if x is zero
dimensional and a view otherwise. On the other hand x[...] always returns a view.

• If a zero dimensional array is present in the index and it is a full integer index the result will be a scalar and not
a zero dimensional array. (Advanced indexing is not triggered.)

• When an ellipsis (...) is present but has no size (i.e. replaces zero :) the result will still always be an array. A
view if no advanced index is present, otherwise a copy.

• the nonzero equivalence for Boolean arrays does not hold for zero dimensional boolean arrays.

• When the result of an advanced indexing operation has no elements but an individual index is out of bounds,
whether or not an IndexError is raised is undefined (e.g. x[[], [123]] with 123 being out of bounds).

• When a casting error occurs during assignment (for example updating a numerical array using a sequence of
strings), the array being assigned to may end up in an unpredictable partially updated state. However, if any
other error (such as an out of bounds index) occurs, the array will remain unchanged.

• The memory layout of an advanced indexing result is optimized for each indexing operation and no particular
memory order can be assumed.

• When using a subclass (especially one which manipulates its shape), the default ndarray.__setitem__
behaviour will call __getitem__ for basic indexing but not for advanced indexing. For such a subclass it
may be preferable to call ndarray.__setitem__ with a base class ndarray view on the data. This must be
done if the subclasses __getitem__ does not return views.

1.4.4 Field Access

See also:

Data type objects (dtype), Scalars

If the ndarray object is a structured array the fields of the array can be accessed by indexing the array with strings,
dictionary-like.

Indexing x['field-name'] returns a new view to the array, which is of the same shape as x (except when the field
is a sub-array) but of data type x.dtype['field-name'] and contains only the part of the data in the specified
field. Also record array scalars can be “indexed” this way.

Indexing into a structured array can also be done with a list of field names, e.g. x[['field-name1',
'field-name2']]. Currently this returns a new array containing a copy of the values in the fields specified in
the list. As of NumPy 1.7, returning a copy is being deprecated in favor of returning a view. A copy will continue to be
returned for now, but a FutureWarning will be issued when writing to the copy. If you depend on the current behavior,
then we suggest copying the returned array explicitly, i.e. use x[[‘field-name1’,’field-name2’]].copy(). This will work
with both past and future versions of NumPy.

If the accessed field is a sub-array, the dimensions of the sub-array are appended to the shape of the result.

Example

84 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> x = np.zeros((2,2), dtype=[('a', np.int32), ('b', np.float64, (3,3))])
>>> x['a'].shape
(2, 2)
>>> x['a'].dtype
dtype('int32')
>>> x['b'].shape
(2, 2, 3, 3)
>>> x['b'].dtype
dtype('float64')

1.4.5 Flat Iterator indexing

x.flat returns an iterator that will iterate over the entire array (in C-contiguous style with the last index varying
the fastest). This iterator object can also be indexed using basic slicing or advanced indexing as long as the selection
object is not a tuple. This should be clear from the fact that x.flat is a 1-dimensional view. It can be used for integer
indexing with 1-dimensional C-style-flat indices. The shape of any returned array is therefore the shape of the integer
indexing object.

1.5 Iterating Over Arrays

The iterator object nditer, introduced in NumPy 1.6, provides many flexible ways to visit all the elements of one
or more arrays in a systematic fashion. This page introduces some basic ways to use the object for computations on
arrays in Python, then concludes with how one can accelerate the inner loop in Cython. Since the Python exposure of
nditer is a relatively straightforward mapping of the C array iterator API, these ideas will also provide help working
with array iteration from C or C++.

1.5.1 Single Array Iteration

The most basic task that can be done with the nditer is to visit every element of an array. Each element is provided
one by one using the standard Python iterator interface.

Example

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a):
... print(x, end=' ')
...
0 1 2 3 4 5

An important thing to be aware of for this iteration is that the order is chosen to match the memory layout of the array
instead of using a standard C or Fortran ordering. This is done for access efficiency, reflecting the idea that by default
one simply wants to visit each element without concern for a particular ordering. We can see this by iterating over the
transpose of our previous array, compared to taking a copy of that transpose in C order.

Example

1.5. Iterating Over Arrays 85



NumPy Reference, Release 1.15.1

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a.T):
... print(x, end=' ')
...
0 1 2 3 4 5

>>> for x in np.nditer(a.T.copy(order='C')):
... print(x, end=' ')
...
0 3 1 4 2 5

The elements of both a and a.T get traversed in the same order, namely the order they are stored in memory, whereas
the elements of a.T.copy(order=’C’) get visited in a different order because they have been put into a different memory
layout.

Controlling Iteration Order

There are times when it is important to visit the elements of an array in a specific order, irrespective of the layout of the
elements in memory. The nditer object provides an order parameter to control this aspect of iteration. The default,
having the behavior described above, is order=’K’ to keep the existing order. This can be overridden with order=’C’
for C order and order=’F’ for Fortran order.

Example

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a, order='F'):
... print(x, end=' ')
...
0 3 1 4 2 5
>>> for x in np.nditer(a.T, order='C'):
... print(x, end=' ')
...
0 3 1 4 2 5

Modifying Array Values

By default, the nditer treats the input operand as a read-only object. To be able to modify the array elements, you
must specify either read-write or write-only mode using the ‘readwrite’ or ‘writeonly’ per-operand flags.

The nditer will then yield writeable buffer arrays which you may modify. However, because the nditer must copy this
buffer data back to the original array once iteration is finished, you must signal when the iteration is ended, by one of
two methods. You may either:

• used the nditer as a context manager using the with statement, and the temporary data will be written back when
the context is exited.

• call the iterator’s close method once finished iterating, which will trigger the write-back.

The nditer can no longer be iterated once either close is called or its context is exited.

Example

86 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],

[3, 4, 5]])
>>> with np.nditer(a, op_flags=['readwrite']) as it:
... for x in it:
... x[...] = 2 * x
...
>>> a
array([[ 0, 2, 4],

[ 6, 8, 10]])

Using an External Loop

In all the examples so far, the elements of a are provided by the iterator one at a time, because all the looping logic is
internal to the iterator. While this is simple and convenient, it is not very efficient. A better approach is to move the
one-dimensional innermost loop into your code, external to the iterator. This way, NumPy’s vectorized operations can
be used on larger chunks of the elements being visited.

The nditer will try to provide chunks that are as large as possible to the inner loop. By forcing ‘C’ and ‘F’ order,
we get different external loop sizes. This mode is enabled by specifying an iterator flag.

Observe that with the default of keeping native memory order, the iterator is able to provide a single one-dimensional
chunk, whereas when forcing Fortran order, it has to provide three chunks of two elements each.

Example

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a, flags=['external_loop']):
... print(x, end=' ')
...
[0 1 2 3 4 5]

>>> for x in np.nditer(a, flags=['external_loop'], order='F'):
... print(x, end=' ')
...
[0 3] [1 4] [2 5]

Tracking an Index or Multi-Index

During iteration, you may want to use the index of the current element in a computation. For example, you may want
to visit the elements of an array in memory order, but use a C-order, Fortran-order, or multidimensional index to look
up values in a different array.

The Python iterator protocol doesn’t have a natural way to query these additional values from the iterator, so we
introduce an alternate syntax for iterating with an nditer. This syntax explicitly works with the iterator object itself,
so its properties are readily accessible during iteration. With this looping construct, the current value is accessible by
indexing into the iterator, and the index being tracked is the property index or multi_index depending on what was
requested.

The Python interactive interpreter unfortunately prints out the values of expressions inside the while loop during each
iteration of the loop. We have modified the output in the examples using this looping construct in order to be more

1.5. Iterating Over Arrays 87



NumPy Reference, Release 1.15.1

readable.

Example

>>> a = np.arange(6).reshape(2,3)
>>> it = np.nditer(a, flags=['f_index'])
>>> while not it.finished:
... print("%d <%d>" % (it[0], it.index), end=' ')
... it.iternext()
...
0 <0> 1 <2> 2 <4> 3 <1> 4 <3> 5 <5>

>>> it = np.nditer(a, flags=['multi_index'])
>>> while not it.finished:
... print("%d <%s>" % (it[0], it.multi_index), end=' ')
... it.iternext()
...
0 <(0, 0)> 1 <(0, 1)> 2 <(0, 2)> 3 <(1, 0)> 4 <(1, 1)> 5 <(1, 2)>

>>> it = np.nditer(a, flags=['multi_index'], op_flags=['writeonly'])
>>> with it:
.... while not it.finished:
... it[0] = it.multi_index[1] - it.multi_index[0]
... it.iternext()
...
>>> a
array([[ 0, 1, 2],

[-1, 0, 1]])

Tracking an index or multi-index is incompatible with using an external loop, because it requires a different index
value per element. If you try to combine these flags, the nditer object will raise an exception

Example

>>> a = np.zeros((2,3))
>>> it = np.nditer(a, flags=['c_index', 'external_loop'])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: Iterator flag EXTERNAL_LOOP cannot be used if an index or multi-index is
→˓being tracked

Buffering the Array Elements

When forcing an iteration order, we observed that the external loop option may provide the elements in smaller chunks
because the elements can’t be visited in the appropriate order with a constant stride. When writing C code, this is
generally fine, however in pure Python code this can cause a significant reduction in performance.

By enabling buffering mode, the chunks provided by the iterator to the inner loop can be made larger, significantly
reducing the overhead of the Python interpreter. In the example forcing Fortran iteration order, the inner loop gets to
see all the elements in one go when buffering is enabled.

Example

88 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a, flags=['external_loop'], order='F'):
... print(x, end=' ')
...
[0 3] [1 4] [2 5]

>>> for x in np.nditer(a, flags=['external_loop','buffered'], order='F'):
... print(x, end=' ')
...
[0 3 1 4 2 5]

Iterating as a Specific Data Type

There are times when it is necessary to treat an array as a different data type than it is stored as. For instance, one
may want to do all computations on 64-bit floats, even if the arrays being manipulated are 32-bit floats. Except when
writing low-level C code, it’s generally better to let the iterator handle the copying or buffering instead of casting the
data type yourself in the inner loop.

There are two mechanisms which allow this to be done, temporary copies and buffering mode. With temporary copies,
a copy of the entire array is made with the new data type, then iteration is done in the copy. Write access is permitted
through a mode which updates the original array after all the iteration is complete. The major drawback of temporary
copies is that the temporary copy may consume a large amount of memory, particularly if the iteration data type has a
larger itemsize than the original one.

Buffering mode mitigates the memory usage issue and is more cache-friendly than making temporary copies. Except
for special cases, where the whole array is needed at once outside the iterator, buffering is recommended over tem-
porary copying. Within NumPy, buffering is used by the ufuncs and other functions to support flexible inputs with
minimal memory overhead.

In our examples, we will treat the input array with a complex data type, so that we can take square roots of negative
numbers. Without enabling copies or buffering mode, the iterator will raise an exception if the data type doesn’t match
precisely.

Example

>>> a = np.arange(6).reshape(2,3) - 3
>>> for x in np.nditer(a, op_dtypes=['complex128']):
... print(np.sqrt(x), end=' ')
...
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Iterator operand required copying or buffering, but neither copying nor
→˓buffering was enabled

In copying mode, ‘copy’ is specified as a per-operand flag. This is done to provide control in a per-operand fashion.
Buffering mode is specified as an iterator flag.

Example

>>> a = np.arange(6).reshape(2,3) - 3
>>> for x in np.nditer(a, op_flags=['readonly','copy'],
... op_dtypes=['complex128']):

(continues on next page)

1.5. Iterating Over Arrays 89



NumPy Reference, Release 1.15.1

(continued from previous page)

... print(np.sqrt(x), end=' ')

...
1.73205080757j 1.41421356237j 1j 0j (1+0j) (1.41421356237+0j)

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['complex128']):
... print(np.sqrt(x), end=' ')
...
1.73205080757j 1.41421356237j 1j 0j (1+0j) (1.41421356237+0j)

The iterator uses NumPy’s casting rules to determine whether a specific conversion is permitted. By default, it enforces
‘safe’ casting. This means, for example, that it will raise an exception if you try to treat a 64-bit float array as a 32-bit
float array. In many cases, the rule ‘same_kind’ is the most reasonable rule to use, since it will allow conversion from
64 to 32-bit float, but not from float to int or from complex to float.

Example

>>> a = np.arange(6.)
>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['float32']):
... print(x, end=' ')
...
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Iterator operand 0 dtype could not be cast from dtype('float64') to dtype(
→˓'float32') according to the rule 'safe'

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['float32'],
... casting='same_kind'):
... print(x, end=' ')
...
0.0 1.0 2.0 3.0 4.0 5.0

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['int32'], casting='same_kind
→˓'):
... print(x, end=' ')
...
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Iterator operand 0 dtype could not be cast from dtype('float64') to dtype(
→˓'int32') according to the rule 'same_kind'

One thing to watch out for is conversions back to the original data type when using a read-write or write-only operand.
A common case is to implement the inner loop in terms of 64-bit floats, and use ‘same_kind’ casting to allow the other
floating-point types to be processed as well. While in read-only mode, an integer array could be provided, read-write
mode will raise an exception because conversion back to the array would violate the casting rule.

Example

>>> a = np.arange(6)
>>> for x in np.nditer(a, flags=['buffered'], op_flags=['readwrite'],
... op_dtypes=['float64'], casting='same_kind'):
... x[...] = x / 2.0

(continues on next page)

90 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

...
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
TypeError: Iterator requested dtype could not be cast from dtype('float64') to dtype(
→˓'int64'), the operand 0 dtype, according to the rule 'same_kind'

1.5.2 Broadcasting Array Iteration

NumPy has a set of rules for dealing with arrays that have differing shapes which are applied whenever functions take
multiple operands which combine element-wise. This is called broadcasting. The nditer object can apply these
rules for you when you need to write such a function.

As an example, we print out the result of broadcasting a one and a two dimensional array together.

Example

>>> a = np.arange(3)
>>> b = np.arange(6).reshape(2,3)
>>> for x, y in np.nditer([a,b]):
... print("%d:%d" % (x,y), end=' ')
...
0:0 1:1 2:2 0:3 1:4 2:5

When a broadcasting error occurs, the iterator raises an exception which includes the input shapes to help diagnose
the problem.

Example

>>> a = np.arange(2)
>>> b = np.arange(6).reshape(2,3)
>>> for x, y in np.nditer([a,b]):
... print("%d:%d" % (x,y), end=' ')
...
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (2) (2,3)

Iterator-Allocated Output Arrays

A common case in NumPy functions is to have outputs allocated based on the broadcasting of the input, and addition-
ally have an optional parameter called ‘out’ where the result will be placed when it is provided. The nditer object
provides a convenient idiom that makes it very easy to support this mechanism.

We’ll show how this works by creating a function square which squares its input. Let’s start with a minimal function
definition excluding ‘out’ parameter support.

Example

1.5. Iterating Over Arrays 91



NumPy Reference, Release 1.15.1

>>> def square(a):
... with np.nditer([a, None]) as it:
... for x, y in it:
... y[...] = x*x
... return it.operands[1]
...
>>> square([1,2,3])
array([1, 4, 9])

By default, the nditer uses the flags ‘allocate’ and ‘writeonly’ for operands that are passed in as None. This means
we were able to provide just the two operands to the iterator, and it handled the rest.

When adding the ‘out’ parameter, we have to explicitly provide those flags, because if someone passes in an array as
‘out’, the iterator will default to ‘readonly’, and our inner loop would fail. The reason ‘readonly’ is the default for input
arrays is to prevent confusion about unintentionally triggering a reduction operation. If the default were ‘readwrite’,
any broadcasting operation would also trigger a reduction, a topic which is covered later in this document.

While we’re at it, let’s also introduce the ‘no_broadcast’ flag, which will prevent the output from being broadcast.
This is important, because we only want one input value for each output. Aggregating more than one input value
is a reduction operation which requires special handling. It would already raise an error because reductions must
be explicitly enabled in an iterator flag, but the error message that results from disabling broadcasting is much more
understandable for end-users. To see how to generalize the square function to a reduction, look at the sum of squares
function in the section about Cython.

For completeness, we’ll also add the ‘external_loop’ and ‘buffered’ flags, as these are what you will typically want for
performance reasons.

Example

>>> def square(a, out=None):
... it = np.nditer([a, out],
... flags = ['external_loop', 'buffered'],
... op_flags = [['readonly'],
... ['writeonly', 'allocate', 'no_broadcast']])
... with it:
... for x, y in it:
... y[...] = x*x
... return it.operands[1]
...

>>> square([1,2,3])
array([1, 4, 9])

>>> b = np.zeros((3,))
>>> square([1,2,3], out=b)
array([ 1., 4., 9.])
>>> b
array([ 1., 4., 9.])

>>> square(np.arange(6).reshape(2,3), out=b)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 4, in square

ValueError: non-broadcastable output operand with shape (3) doesn't match the
→˓broadcast shape (2,3)

92 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Outer Product Iteration

Any binary operation can be extended to an array operation in an outer product fashion like in outer, and the
nditer object provides a way to accomplish this by explicitly mapping the axes of the operands. It is also possible to
do this with newaxis indexing, but we will show you how to directly use the nditer op_axes parameter to accomplish
this with no intermediate views.

We’ll do a simple outer product, placing the dimensions of the first operand before the dimensions of the second
operand. The op_axes parameter needs one list of axes for each operand, and provides a mapping from the iterator’s
axes to the axes of the operand.

Suppose the first operand is one dimensional and the second operand is two dimensional. The iterator will have three
dimensions, so op_axes will have two 3-element lists. The first list picks out the one axis of the first operand, and is
-1 for the rest of the iterator axes, with a final result of [0, -1, -1]. The second list picks out the two axes of the second
operand, but shouldn’t overlap with the axes picked out in the first operand. Its list is [-1, 0, 1]. The output operand
maps onto the iterator axes in the standard manner, so we can provide None instead of constructing another list.

The operation in the inner loop is a straightforward multiplication. Everything to do with the outer product is handled
by the iterator setup.

Example

>>> a = np.arange(3)
>>> b = np.arange(8).reshape(2,4)
>>> it = np.nditer([a, b, None], flags=['external_loop'],
... op_axes=[[0, -1, -1], [-1, 0, 1], None])
>>> with it:
... for x, y, z in it:
... z[...] = x*y
... result = it.operands[2] # same as z
...
>>> result
array([[[ 0, 0, 0, 0],

[ 0, 0, 0, 0]],
[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],

[[ 0, 2, 4, 6],
[ 8, 10, 12, 14]]])

Note that once the iterator is closed we can not access operands and must use a reference created inside the context
manager.

Reduction Iteration

Whenever a writeable operand has fewer elements than the full iteration space, that operand is undergoing a reduction.
The nditer object requires that any reduction operand be flagged as read-write, and only allows reductions when
‘reduce_ok’ is provided as an iterator flag.

For a simple example, consider taking the sum of all elements in an array.

Example

1.5. Iterating Over Arrays 93



NumPy Reference, Release 1.15.1

>>> a = np.arange(24).reshape(2,3,4)
>>> b = np.array(0)
>>> with np.nditer([a, b], flags=['reduce_ok', 'external_loop'],
... op_flags=[['readonly'], ['readwrite']]) as it:
... for x,y in it:
... y[...] += x
...
>>> b
array(276)
>>> np.sum(a)
276

Things are a little bit more tricky when combining reduction and allocated operands. Before iteration is started, any
reduction operand must be initialized to its starting values. Here’s how we can do this, taking sums along the last axis
of a.

Example

>>> a = np.arange(24).reshape(2,3,4)
>>> it = np.nditer([a, None], flags=['reduce_ok', 'external_loop'],
... op_flags=[['readonly'], ['readwrite', 'allocate']],
... op_axes=[None, [0,1,-1]])
>>> with it:
... it.operands[1][...] = 0
... for x, y in it:
... y[...] += x
... result = it.operands[1]
...
>>> result
array([[ 6, 22, 38],

[54, 70, 86]])
>>> np.sum(a, axis=2)
array([[ 6, 22, 38],

[54, 70, 86]])

To do buffered reduction requires yet another adjustment during the setup. Normally the iterator construction involves
copying the first buffer of data from the readable arrays into the buffer. Any reduction operand is readable, so it may
be read into a buffer. Unfortunately, initialization of the operand after this buffering operation is complete will not be
reflected in the buffer that the iteration starts with, and garbage results will be produced.

The iterator flag “delay_bufalloc” is there to allow iterator-allocated reduction operands to exist together with buffer-
ing. When this flag is set, the iterator will leave its buffers uninitialized until it receives a reset, after which it will be
ready for regular iteration. Here’s how the previous example looks if we also enable buffering.

Example

>>> a = np.arange(24).reshape(2,3,4)
>>> it = np.nditer([a, None], flags=['reduce_ok', 'external_loop',
... 'buffered', 'delay_bufalloc'],
... op_flags=[['readonly'], ['readwrite', 'allocate']],
... op_axes=[None, [0,1,-1]])
>>> with it:
... it.operands[1][...] = 0

(continues on next page)

94 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

... it.reset()

... for x, y in it:

... y[...] += x

... result = it.operands[1]

...
>>> result
array([[ 6, 22, 38],

[54, 70, 86]])

1.5.3 Putting the Inner Loop in Cython

Those who want really good performance out of their low level operations should strongly consider directly using the
iteration API provided in C, but for those who are not comfortable with C or C++, Cython is a good middle ground with
reasonable performance tradeoffs. For the nditer object, this means letting the iterator take care of broadcasting,
dtype conversion, and buffering, while giving the inner loop to Cython.

For our example, we’ll create a sum of squares function. To start, let’s implement this function in straightforward
Python. We want to support an ‘axis’ parameter similar to the numpy sum function, so we will need to construct a list
for the op_axes parameter. Here’s how this looks.

Example

>>> def axis_to_axeslist(axis, ndim):
... if axis is None:
... return [-1] * ndim
... else:
... if type(axis) is not tuple:
... axis = (axis,)
... axeslist = [1] * ndim
... for i in axis:
... axeslist[i] = -1
... ax = 0
... for i in range(ndim):
... if axeslist[i] != -1:
... axeslist[i] = ax
... ax += 1
... return axeslist
...
>>> def sum_squares_py(arr, axis=None, out=None):
... axeslist = axis_to_axeslist(axis, arr.ndim)
... it = np.nditer([arr, out], flags=['reduce_ok', 'external_loop',
... 'buffered', 'delay_bufalloc'],
... op_flags=[['readonly'], ['readwrite', 'allocate']],
... op_axes=[None, axeslist],
... op_dtypes=['float64', 'float64'])
... with it:
... it.operands[1][...] = 0
... it.reset()
... for x, y in it:
... y[...] += x*x
... return it.operands[1]
...
>>> a = np.arange(6).reshape(2,3)

(continues on next page)

1.5. Iterating Over Arrays 95



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> sum_squares_py(a)
array(55.0)
>>> sum_squares_py(a, axis=-1)
array([ 5., 50.])

To Cython-ize this function, we replace the inner loop (y[. . . ] += x*x) with Cython code that’s specialized for
the float64 dtype. With the ‘external_loop’ flag enabled, the arrays provided to the inner loop will always be one-
dimensional, so very little checking needs to be done.

Here’s the listing of sum_squares.pyx:

import numpy as np
cimport numpy as np
cimport cython

def axis_to_axeslist(axis, ndim):
if axis is None:

return [-1] * ndim
else:

if type(axis) is not tuple:
axis = (axis,)

axeslist = [1] * ndim
for i in axis:

axeslist[i] = -1
ax = 0
for i in range(ndim):

if axeslist[i] != -1:
axeslist[i] = ax
ax += 1

return axeslist

@cython.boundscheck(False)
def sum_squares_cy(arr, axis=None, out=None):

cdef np.ndarray[double] x
cdef np.ndarray[double] y
cdef int size
cdef double value

axeslist = axis_to_axeslist(axis, arr.ndim)
it = np.nditer([arr, out], flags=['reduce_ok', 'external_loop',

'buffered', 'delay_bufalloc'],
op_flags=[['readonly'], ['readwrite', 'allocate']],
op_axes=[None, axeslist],
op_dtypes=['float64', 'float64'])

with it:
it.operands[1][...] = 0
it.reset()
for xarr, yarr in it:

x = xarr
y = yarr
size = x.shape[0]
for i in range(size):

value = x[i]
y[i] = y[i] + value * value

return it.operands[1]

96 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

On this machine, building the .pyx file into a module looked like the following, but you may have to find some Cython
tutorials to tell you the specifics for your system configuration.:

$ cython sum_squares.pyx
$ gcc -shared -pthread -fPIC -fwrapv -O2 -Wall -I/usr/include/python2.7 -fno-strict-
→˓aliasing -o sum_squares.so sum_squares.c

Running this from the Python interpreter produces the same answers as our native Python/NumPy code did.

Example

>>> from sum_squares import sum_squares_cy
>>> a = np.arange(6).reshape(2,3)
>>> sum_squares_cy(a)
array(55.0)
>>> sum_squares_cy(a, axis=-1)
array([ 5., 50.])

Doing a little timing in IPython shows that the reduced overhead and memory allocation of the Cython inner loop is
providing a very nice speedup over both the straightforward Python code and an expression using NumPy’s built-in
sum function.:

>>> a = np.random.rand(1000,1000)

>>> timeit sum_squares_py(a, axis=-1)
10 loops, best of 3: 37.1 ms per loop

>>> timeit np.sum(a*a, axis=-1)
10 loops, best of 3: 20.9 ms per loop

>>> timeit sum_squares_cy(a, axis=-1)
100 loops, best of 3: 11.8 ms per loop

>>> np.all(sum_squares_cy(a, axis=-1) == np.sum(a*a, axis=-1))
True

>>> np.all(sum_squares_py(a, axis=-1) == np.sum(a*a, axis=-1))
True

1.6 Standard array subclasses

The ndarray in NumPy is a “new-style” Python built-in-type. Therefore, it can be inherited from (in Python or in
C) if desired. Therefore, it can form a foundation for many useful classes. Often whether to sub-class the array object
or to simply use the core array component as an internal part of a new class is a difficult decision, and can be simply a
matter of choice. NumPy has several tools for simplifying how your new object interacts with other array objects, and
so the choice may not be significant in the end. One way to simplify the question is by asking yourself if the object
you are interested in can be replaced as a single array or does it really require two or more arrays at its core.

Note that asarray always returns the base-class ndarray. If you are confident that your use of the array object can
handle any subclass of an ndarray, then asanyarray can be used to allow subclasses to propagate more cleanly
through your subroutine. In principal a subclass could redefine any aspect of the array and therefore, under strict
guidelines, asanyarray would rarely be useful. However, most subclasses of the array object will not redefine
certain aspects of the array object such as the buffer interface, or the attributes of the array. One important example,

1.6. Standard array subclasses 97



NumPy Reference, Release 1.15.1

however, of why your subroutine may not be able to handle an arbitrary subclass of an array is that matrices redefine
the “*” operator to be matrix-multiplication, rather than element-by-element multiplication.

1.6.1 Special attributes and methods

See also:

Subclassing ndarray

NumPy provides several hooks that classes can customize:

class.__array_ufunc__(ufunc, method, *inputs, **kwargs)
New in version 1.13.

Note: The API is provisional, i.e., we do not yet guarantee backward compatibility.

Any class, ndarray subclass or not, can define this method or set it to None in order to override the behavior of
NumPy’s ufuncs. This works quite similarly to Python’s __mul__ and other binary operation routines.

• ufunc is the ufunc object that was called.

• method is a string indicating which Ufunc method was called (one of "__call__", "reduce",
"reduceat", "accumulate", "outer", "inner").

• inputs is a tuple of the input arguments to the ufunc.

• kwargs is a dictionary containing the optional input arguments of the ufunc. If given, any out arguments,
both positional and keyword, are passed as a tuple in kwargs. See the discussion in Universal functions
(ufunc) for details.

The method should return either the result of the operation, or NotImplemented if the operation requested
is not implemented.

If one of the input or output arguments has a __array_ufunc__ method, it is executed instead of the
ufunc. If more than one of the arguments implements __array_ufunc__, they are tried in the order: sub-
classes before superclasses, inputs before outputs, otherwise left to right. The first routine returning something
other than NotImplemented determines the result. If all of the __array_ufunc__ operations return
NotImplemented, a TypeError is raised.

Note: We intend to re-implement numpy functions as (generalized) Ufunc, in which case it will become
possible for them to be overridden by the __array_ufunc__ method. A prime candidate is matmul, which
currently is not a Ufunc, but could be relatively easily be rewritten as a (set of) generalized Ufuncs. The same
may happen with functions such as median, min, and argsort.

Like with some other special methods in python, such as __hash__ and __iter__, it is possible to indi-
cate that your class does not support ufuncs by setting __array_ufunc__ = None. Ufuncs always raise
TypeError when called on an object that sets __array_ufunc__ = None.

The presence of __array_ufunc__ also influences how ndarray handles binary operations like arr +
obj and arr < obj when arr is an ndarray and obj is an instance of a custom class. There are two
possibilities. If obj.__array_ufunc__ is present and not None, then ndarray.__add__ and friends
will delegate to the ufunc machinery, meaning that arr + obj becomes np.add(arr, obj), and then
add invokes obj.__array_ufunc__. This is useful if you want to define an object that acts like an array.

Alternatively, if obj.__array_ufunc__ is set to None, then as a special case, special methods like
ndarray.__add__ will notice this and unconditionally raise TypeError. This is useful if you want to
create objects that interact with arrays via binary operations, but are not themselves arrays. For example, a units

98 Chapter 1. Array objects

https://docs.python.org/3/glossary.html#term-provisional-api
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/stdtypes.html#tuple
https://docs.python.org/dev/library/constants.html#NotImplemented
https://docs.python.org/dev/library/constants.html#NotImplemented
https://docs.python.org/dev/library/constants.html#NotImplemented
https://docs.python.org/dev/library/exceptions.html#TypeError
https://docs.python.org/dev/library/exceptions.html#TypeError
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/exceptions.html#TypeError


NumPy Reference, Release 1.15.1

handling system might have an object m representing the “meters” unit, and want to support the syntax arr * m
to represent that the array has units of “meters”, but not want to otherwise interact with arrays via ufuncs or oth-
erwise. This can be done by setting __array_ufunc__ = None and defining __mul__ and __rmul__
methods. (Note that this means that writing an __array_ufunc__ that always returns NotImplemented
is not quite the same as setting __array_ufunc__ = None: in the former case, arr + obj will raise
TypeError, while in the latter case it is possible to define a __radd__ method to prevent this.)

The above does not hold for in-place operators, for which ndarray never returns NotImplemented. Hence,
arr += obj would always lead to a TypeError. This is because for arrays in-place operations cannot
generically be replaced by a simple reverse operation. (For instance, by default, arr += obj would be
translated to arr = arr + obj, i.e., arr would be replaced, contrary to what is expected for in-place array
operations.)

Note: If you define __array_ufunc__:

• If you are not a subclass of ndarray , we recommend your class define special methods like __add__
and __lt__ that delegate to ufuncs just like ndarray does. An easy way to do this is to subclass from
NDArrayOperatorsMixin.

• If you subclass ndarray , we recommend that you put all your override logic in __array_ufunc__
and not also override special methods. This ensures the class hierarchy is determined in only one place
rather than separately by the ufunc machinery and by the binary operation rules (which gives preference
to special methods of subclasses; the alternative way to enforce a one-place only hierarchy, of setting
__array_ufunc__ to None, would seem very unexpected and thus confusing, as then the subclass
would not work at all with ufuncs).

• ndarray defines its own __array_ufunc__, which, evaluates the ufunc if no arguments have
overrides, and returns NotImplemented otherwise. This may be useful for subclasses for which
__array_ufunc__ converts any instances of its own class to ndarray: it can then pass these on to
its superclass using super().__array_ufunc__(*inputs, **kwargs), and finally return the
results after possible back-conversion. The advantage of this practice is that it ensures that it is possible to
have a hierarchy of subclasses that extend the behaviour. See Subclassing ndarray for details.

Note: If a class defines the __array_ufunc__ method, this disables the __array_wrap__,
__array_prepare__, __array_priority__mechanism described below for ufuncs (which may even-
tually be deprecated).

class.__array_finalize__(obj)
This method is called whenever the system internally allocates a new array from obj, where obj is a subclass
(subtype) of the ndarray . It can be used to change attributes of self after construction (so as to ensure a 2-d
matrix for example), or to update meta-information from the “parent.” Subclasses inherit a default implementa-
tion of this method that does nothing.

class.__array_prepare__(array, context=None)
At the beginning of every ufunc, this method is called on the input object with the highest array priority, or the
output object if one was specified. The output array is passed in and whatever is returned is passed to the ufunc.
Subclasses inherit a default implementation of this method which simply returns the output array unmodified.
Subclasses may opt to use this method to transform the output array into an instance of the subclass and update
metadata before returning the array to the ufunc for computation.

Note: For ufuncs, it is hoped to eventually deprecate this method in favour of __array_ufunc__.

1.6. Standard array subclasses 99

https://docs.python.org/dev/library/constants.html#NotImplemented
https://docs.python.org/dev/library/exceptions.html#TypeError
https://docs.python.org/dev/library/constants.html#NotImplemented
https://docs.python.org/dev/library/exceptions.html#TypeError
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#NotImplemented


NumPy Reference, Release 1.15.1

class.__array_wrap__(array, context=None)
At the end of every ufunc, this method is called on the input object with the highest array priority, or the output
object if one was specified. The ufunc-computed array is passed in and whatever is returned is passed to the
user. Subclasses inherit a default implementation of this method, which transforms the array into a new instance
of the object’s class. Subclasses may opt to use this method to transform the output array into an instance of the
subclass and update metadata before returning the array to the user.

Note: For ufuncs, it is hoped to eventually deprecate this method in favour of __array_ufunc__.

class.__array_priority__
The value of this attribute is used to determine what type of object to return in situations where there is more
than one possibility for the Python type of the returned object. Subclasses inherit a default value of 0.0 for this
attribute.

Note: For ufuncs, it is hoped to eventually deprecate this method in favour of __array_ufunc__.

class.__array__([dtype])
If a class (ndarray subclass or not) having the __array__ method is used as the output object of an ufunc,
results will be written to the object returned by __array__. Similar conversion is done on input arrays.

1.6.2 Matrix objects

Note: It is strongly advised not to use the matrix subclass. As described below, it makes writing functions that
deal consistently with matrices and regular arrays very difficult. Currently, they are mainly used for interacting with
scipy.sparse. We hope to provide an alternative for this use, however, and eventually remove the matrix
subclass.

matrix objects inherit from the ndarray and therefore, they have the same attributes and methods of ndarrays. There
are six important differences of matrix objects, however, that may lead to unexpected results when you use matrices
but expect them to act like arrays:

1. Matrix objects can be created using a string notation to allow Matlab-style syntax where spaces separate columns
and semicolons (‘;’) separate rows.

2. Matrix objects are always two-dimensional. This has far-reaching implications, in that m.ravel() is still two-
dimensional (with a 1 in the first dimension) and item selection returns two-dimensional objects so that sequence
behavior is fundamentally different than arrays.

3. Matrix objects over-ride multiplication to be matrix-multiplication. Make sure you understand this for func-
tions that you may want to receive matrices. Especially in light of the fact that asanyarray(m) returns a
matrix when m is a matrix.

4. Matrix objects over-ride power to be matrix raised to a power. The same warning about using power inside a
function that uses asanyarray(. . . ) to get an array object holds for this fact.

5. The default __array_priority__ of matrix objects is 10.0, and therefore mixed operations with ndarrays always
produce matrices.

6. Matrices have special attributes which make calculations easier. These are

matrix.T Returns the transpose of the matrix.
Continued on next page

100 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Table 35 – continued from previous page
matrix.H Returns the (complex) conjugate transpose of self.
matrix.I Returns the (multiplicative) inverse of invertible self.
matrix.A Return self as an ndarray object.

matrix.T
Returns the transpose of the matrix.

Does not conjugate! For the complex conjugate transpose, use .H.

Parameters

None

Returns

ret [matrix object] The (non-conjugated) transpose of the matrix.

See also:

transpose, getH

Examples

>>> m = np.matrix('[1, 2; 3, 4]')
>>> m
matrix([[1, 2],

[3, 4]])
>>> m.getT()
matrix([[1, 3],

[2, 4]])

matrix.H
Returns the (complex) conjugate transpose of self.

Equivalent to np.transpose(self) if self is real-valued.

Parameters

None

Returns

ret [matrix object] complex conjugate transpose of self

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4)))
>>> z = x - 1j*x; z
matrix([[ 0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j],

[ 4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j],
[ 8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]])

>>> z.getH()
matrix([[ 0. +0.j, 4. +4.j, 8. +8.j],

[ 1. +1.j, 5. +5.j, 9. +9.j],
[ 2. +2.j, 6. +6.j, 10.+10.j],
[ 3. +3.j, 7. +7.j, 11.+11.j]])

1.6. Standard array subclasses 101



NumPy Reference, Release 1.15.1

matrix.I
Returns the (multiplicative) inverse of invertible self.

Parameters

None

Returns

ret [matrix object] If self is non-singular, ret is such that ret * self == self * ret
== np.matrix(np.eye(self[0,:].size) all return True.

Raises

numpy.linalg.LinAlgError: Singular matrix If self is singular.

See also:

linalg.inv

Examples

>>> m = np.matrix('[1, 2; 3, 4]'); m
matrix([[1, 2],

[3, 4]])
>>> m.getI()
matrix([[-2. , 1. ],

[ 1.5, -0.5]])
>>> m.getI() * m
matrix([[ 1., 0.],

[ 0., 1.]])

matrix.A
Return self as an ndarray object.

Equivalent to np.asarray(self).

Parameters

None

Returns

ret [ndarray] self as an ndarray

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> x.getA()
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

102 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Warning: Matrix objects over-ride multiplication, ‘*’, and power, ‘**’, to be matrix-multiplication and matrix
power, respectively. If your subroutine can accept sub-classes and you do not convert to base- class arrays, then
you must use the ufuncs multiply and power to be sure that you are performing the correct operation for all inputs.

The matrix class is a Python subclass of the ndarray and can be used as a reference for how to construct your own
subclass of the ndarray. Matrices can be created from other matrices, strings, and anything else that can be converted
to an ndarray . The name “mat “is an alias for “matrix “in NumPy.

matrix(data[, dtype, copy])
asmatrix(data[, dtype]) Interpret the input as a matrix.
bmat(obj[, ldict, gdict]) Build a matrix object from a string, nested sequence, or

array.

class numpy.matrix(data, dtype=None, copy=True)

Note: It is no longer recommended to use this class, even for linear algebra. Instead use regular arrays. The
class may be removed in the future.

Returns a matrix from an array-like object, or from a string of data. A matrix is a specialized 2-D array that
retains its 2-D nature through operations. It has certain special operators, such as * (matrix multiplication) and
** (matrix power).

Parameters

data [array_like or string] If data is a string, it is interpreted as a matrix with commas or
spaces separating columns, and semicolons separating rows.

dtype [data-type] Data-type of the output matrix.

copy [bool] If data is already an ndarray , then this flag determines whether the data is
copied (the default), or whether a view is constructed.

See also:

array

Examples

>>> a = np.matrix('1 2; 3 4')
>>> print(a)
[[1 2]
[3 4]]

>>> np.matrix([[1, 2], [3, 4]])
matrix([[1, 2],

[3, 4]])

Attributes

A Return self as an ndarray object.

A1 Return self as a flattened ndarray .

1.6. Standard array subclasses 103



NumPy Reference, Release 1.15.1

H Returns the (complex) conjugate transpose of self.

I Returns the (multiplicative) inverse of invertible self.

T Returns the transpose of the matrix.

base Base object if memory is from some other object.

ctypes An object to simplify the interaction of the array with the ctypes module.

data Python buffer object pointing to the start of the array’s data.

dtype Data-type of the array’s elements.

flags Information about the memory layout of the array.

flat A 1-D iterator over the array.

imag The imaginary part of the array.

itemsize Length of one array element in bytes.

nbytes Total bytes consumed by the elements of the array.

ndim Number of array dimensions.

real The real part of the array.

shape Tuple of array dimensions.

size Number of elements in the array.

strides Tuple of bytes to step in each dimension when traversing an array.

Methods

all([axis, out]) Test whether all matrix elements along a given axis eval-
uate to True.

any([axis, out]) Test whether any array element along a given axis eval-
uates to True.

argmax([axis, out]) Indexes of the maximum values along an axis.
argmin([axis, out]) Indexes of the minimum values along an axis.
argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
argsort([axis, kind, order]) Returns the indices that would sort this array.
astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
byteswap([inplace]) Swap the bytes of the array elements
choose(choices[, out, mode]) Use an index array to construct a new array from a set

of choices.
clip([min, max, out]) Return an array whose values are limited to [min,

max].
compress(condition[, axis, out]) Return selected slices of this array along given axis.
conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.
cumprod([axis, dtype, out]) Return the cumulative product of the elements along the

given axis.
cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the

given axis.
diagonal([offset, axis1, axis2]) Return specified diagonals.

Continued on next page

104 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Table 37 – continued from previous page
dot(b[, out]) Dot product of two arrays.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
fill(value) Fill the array with a scalar value.
flatten([order]) Return a flattened copy of the matrix.
getA() Return self as an ndarray object.
getA1() Return self as a flattened ndarray .
getH() Returns the (complex) conjugate transpose of self.
getI() Returns the (multiplicative) inverse of invertible self.
getT() Returns the transpose of the matrix.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
item(*args) Copy an element of an array to a standard Python scalar

and return it.
itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype,

if possible)
max([axis, out]) Return the maximum value along an axis.
mean([axis, dtype, out]) Returns the average of the matrix elements along the

given axis.
min([axis, out]) Return the minimum value along an axis.
newbyteorder([new_order]) Return the array with the same data viewed with a dif-

ferent byte order.
nonzero() Return the indices of the elements that are non-zero.
partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way that

the value of the element in kth position is in the position
it would be in a sorted array.

prod([axis, dtype, out]) Return the product of the array elements over the given
axis.

ptp([axis, out]) Peak-to-peak (maximum - minimum) value along the
given axis.

put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened matrix.
repeat(repeats[, axis]) Repeat elements of an array.
reshape(shape[, order]) Returns an array containing the same data with a new

shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
round([decimals, out]) Return a with each element rounded to the given number

of decimals.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in

a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by a

data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, (WRITE-

BACKIFCOPY and UPDATEIFCOPY), respectively.
sort([axis, kind, order]) Sort an array, in-place.
squeeze([axis]) Return a possibly reshaped matrix.
std([axis, dtype, out, ddof]) Return the standard deviation of the array elements

along the given axis.
sum([axis, dtype, out]) Returns the sum of the matrix elements, along the given

axis.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
Continued on next page

1.6. Standard array subclasses 105



NumPy Reference, Release 1.15.1

Table 37 – continued from previous page
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the

given indices.
tobytes([order]) Construct Python bytes containing the raw data bytes in

the array.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the matrix as a (possibly nested) list.
tostring([order]) Construct Python bytes containing the raw data bytes in

the array.
trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(*axes) Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof]) Returns the variance of the matrix elements, along the

given axis.
view([dtype, type]) New view of array with the same data.

matrix.all(axis=None, out=None)
Test whether all matrix elements along a given axis evaluate to True.

Parameters

See ‘numpy.all‘ for complete descriptions

See also:

numpy.all

Notes

This is the same as ndarray.all, but it returns a matrix object.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> y = x[0]; y
matrix([[0, 1, 2, 3]])
>>> (x == y)
matrix([[ True, True, True, True],

[False, False, False, False],
[False, False, False, False]])

>>> (x == y).all()
False
>>> (x == y).all(0)
matrix([[False, False, False, False]])
>>> (x == y).all(1)
matrix([[ True],

[False],
[False]])

matrix.any(axis=None, out=None)
Test whether any array element along a given axis evaluates to True.

Refer to numpy.any for full documentation.

106 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Parameters

axis [int, optional] Axis along which logical OR is performed

out [ndarray, optional] Output to existing array instead of creating new one, must have same
shape as expected output

Returns

any [bool, ndarray] Returns a single bool if axis is None; otherwise, returns ndarray

matrix.argmax(axis=None, out=None)
Indexes of the maximum values along an axis.

Return the indexes of the first occurrences of the maximum values along the specified axis. If axis is None,
the index is for the flattened matrix.

Parameters

See ‘numpy.argmax‘ for complete descriptions

See also:

numpy.argmax

Notes

This is the same as ndarray.argmax, but returns a matrix object where ndarray.argmax would
return an ndarray .

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> x.argmax()
11
>>> x.argmax(0)
matrix([[2, 2, 2, 2]])
>>> x.argmax(1)
matrix([[3],

[3],
[3]])

matrix.argmin(axis=None, out=None)
Indexes of the minimum values along an axis.

Return the indexes of the first occurrences of the minimum values along the specified axis. If axis is None,
the index is for the flattened matrix.

Parameters

See ‘numpy.argmin‘ for complete descriptions.

See also:

numpy.argmin

1.6. Standard array subclasses 107



NumPy Reference, Release 1.15.1

Notes

This is the same as ndarray.argmin, but returns a matrix object where ndarray.argmin would
return an ndarray .

Examples

>>> x = -np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, -1, -2, -3],

[ -4, -5, -6, -7],
[ -8, -9, -10, -11]])

>>> x.argmin()
11
>>> x.argmin(0)
matrix([[2, 2, 2, 2]])
>>> x.argmin(1)
matrix([[3],

[3],
[3]])

matrix.argpartition(kth, axis=-1, kind=’introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also:

numpy.argpartition equivalent function

matrix.argsort(axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also:

numpy.argsort equivalent function

matrix.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters

dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’
means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran
contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements
appear in memory as possible. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

108 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is
set to false, and the dtype, order, and subok requirements are satisfied, the input array is
returned instead of a copy.

Returns

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array
are satisfied (see description for copy input parameter), arr_t is a new array of the same
shape as the input array, with dtype, order given by dtype, order.

Raises

ComplexWarning When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([ 1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

matrix.byteswap(inplace=False)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

Parameters

inplace [bool, optional] If True, swap bytes in-place, default is False.

Returns

out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

1.6. Standard array subclasses 109



NumPy Reference, Release 1.15.1

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([ 256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],

dtype='|S3')

matrix.choose(choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also:

numpy.choose equivalent function

matrix.clip(min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

See also:

numpy.clip equivalent function

matrix.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also:

numpy.compress equivalent function

matrix.conj()
Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate equivalent function

matrix.conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also:

110 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

numpy.conjugate equivalent function

matrix.copy(order=’C’)
Return a copy of the array.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means
C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible. (Note that this function and numpy.
copy are very similar, but have different default values for their order= arguments.)

See also:

numpy.copy , numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

matrix.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also:

numpy.cumprod equivalent function

matrix.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also:

numpy.cumsum equivalent function

matrix.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

1.6. Standard array subclasses 111



NumPy Reference, Release 1.15.1

Refer to numpy.diagonal for full documentation.

See also:

numpy.diagonal equivalent function

matrix.dot(b, out=None)
Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also:

numpy.dot equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[ 2., 2.],

[ 2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[ 8., 8.],

[ 8., 8.]])

matrix.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters

file [str] A string naming the dump file.

matrix.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters

None

matrix.fill(value)
Fill the array with a scalar value.

Parameters

value [scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])

(continues on next page)

112 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([ 1., 1.])

matrix.flatten(order=’C’)
Return a flattened copy of the matrix.

All N elements of the matrix are placed into a single row.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’
means to flatten in column-major (Fortran-style) order. ‘A’ means to flatten in column-
major order if m is Fortran contiguous in memory, row-major order otherwise. ‘K’ means
to flatten m in the order the elements occur in memory. The default is ‘C’.

Returns

y [matrix] A copy of the matrix, flattened to a (1, N) matrix where N is the number of
elements in the original matrix.

See also:

ravel Return a flattened array.

flat A 1-D flat iterator over the matrix.

Examples

>>> m = np.matrix([[1,2], [3,4]])
>>> m.flatten()
matrix([[1, 2, 3, 4]])
>>> m.flatten('F')
matrix([[1, 3, 2, 4]])

matrix.getA()
Return self as an ndarray object.

Equivalent to np.asarray(self).

Parameters

None

Returns

ret [ndarray] self as an ndarray

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> x.getA()

(continues on next page)

1.6. Standard array subclasses 113



NumPy Reference, Release 1.15.1

(continued from previous page)

array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

matrix.getA1()
Return self as a flattened ndarray .

Equivalent to np.asarray(x).ravel()

Parameters

None

Returns

ret [ndarray] self, 1-D, as an ndarray

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> x.getA1()
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

matrix.getH()
Returns the (complex) conjugate transpose of self.

Equivalent to np.transpose(self) if self is real-valued.

Parameters

None

Returns

ret [matrix object] complex conjugate transpose of self

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4)))
>>> z = x - 1j*x; z
matrix([[ 0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j],

[ 4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j],
[ 8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]])

>>> z.getH()
matrix([[ 0. +0.j, 4. +4.j, 8. +8.j],

[ 1. +1.j, 5. +5.j, 9. +9.j],
[ 2. +2.j, 6. +6.j, 10.+10.j],
[ 3. +3.j, 7. +7.j, 11.+11.j]])

matrix.getI()
Returns the (multiplicative) inverse of invertible self.

Parameters

None

114 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Returns

ret [matrix object] If self is non-singular, ret is such that ret * self == self * ret
== np.matrix(np.eye(self[0,:].size) all return True.

Raises

numpy.linalg.LinAlgError: Singular matrix If self is singular.

See also:

linalg.inv

Examples

>>> m = np.matrix('[1, 2; 3, 4]'); m
matrix([[1, 2],

[3, 4]])
>>> m.getI()
matrix([[-2. , 1. ],

[ 1.5, -0.5]])
>>> m.getI() * m
matrix([[ 1., 0.],

[ 0., 1.]])

matrix.getT()
Returns the transpose of the matrix.

Does not conjugate! For the complex conjugate transpose, use .H.

Parameters

None

Returns

ret [matrix object] The (non-conjugated) transpose of the matrix.

See also:

transpose, getH

Examples

>>> m = np.matrix('[1, 2; 3, 4]')
>>> m
matrix([[1, 2],

[3, 4]])
>>> m.getT()
matrix([[1, 3],

[2, 4]])

matrix.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

1.6. Standard array subclasses 115



NumPy Reference, Release 1.15.1

Parameters

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset [int] Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[ 1.+1.j, 0.+0.j],

[ 0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[ 1., 0.],

[ 0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[ 1., 0.],

[ 0., 4.]])

matrix.item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters

*args [Arguments (variable number and type)]

• none: in this case, the method only works for arrays with one element (a.size == 1),
which element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which
element to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argu-
ment is interpreted as an nd-index into the array.

Returns

z [Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

116 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

matrix.itemset(*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is
equivalent to but faster than a[args] = item. The item should be a scalar value and args must select
a single item in the array a.

Parameters

*args [Arguments] If one argument: a scalar, only used in case a is of size 1. If two ar-
guments: the last argument is the value to be set and must be a scalar, the first argument
specifies a single array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray , if you must do this. However, generally this is discouraged: among other
problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a
loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],

[2, 0, 3],
[8, 5, 9]])

matrix.max(axis=None, out=None)
Return the maximum value along an axis.

Parameters

See ‘amax‘ for complete descriptions

1.6. Standard array subclasses 117



NumPy Reference, Release 1.15.1

See also:

amax, ndarray.max

Notes

This is the same as ndarray.max, but returns a matrix object where ndarray.max would return
an ndarray.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> x.max()
11
>>> x.max(0)
matrix([[ 8, 9, 10, 11]])
>>> x.max(1)
matrix([[ 3],

[ 7],
[11]])

matrix.mean(axis=None, dtype=None, out=None)
Returns the average of the matrix elements along the given axis.

Refer to numpy.mean for full documentation.

See also:

numpy.mean

Notes

Same as ndarray.mean except that, where that returns an ndarray , this returns a matrix object.

Examples

>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> x.mean()
5.5
>>> x.mean(0)
matrix([[ 4., 5., 6., 7.]])
>>> x.mean(1)
matrix([[ 1.5],

[ 5.5],
[ 9.5]])

118 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

matrix.min(axis=None, out=None)
Return the minimum value along an axis.

Parameters

See ‘amin‘ for complete descriptions.

See also:

amin, ndarray.min

Notes

This is the same as ndarray.min, but returns a matrix object where ndarray.min would return an
ndarray.

Examples

>>> x = -np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, -1, -2, -3],

[ -4, -5, -6, -7],
[ -8, -9, -10, -11]])

>>> x.min()
-11
>>> x.min(0)
matrix([[ -8, -9, -10, -11]])
>>> x.min(1)
matrix([[ -3],

[ -7],
[-11]])

matrix.newbyteorder(new_order=’S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters

new_order [string, optional] Byte order to force; a value from the byte order specifications
below. new_order codes can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a case-
insensitive check on the first letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns

1.6. Standard array subclasses 119



NumPy Reference, Release 1.15.1

new_arr [array] New array object with the dtype reflecting given change to the byte order.

matrix.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also:

numpy.nonzero equivalent function

matrix.partition(kth, axis=-1, kind=’introselect’, order=None)
Rearranges the elements in the array in such a way that the value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

Parameters

kth [int or sequence of ints] Element index to partition by. The kth element value will be
in its final sorted position and all smaller elements will be moved before it and all equal
or greater elements behind it. The order of all elements in the partitions is undefined. If
provided with a sequence of kth it will partition all elements indexed by kth of them into
their sorted position at once.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order [str or list of str, optional] When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need to be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy.partition Return a parititioned copy of an array.

argpartition Indirect partition.

sort Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(3)
>>> a
array([2, 1, 3, 4])

120 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> a.partition((1, 3))
array([1, 2, 3, 4])

matrix.prod(axis=None, dtype=None, out=None)
Return the product of the array elements over the given axis.

Refer to prod for full documentation.

See also:

prod, ndarray.prod

Notes

Same as ndarray.prod, except, where that returns an ndarray , this returns a matrix object instead.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> x.prod()
0
>>> x.prod(0)
matrix([[ 0, 45, 120, 231]])
>>> x.prod(1)
matrix([[ 0],

[ 840],
[7920]])

matrix.ptp(axis=None, out=None)
Peak-to-peak (maximum - minimum) value along the given axis.

Refer to numpy.ptp for full documentation.

See also:

numpy.ptp

Notes

Same as ndarray.ptp, except, where that would return an ndarray object, this returns a matrix
object.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> x.ptp()
11

(continues on next page)

1.6. Standard array subclasses 121



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> x.ptp(0)
matrix([[8, 8, 8, 8]])
>>> x.ptp(1)
matrix([[3],

[3],
[3]])

matrix.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also:

numpy.put equivalent function

matrix.ravel(order=’C’)
Return a flattened matrix.

Refer to numpy.ravel for more documentation.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] The elements of m are read using this index order. ‘C’
means to index the elements in C-like order, with the last axis index changing fastest, back
to the first axis index changing slowest. ‘F’ means to index the elements in Fortran-like
index order, with the first index changing fastest, and the last index changing slowest. Note
that the ‘C’ and ‘F’ options take no account of the memory layout of the underlying array,
and only refer to the order of axis indexing. ‘A’ means to read the elements in Fortran-like
index order if m is Fortran contiguous in memory, C-like order otherwise. ‘K’ means to
read the elements in the order they occur in memory, except for reversing the data when
strides are negative. By default, ‘C’ index order is used.

Returns

ret [matrix] Return the matrix flattened to shape (1, N) where N is the number of elements
in the original matrix. A copy is made only if necessary.

See also:

matrix.flatten returns a similar output matrix but always a copy

matrix.flat a flat iterator on the array.

numpy.ravel related function which returns an ndarray

matrix.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also:

numpy.repeat equivalent function

matrix.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

122 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

See also:

numpy.reshape equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to
a.reshape((10, 11)).

matrix.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters

new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.

Returns

None

Raises

ValueError If a does not own its own data or references or views to it exist, and the data
memory must be changed. PyPy only: will always raise if the data memory must be
changed, since there is no reliable way to determine if references or views to it exist.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

1.6. Standard array subclasses 123



NumPy Reference, Release 1.15.1

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing. . .

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

matrix.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also:

numpy.around equivalent function

matrix.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted equivalent function

matrix.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

Parameters

val [object] Value to be placed in field.

dtype [dtype object] Data-type of the field in which to place val.

offset [int, optional] The number of bytes into the field at which to place val.

124 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Returns

None

See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]])

>>> x
array([[ 1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[ 1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[ 1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

matrix.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a
writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done
without copying memory.)

Parameters

write [bool, optional] Describes whether or not a can be written to.

align [bool, optional] Describes whether or not a is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UP-
DATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

1.6. Standard array subclasses 125



NumPy Reference, Release 1.15.1

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of
this array.

All flags can be accessed using the single (upper case) letter as well as the full name.

Examples

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set WRITEBACKIFCOPY flag to True

matrix.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

Parameters

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. Default
is ‘quicksort’.

order [str or list of str, optional] When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy.sort Return a sorted copy of an array.

argsort Indirect sort.

lexsort Indirect stable sort on multiple keys.

126 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

searchsorted Find elements in sorted array.

partition Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

matrix.squeeze(axis=None)
Return a possibly reshaped matrix.

Refer to numpy.squeeze for more documentation.

Parameters

axis [None or int or tuple of ints, optional] Selects a subset of the single-dimensional entries
in the shape. If an axis is selected with shape entry greater than one, an error is raised.

Returns

squeezed [matrix] The matrix, but as a (1, N) matrix if it had shape (N, 1).

See also:

numpy.squeeze related function

Notes

If m has a single column then that column is returned as the single row of a matrix. Otherwise m is returned.
The returned matrix is always either m itself or a view into m. Supplying an axis keyword argument will
not affect the returned matrix but it may cause an error to be raised.

1.6. Standard array subclasses 127



NumPy Reference, Release 1.15.1

Examples

>>> c = np.matrix([[1], [2]])
>>> c
matrix([[1],

[2]])
>>> c.squeeze()
matrix([[1, 2]])
>>> r = c.T
>>> r
matrix([[1, 2]])
>>> r.squeeze()
matrix([[1, 2]])
>>> m = np.matrix([[1, 2], [3, 4]])
>>> m.squeeze()
matrix([[1, 2],

[3, 4]])

matrix.std(axis=None, dtype=None, out=None, ddof=0)
Return the standard deviation of the array elements along the given axis.

Refer to numpy.std for full documentation.

See also:

numpy.std

Notes

This is the same as ndarray.std, except that where an ndarray would be returned, a matrix object
is returned instead.

Examples

>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> x.std()
3.4520525295346629
>>> x.std(0)
matrix([[ 3.26598632, 3.26598632, 3.26598632, 3.26598632]])
>>> x.std(1)
matrix([[ 1.11803399],

[ 1.11803399],
[ 1.11803399]])

matrix.sum(axis=None, dtype=None, out=None)
Returns the sum of the matrix elements, along the given axis.

Refer to numpy.sum for full documentation.

See also:

numpy.sum

128 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Notes

This is the same as ndarray.sum, except that where an ndarray would be returned, a matrix object
is returned instead.

Examples

>>> x = np.matrix([[1, 2], [4, 3]])
>>> x.sum()
10
>>> x.sum(axis=1)
matrix([[3],

[7]])
>>> x.sum(axis=1, dtype='float')
matrix([[ 3.],

[ 7.]])
>>> out = np.zeros((1, 2), dtype='float')
>>> x.sum(axis=1, dtype='float', out=out)
matrix([[ 3.],

[ 7.]])

matrix.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes equivalent function

matrix.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also:

numpy.take equivalent function

matrix.tobytes(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.

Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,
or the same as for the original array.

Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

1.6. Standard array subclasses 129



NumPy Reference, Release 1.15.1

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

matrix.tofile(fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters

fid [file or str] An open file object, or a string containing a filename.

sep [str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text by
first converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or
file-like objects that do not support fileno() (e.g., BytesIO).

matrix.tolist()
Return the matrix as a (possibly nested) list.

See ndarray.tolist for full documentation.

See also:

ndarray.tolist

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> x.tolist()
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]

matrix.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

130 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,
or the same as for the original array.

Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

matrix.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also:

numpy.trace equivalent function

matrix.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D ar-
ray into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape =
(i[n-1], i[n-2], ... i[1], i[0]).

Parameters

axes [None, tuple of ints, or n ints]

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s
j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “conve-
nience” alternative to the tuple form)

Returns

out [ndarray] View of a, with axes suitably permuted.

See also:

1.6. Standard array subclasses 131



NumPy Reference, Release 1.15.1

ndarray.T Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

matrix.var(axis=None, dtype=None, out=None, ddof=0)
Returns the variance of the matrix elements, along the given axis.

Refer to numpy.var for full documentation.

See also:

numpy.var

Notes

This is the same as ndarray.var, except that where an ndarray would be returned, a matrix object
is returned instead.

Examples

>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> x.var()
11.916666666666666
>>> x.var(0)
matrix([[ 10.66666667, 10.66666667, 10.66666667, 10.66666667]])
>>> x.var(1)
matrix([[ 1.25],

[ 1.25],
[ 1.25]])

matrix.view(dtype=None, type=None)
New view of array with the same data.

Parameters

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view,
e.g., float32 or int16. The default, None, results in the view having the same data-type as

132 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

a. This argument can also be specified as an ndarray sub-class, which then specifies the
type of the returned object (this is equivalent to setting the type parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([ 2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

1.6. Standard array subclasses 133



NumPy Reference, Release 1.15.1

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

numpy.asmatrix(data, dtype=None)
Interpret the input as a matrix.

Unlike matrix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to
matrix(data, copy=False).

Parameters

data [array_like] Input data.

dtype [data-type] Data-type of the output matrix.

Returns

mat [matrix] data interpreted as a matrix.

Examples

>>> x = np.array([[1, 2], [3, 4]])

>>> m = np.asmatrix(x)

>>> x[0,0] = 5

>>> m
matrix([[5, 2],

[3, 4]])

numpy.bmat(obj, ldict=None, gdict=None)
Build a matrix object from a string, nested sequence, or array.

Parameters

obj [str or array_like] Input data. If a string, variables in the current scope may be referenced
by name.

134 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

ldict [dict, optional] A dictionary that replaces local operands in current frame. Ignored if obj
is not a string or gdict is None.

gdict [dict, optional] A dictionary that replaces global operands in current frame. Ignored if obj
is not a string.

Returns

out [matrix] Returns a matrix object, which is a specialized 2-D array.

See also:

block A generalization of this function for N-d arrays, that returns normal ndarrays.

Examples

>>> A = np.mat('1 1; 1 1')
>>> B = np.mat('2 2; 2 2')
>>> C = np.mat('3 4; 5 6')
>>> D = np.mat('7 8; 9 0')

All the following expressions construct the same block matrix:

>>> np.bmat([[A, B], [C, D]])
matrix([[1, 1, 2, 2],

[1, 1, 2, 2],
[3, 4, 7, 8],
[5, 6, 9, 0]])

>>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]])
matrix([[1, 1, 2, 2],

[1, 1, 2, 2],
[3, 4, 7, 8],
[5, 6, 9, 0]])

>>> np.bmat('A,B; C,D')
matrix([[1, 1, 2, 2],

[1, 1, 2, 2],
[3, 4, 7, 8],
[5, 6, 9, 0]])

Example 1: Matrix creation from a string

>>> a=mat('1 2 3; 4 5 3')
>>> print (a*a.T).I
[[ 0.2924 -0.1345]
[-0.1345 0.0819]]

Example 2: Matrix creation from nested sequence

>>> mat([[1,5,10],[1.0,3,4j]])
matrix([[ 1.+0.j, 5.+0.j, 10.+0.j],

[ 1.+0.j, 3.+0.j, 0.+4.j]])

Example 3: Matrix creation from an array

>>> mat(random.rand(3,3)).T
matrix([[ 0.7699, 0.7922, 0.3294],

[ 0.2792, 0.0101, 0.9219],
[ 0.3398, 0.7571, 0.8197]])

1.6. Standard array subclasses 135



NumPy Reference, Release 1.15.1

1.6.3 Memory-mapped file arrays

Memory-mapped files are useful for reading and/or modifying small segments of a large file with regular layout,
without reading the entire file into memory. A simple subclass of the ndarray uses a memory-mapped file for the data
buffer of the array. For small files, the over-head of reading the entire file into memory is typically not significant,
however for large files using memory mapping can save considerable resources.

Memory-mapped-file arrays have one additional method (besides those they inherit from the ndarray): .flush()
which must be called manually by the user to ensure that any changes to the array actually get written to disk.

memmap Create a memory-map to an array stored in a binary file on
disk.

memmap.flush() Write any changes in the array to the file on disk.

class numpy.memmap
Create a memory-map to an array stored in a binary file on disk.

Memory-mapped files are used for accessing small segments of large files on disk, without reading the entire
file into memory. NumPy’s memmap’s are array-like objects. This differs from Python’s mmap module, which
uses file-like objects.

This subclass of ndarray has some unpleasant interactions with some operations, because it doesn’t quite fit
properly as a subclass. An alternative to using this subclass is to create the mmap object yourself, then create an
ndarray with ndarray.__new__ directly, passing the object created in its ‘buffer=’ parameter.

This class may at some point be turned into a factory function which returns a view into an mmap buffer.

Delete the memmap instance to close the memmap file.

Parameters

filename [str, file-like object, or pathlib.Path instance] The file name or file object to be used as
the array data buffer.

dtype [data-type, optional] The data-type used to interpret the file contents. Default is uint8.

mode [{‘r+’, ‘r’, ‘w+’, ‘c’}, optional] The file is opened in this mode:

‘r’ Open existing file for reading only.
‘r+’ Open existing file for reading and writing.
‘w+’ Create or overwrite existing file for reading and writing.
‘c’ Copy-on-write: assignments affect data in memory, but changes are not saved to

disk. The file on disk is read-only.

Default is ‘r+’.

offset [int, optional] In the file, array data starts at this offset. Since offset is measured in bytes,
it should normally be a multiple of the byte-size of dtype. When mode != 'r', even
positive offsets beyond end of file are valid; The file will be extended to accommodate
the additional data. By default, memmap will start at the beginning of the file, even if
filename is a file pointer fp and fp.tell() != 0.

shape [tuple, optional] The desired shape of the array. If mode == 'r' and the number of
remaining bytes after offset is not a multiple of the byte-size of dtype, you must specify
shape. By default, the returned array will be 1-D with the number of elements determined
by file size and data-type.

136 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

order [{‘C’, ‘F’}, optional] Specify the order of the ndarray memory layout: row-major, C-
style or column-major, Fortran-style. This only has an effect if the shape is greater than
1-D. The default order is ‘C’.

See also:

lib.format.open_memmap Create or load a memory-mapped .npy file.

Notes

The memmap object can be used anywhere an ndarray is accepted. Given a memmap fp, isinstance(fp,
numpy.ndarray) returns True.

Memory-mapped files cannot be larger than 2GB on 32-bit systems.

When a memmap causes a file to be created or extended beyond its current size in the filesystem, the contents
of the new part are unspecified. On systems with POSIX filesystem semantics, the extended part will be filled
with zero bytes.

Examples

>>> data = np.arange(12, dtype='float32')
>>> data.resize((3,4))

This example uses a temporary file so that doctest doesn’t write files to your directory. You would use a ‘normal’
filename.

>>> from tempfile import mkdtemp
>>> import os.path as path
>>> filename = path.join(mkdtemp(), 'newfile.dat')

Create a memmap with dtype and shape that matches our data:

>>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))
>>> fp
memmap([[ 0., 0., 0., 0.],

[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]], dtype=float32)

Write data to memmap array:

>>> fp[:] = data[:]
>>> fp
memmap([[ 0., 1., 2., 3.],

[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)

>>> fp.filename == path.abspath(filename)
True

Deletion flushes memory changes to disk before removing the object:

>>> del fp

Load the memmap and verify data was stored:

1.6. Standard array subclasses 137



NumPy Reference, Release 1.15.1

>>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> newfp
memmap([[ 0., 1., 2., 3.],

[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)

Read-only memmap:

>>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> fpr.flags.writeable
False

Copy-on-write memmap:

>>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4))
>>> fpc.flags.writeable
True

It’s possible to assign to copy-on-write array, but values are only written into the memory copy of the array, and
not written to disk:

>>> fpc
memmap([[ 0., 1., 2., 3.],

[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)

>>> fpc[0,:] = 0
>>> fpc
memmap([[ 0., 0., 0., 0.],

[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)

File on disk is unchanged:

>>> fpr
memmap([[ 0., 1., 2., 3.],

[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)

Offset into a memmap:

>>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16)
>>> fpo
memmap([ 4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32)

Attributes

filename [str or pathlib.Path instance] Path to the mapped file.

offset [int] Offset position in the file.

mode [str] File mode.

Methods

138 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

flush() Write any changes in the array to the file on disk.

memmap.flush()
Write any changes in the array to the file on disk.

For further information, see memmap.

Parameters

None

See also:

memmap

Example:

>>> a = memmap('newfile.dat', dtype=float, mode='w+', shape=1000)
>>> a[10] = 10.0
>>> a[30] = 30.0
>>> del a
>>> b = fromfile('newfile.dat', dtype=float)
>>> print b[10], b[30]
10.0 30.0
>>> a = memmap('newfile.dat', dtype=float)
>>> print a[10], a[30]
10.0 30.0

1.6.4 Character arrays (numpy.char)

See also:

Creating character arrays (numpy.char)

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for new
development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of dtype
object_, string_ or unicode_, and use the free functions in the numpy.char module for fast vectorized
string operations.

These are enhanced arrays of either string_ type or unicode_ type. These arrays inherit from the ndarray ,
but specially-define the operations +, *, and % on a (broadcasting) element-by-element basis. These operations are
not available on the standard ndarray of character type. In addition, the chararray has all of the standard
string (and unicode) methods, executing them on an element-by-element basis. Perhaps the easiest way to create
a chararray is to use self.view(chararray) where self is an ndarray of str or unicode data-type. However, a
chararray can also be created using the numpy.chararray constructor, or via the numpy.char.array function:

chararray(shape[, itemsize, unicode, . . . ]) Provides a convenient view on arrays of string and unicode
values.

core.defchararray.array(obj[, itemsize, . . . ]) Create a chararray .

class numpy.chararray(shape, itemsize=1, unicode=False, buffer=None, offset=0, strides=None, or-
der=None)

Provides a convenient view on arrays of string and unicode values.

1.6. Standard array subclasses 139

https://docs.python.org/dev/library/stdtypes.html#str


NumPy Reference, Release 1.15.1

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for
new development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of
dtype object_, string_ or unicode_, and use the free functions in the numpy.char module for fast
vectorized string operations.

Versus a regular NumPy array of type str or unicode, this class adds the following functionality:

1. values automatically have whitespace removed from the end when indexed

2. comparison operators automatically remove whitespace from the end when comparing values

3. vectorized string operations are provided as methods (e.g. endswith) and infix operators (e.g. "+",
"*", "%")

chararrays should be created using numpy.char.array or numpy.char.asarray, rather than this con-
structor directly.

This constructor creates the array, using buffer (with offset and strides) if it is not None. If buffer
is None, then constructs a new array with strides in “C order”, unless both len(shape) >= 2 and
order='Fortran', in which case strides is in “Fortran order”.

Parameters

shape [tuple] Shape of the array.

itemsize [int, optional] Length of each array element, in number of characters. Default is 1.

unicode [bool, optional] Are the array elements of type unicode (True) or string (False). Default
is False.

buffer [int, optional] Memory address of the start of the array data. Default is None, in which
case a new array is created.

offset [int, optional] Fixed stride displacement from the beginning of an axis? Default is 0.
Needs to be >=0.

strides [array_like of ints, optional] Strides for the array (see ndarray.strides for full
description). Default is None.

order [{‘C’, ‘F’}, optional] The order in which the array data is stored in memory: ‘C’ -> “row
major” order (the default), ‘F’ -> “column major” (Fortran) order.

Examples

>>> charar = np.chararray((3, 3))
>>> charar[:] = 'a'
>>> charar
chararray([['a', 'a', 'a'],

['a', 'a', 'a'],
['a', 'a', 'a']],
dtype='|S1')

>>> charar = np.chararray(charar.shape, itemsize=5)
>>> charar[:] = 'abc'
>>> charar
chararray([['abc', 'abc', 'abc'],

['abc', 'abc', 'abc'],

(continues on next page)

140 Chapter 1. Array objects

https://docs.python.org/dev/library/stdtypes.html#str


NumPy Reference, Release 1.15.1

(continued from previous page)

['abc', 'abc', 'abc']],
dtype='|S5')

Attributes

T Same as self.transpose(), except that self is returned if self.ndim < 2.

base Base object if memory is from some other object.

ctypes An object to simplify the interaction of the array with the ctypes module.

data Python buffer object pointing to the start of the array’s data.

dtype Data-type of the array’s elements.

flags Information about the memory layout of the array.

flat A 1-D iterator over the array.

imag The imaginary part of the array.

itemsize Length of one array element in bytes.

nbytes Total bytes consumed by the elements of the array.

ndim Number of array dimensions.

real The real part of the array.

shape Tuple of array dimensions.

size Number of elements in the array.

strides Tuple of bytes to step in each dimension when traversing an array.

Methods

astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
argsort([axis, kind, order]) Returns the indices that would sort this array.
copy([order]) Return a copy of the array.
count(sub[, start, end]) Returns an array with the number of non-overlapping

occurrences of substring sub in the range [start, end].
decode([encoding, errors]) Calls str.decode element-wise.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
encode([encoding, errors]) Calls str.encode element-wise.
endswith(suffix[, start, end]) Returns a boolean array which is True where the string

element in self ends with suffix, otherwise False.
expandtabs([tabsize]) Return a copy of each string element where all tab char-

acters are replaced by one or more spaces.
fill(value) Fill the array with a scalar value.
find(sub[, start, end]) For each element, return the lowest index in the string

where substring sub is found.
flatten([order]) Return a copy of the array collapsed into one dimension.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
index(sub[, start, end]) Like find, but raises ValueError when the substring is

not found.
Continued on next page

1.6. Standard array subclasses 141

https://docs.python.org/dev/library/stdtypes.html#str.encode


NumPy Reference, Release 1.15.1

Table 41 – continued from previous page
isalnum() Returns true for each element if all characters in the

string are alphanumeric and there is at least one char-
acter, false otherwise.

isalpha() Returns true for each element if all characters in the
string are alphabetic and there is at least one character,
false otherwise.

isdecimal() For each element in self, return True if there are only
decimal characters in the element.

isdigit() Returns true for each element if all characters in the
string are digits and there is at least one character, false
otherwise.

islower() Returns true for each element if all cased characters in
the string are lowercase and there is at least one cased
character, false otherwise.

isnumeric() For each element in self, return True if there are only
numeric characters in the element.

isspace() Returns true for each element if there are only whites-
pace characters in the string and there is at least one
character, false otherwise.

istitle() Returns true for each element if the element is a title-
cased string and there is at least one character, false oth-
erwise.

isupper() Returns true for each element if all cased characters in
the string are uppercase and there is at least one charac-
ter, false otherwise.

item(*args) Copy an element of an array to a standard Python scalar
and return it.

join(seq) Return a string which is the concatenation of the strings
in the sequence seq.

ljust(width[, fillchar]) Return an array with the elements of self left-justified
in a string of length width.

lower() Return an array with the elements of self converted to
lowercase.

lstrip([chars]) For each element in self, return a copy with the leading
characters removed.

nonzero() Return the indices of the elements that are non-zero.
put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
replace(old, new[, count]) For each element in self, return a copy of the string with

all occurrences of substring old replaced by new.
reshape(shape[, order]) Returns an array containing the same data with a new

shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
rfind(sub[, start, end]) For each element in self, return the highest index in the

string where substring sub is found, such that sub is con-
tained within [start, end].

rindex(sub[, start, end]) Like rfind, but raises ValueError when the substring
sub is not found.

rjust(width[, fillchar]) Return an array with the elements of self right-justified
in a string of length width.

Continued on next page

142 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Table 41 – continued from previous page
rsplit([sep, maxsplit]) For each element in self, return a list of the words in the

string, using sep as the delimiter string.
rstrip([chars]) For each element in self, return a copy with the trailing

characters removed.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in

a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by a

data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, (WRITE-

BACKIFCOPY and UPDATEIFCOPY), respectively.
sort([axis, kind, order]) Sort an array, in-place.
split([sep, maxsplit]) For each element in self, return a list of the words in the

string, using sep as the delimiter string.
splitlines([keepends]) For each element in self, return a list of the lines in the

element, breaking at line boundaries.
squeeze([axis]) Remove single-dimensional entries from the shape of a.
startswith(prefix[, start, end]) Returns a boolean array which is True where the string

element in self starts with prefix, otherwise False.
strip([chars]) For each element in self, return a copy with the leading

and trailing characters removed.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
swapcase() For each element in self, return a copy of the string with

uppercase characters converted to lowercase and vice
versa.

take(indices[, axis, out, mode]) Return an array formed from the elements of a at the
given indices.

title() For each element in self, return a titlecased version of
the string: words start with uppercase characters, all re-
maining cased characters are lowercase.

tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as a (possibly nested) list.
tostring([order]) Construct Python bytes containing the raw data bytes in

the array.
translate(table[, deletechars]) For each element in self, return a copy of the string

where all characters occurring in the optional argument
deletechars are removed, and the remaining characters
have been mapped through the given translation table.

transpose(*axes) Returns a view of the array with axes transposed.
upper() Return an array with the elements of self converted to

uppercase.
view([dtype, type]) New view of array with the same data.
zfill(width) Return the numeric string left-filled with zeros in a

string of length width.

chararray.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters

dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’
means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran

1.6. Standard array subclasses 143



NumPy Reference, Release 1.15.1

contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements
appear in memory as possible. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is
set to false, and the dtype, order, and subok requirements are satisfied, the input array is
returned instead of a copy.

Returns

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array
are satisfied (see description for copy input parameter), arr_t is a new array of the same
shape as the input array, with dtype, order given by dtype, order.

Raises

ComplexWarning When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([ 1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

chararray.argsort(axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also:

numpy.argsort equivalent function

144 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

chararray.copy(order=’C’)
Return a copy of the array.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means
C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible. (Note that this function and numpy.
copy are very similar, but have different default values for their order= arguments.)

See also:

numpy.copy , numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

chararray.count(sub, start=0, end=None)
Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end].

See also:

char.count

chararray.decode(encoding=None, errors=None)
Calls str.decode element-wise.

See also:

char.decode

chararray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters

file [str] A string naming the dump file.

chararray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters

1.6. Standard array subclasses 145



NumPy Reference, Release 1.15.1

None

chararray.encode(encoding=None, errors=None)
Calls str.encode element-wise.

See also:

char.encode

chararray.endswith(suffix, start=0, end=None)
Returns a boolean array which is True where the string element in self ends with suffix, otherwise False.

See also:

char.endswith

chararray.expandtabs(tabsize=8)
Return a copy of each string element where all tab characters are replaced by one or more spaces.

See also:

char.expandtabs

chararray.fill(value)
Fill the array with a scalar value.

Parameters

value [scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([ 1., 1.])

chararray.find(sub, start=0, end=None)
For each element, return the lowest index in the string where substring sub is found.

See also:

char.find

chararray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’
means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-
major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means
to flatten a in the order the elements occur in memory. The default is ‘C’.

Returns

y [ndarray] A copy of the input array, flattened to one dimension.

See also:

146 Chapter 1. Array objects

https://docs.python.org/dev/library/stdtypes.html#str.encode


NumPy Reference, Release 1.15.1

ravel Return a flattened array.

flat A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

chararray.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset [int] Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[ 1.+1.j, 0.+0.j],

[ 0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[ 1., 0.],

[ 0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[ 1., 0.],

[ 0., 4.]])

chararray.index(sub, start=0, end=None)
Like find, but raises ValueError when the substring is not found.

See also:

char.index

chararray.isalnum()
Returns true for each element if all characters in the string are alphanumeric and there is at least one
character, false otherwise.

See also:

char.isalnum

1.6. Standard array subclasses 147



NumPy Reference, Release 1.15.1

chararray.isalpha()
Returns true for each element if all characters in the string are alphabetic and there is at least one character,
false otherwise.

See also:

char.isalpha

chararray.isdecimal()
For each element in self, return True if there are only decimal characters in the element.

See also:

char.isdecimal

chararray.isdigit()
Returns true for each element if all characters in the string are digits and there is at least one character,
false otherwise.

See also:

char.isdigit

chararray.islower()
Returns true for each element if all cased characters in the string are lowercase and there is at least one
cased character, false otherwise.

See also:

char.islower

chararray.isnumeric()
For each element in self, return True if there are only numeric characters in the element.

See also:

char.isnumeric

chararray.isspace()
Returns true for each element if there are only whitespace characters in the string and there is at least one
character, false otherwise.

See also:

char.isspace

chararray.istitle()
Returns true for each element if the element is a titlecased string and there is at least one character, false
otherwise.

See also:

char.istitle

chararray.isupper()
Returns true for each element if all cased characters in the string are uppercase and there is at least one
character, false otherwise.

See also:

char.isupper

chararray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters

148 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

*args [Arguments (variable number and type)]

• none: in this case, the method only works for arrays with one element (a.size == 1),
which element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which
element to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argu-
ment is interpreted as an nd-index into the array.

Returns

z [Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

chararray.join(seq)
Return a string which is the concatenation of the strings in the sequence seq.

See also:

char.join

chararray.ljust(width, fillchar=’ ’)
Return an array with the elements of self left-justified in a string of length width.

See also:

char.ljust

chararray.lower()
Return an array with the elements of self converted to lowercase.

1.6. Standard array subclasses 149



NumPy Reference, Release 1.15.1

See also:

char.lower

chararray.lstrip(chars=None)
For each element in self, return a copy with the leading characters removed.

See also:

char.lstrip

chararray.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also:

numpy.nonzero equivalent function

chararray.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also:

numpy.put equivalent function

chararray.ravel([order ])
Return a flattened array.

Refer to numpy.ravel for full documentation.

See also:

numpy.ravel equivalent function

ndarray.flat a flat iterator on the array.

chararray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also:

numpy.repeat equivalent function

chararray.replace(old, new, count=None)
For each element in self, return a copy of the string with all occurrences of substring old replaced by new.

See also:

char.replace

chararray.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also:

150 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

numpy.reshape equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to
a.reshape((10, 11)).

chararray.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters

new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.

Returns

None

Raises

ValueError If a does not own its own data or references or views to it exist, and the data
memory must be changed. PyPy only: will always raise if the data memory must be
changed, since there is no reliable way to determine if references or views to it exist.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

1.6. Standard array subclasses 151



NumPy Reference, Release 1.15.1

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing. . .

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

chararray.rfind(sub, start=0, end=None)
For each element in self, return the highest index in the string where substring sub is found, such that sub
is contained within [start, end].

See also:

char.rfind

chararray.rindex(sub, start=0, end=None)
Like rfind, but raises ValueError when the substring sub is not found.

See also:

char.rindex

chararray.rjust(width, fillchar=’ ’)
Return an array with the elements of self right-justified in a string of length width.

See also:

char.rjust

chararray.rsplit(sep=None, maxsplit=None)
For each element in self, return a list of the words in the string, using sep as the delimiter string.

See also:

char.rsplit

chararray.rstrip(chars=None)
For each element in self, return a copy with the trailing characters removed.

152 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

See also:

char.rstrip

chararray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted equivalent function

chararray.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

Parameters

val [object] Value to be placed in field.

dtype [dtype object] Data-type of the field in which to place val.

offset [int, optional] The number of bytes into the field at which to place val.

Returns

None

See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]])

>>> x
array([[ 1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[ 1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[ 1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

chararray.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

1.6. Standard array subclasses 153



NumPy Reference, Release 1.15.1

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a
writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done
without copying memory.)

Parameters

write [bool, optional] Describes whether or not a can be written to.

align [bool, optional] Describes whether or not a is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UP-
DATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of
this array.

All flags can be accessed using the single (upper case) letter as well as the full name.

Examples

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

(continues on next page)

154 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set WRITEBACKIFCOPY flag to True

chararray.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

Parameters

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. Default
is ‘quicksort’.

order [str or list of str, optional] When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy.sort Return a sorted copy of an array.

argsort Indirect sort.

lexsort Indirect stable sort on multiple keys.

searchsorted Find elements in sorted array.

partition Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

1.6. Standard array subclasses 155



NumPy Reference, Release 1.15.1

chararray.split(sep=None, maxsplit=None)
For each element in self, return a list of the words in the string, using sep as the delimiter string.

See also:

char.split

chararray.splitlines(keepends=None)
For each element in self, return a list of the lines in the element, breaking at line boundaries.

See also:

char.splitlines

chararray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also:

numpy.squeeze equivalent function

chararray.startswith(prefix, start=0, end=None)
Returns a boolean array which is True where the string element in self starts with prefix, otherwise False.

See also:

char.startswith

chararray.strip(chars=None)
For each element in self, return a copy with the leading and trailing characters removed.

See also:

char.strip

chararray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes equivalent function

chararray.swapcase()
For each element in self, return a copy of the string with uppercase characters converted to lowercase and
vice versa.

See also:

char.swapcase

chararray.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also:

numpy.take equivalent function

156 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

chararray.title()
For each element in self, return a titlecased version of the string: words start with uppercase characters, all
remaining cased characters are lowercase.

See also:

char.title

chararray.tofile(fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters

fid [file or str] An open file object, or a string containing a filename.

sep [str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text by
first converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or
file-like objects that do not support fileno() (e.g., BytesIO).

chararray.tolist()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

Parameters

none

Returns

y [list] The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

1.6. Standard array subclasses 157



NumPy Reference, Release 1.15.1

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

chararray.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,
or the same as for the original array.

Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

chararray.translate(table, deletechars=None)
For each element in self, return a copy of the string where all characters occurring in the optional argument
deletechars are removed, and the remaining characters have been mapped through the given translation
table.

See also:

char.translate

chararray.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D ar-
ray into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape =
(i[n-1], i[n-2], ... i[1], i[0]).

Parameters

axes [None, tuple of ints, or n ints]

• None or no argument: reverses the order of the axes.

158 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s
j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “conve-
nience” alternative to the tuple form)

Returns

out [ndarray] View of a, with axes suitably permuted.

See also:

ndarray.T Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

chararray.upper()
Return an array with the elements of self converted to uppercase.

See also:

char.upper

chararray.view(dtype=None, type=None)
New view of array with the same data.

Parameters

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view,
e.g., float32 or int16. The default, None, results in the view having the same data-type as
a. This argument can also be specified as an ndarray sub-class, which then specifies the
type of the returned object (this is equivalent to setting the type parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

1.6. Standard array subclasses 159



NumPy Reference, Release 1.15.1

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([ 2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y

(continues on next page)

160 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

array([[1, 2],
[4, 5]], dtype=int16)

>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

chararray.zfill(width)
Return the numeric string left-filled with zeros in a string of length width.

See also:

char.zfill

numpy.core.defchararray.array(obj, itemsize=None, copy=True, unicode=None, order=None)
Create a chararray .

Note: This class is provided for numarray backward-compatibility. New code (not concerned with numarray
compatibility) should use arrays of type string_ or unicode_ and use the free functions in numpy.char
for fast vectorized string operations instead.

Versus a regular NumPy array of type str or unicode, this class adds the following functionality:

1. values automatically have whitespace removed from the end when indexed

2. comparison operators automatically remove whitespace from the end when comparing values

3. vectorized string operations are provided as methods (e.g. str.endswith) and infix operators (e.g. +, *,
%)

Parameters

obj [array of str or unicode-like]

itemsize [int, optional] itemsize is the number of characters per scalar in the resulting array. If
itemsize is None, and obj is an object array or a Python list, the itemsize will be automatically
determined. If itemsize is provided and obj is of type str or unicode, then the obj string will
be chunked into itemsize pieces.

copy [bool, optional] If true (default), then the object is copied. Otherwise, a copy will only
be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to
satisfy any of the other requirements (itemsize, unicode, order, etc.).

unicode [bool, optional] When true, the resulting chararray can contain Unicode characters,
when false only 8-bit characters. If unicode is None and obj is one of the following:

• a chararray ,

• an ndarray of type str or unicode

• a Python str or unicode object,

then the unicode setting of the output array will be automatically determined.

order [{‘C’, ‘F’, ‘A’}, optional] Specify the order of the array. If order is ‘C’ (default), then the
array will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the

1.6. Standard array subclasses 161



NumPy Reference, Release 1.15.1

returned array will be in Fortran-contiguous order (first-index varies the fastest). If order
is ‘A’, then the returned array may be in any order (either C-, Fortran-contiguous, or even
discontiguous).

Another difference with the standard ndarray of str data-type is that the chararray inherits the feature introduced by
Numarray that white-space at the end of any element in the array will be ignored on item retrieval and comparison
operations.

1.6.5 Record arrays (numpy.rec)

See also:

Creating record arrays (numpy.rec), Data type routines, Data type objects (dtype).

NumPy provides the recarray class which allows accessing the fields of a structured array as attributes, and a
corresponding scalar data type object record.

recarray Construct an ndarray that allows field access using at-
tributes.

record A data-type scalar that allows field access as attribute
lookup.

class numpy.recarray
Construct an ndarray that allows field access using attributes.

Arrays may have a data-types containing fields, analogous to columns in a spread sheet. An example is [(x,
int), (y, float)], where each entry in the array is a pair of (int, float). Normally, these attributes
are accessed using dictionary lookups such as arr['x'] and arr['y']. Record arrays allow the fields to be
accessed as members of the array, using arr.x and arr.y.

Parameters

shape [tuple] Shape of output array.

dtype [data-type, optional] The desired data-type. By default, the data-type is determined from
formats, names, titles, aligned and byteorder.

formats [list of data-types, optional] A list containing the data-types for the different columns,
e.g. ['i4', 'f8', 'i4']. formats does not support the new convention of using types
directly, i.e. (int, float, int). Note that formats must be a list, not a tuple. Given
that formats is somewhat limited, we recommend specifying dtype instead.

names [tuple of str, optional] The name of each column, e.g. ('x', 'y', 'z').

buf [buffer, optional] By default, a new array is created of the given shape and data-type. If
buf is specified and is an object exposing the buffer interface, the array will use the memory
from the existing buffer. In this case, the offset and strides keywords are available.

Returns

rec [recarray] Empty array of the given shape and type.

Other Parameters

titles [tuple of str, optional] Aliases for column names. For example, if names
were ('x', 'y', 'z') and titles is ('x_coordinate', 'y_coordinate',
'z_coordinate'), then arr['x'] is equivalent to both arr.x and arr.
x_coordinate.

162 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

byteorder [{‘<’, ‘>’, ‘=’}, optional] Byte-order for all fields.

aligned [bool, optional] Align the fields in memory as the C-compiler would.

strides [tuple of ints, optional] Buffer (buf ) is interpreted according to these strides (strides
define how many bytes each array element, row, column, etc. occupy in memory).

offset [int, optional] Start reading buffer (buf ) from this offset onwards.

order [{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.

See also:

rec.fromrecords Construct a record array from data.

record fundamental data-type for recarray .

format_parser determine a data-type from formats, names, titles.

Notes

This constructor can be compared to empty: it creates a new record array but does not fill it with data. To create
a record array from data, use one of the following methods:

1. Create a standard ndarray and convert it to a record array, using arr.view(np.recarray)

2. Use the buf keyword.

3. Use np.rec.fromrecords.

Examples

Create an array with two fields, x and y:

>>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', float), ('y', int)])
>>> x
array([(1.0, 2), (3.0, 4)],

dtype=[('x', '<f8'), ('y', '<i4')])

>>> x['x']
array([ 1., 3.])

View the array as a record array:

>>> x = x.view(np.recarray)

>>> x.x
array([ 1., 3.])

>>> x.y
array([2, 4])

Create a new, empty record array:

1.6. Standard array subclasses 163



NumPy Reference, Release 1.15.1

>>> np.recarray((2,),
... dtype=[('x', int), ('y', float), ('z', int)])
rec.array([(-1073741821, 1.2249118382103472e-301, 24547520),

(3471280, 1.2134086255804012e-316, 0)],
dtype=[('x', '<i4'), ('y', '<f8'), ('z', '<i4')])

Attributes

T Same as self.transpose(), except that self is returned if self.ndim < 2.

base Base object if memory is from some other object.

ctypes An object to simplify the interaction of the array with the ctypes module.

data Python buffer object pointing to the start of the array’s data.

dtype Data-type of the array’s elements.

flags Information about the memory layout of the array.

flat A 1-D iterator over the array.

imag The imaginary part of the array.

itemsize Length of one array element in bytes.

nbytes Total bytes consumed by the elements of the array.

ndim Number of array dimensions.

real The real part of the array.

shape Tuple of array dimensions.

size Number of elements in the array.

strides Tuple of bytes to step in each dimension when traversing an array.

Methods

all([axis, out, keepdims]) Returns True if all elements evaluate to True.
any([axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.
argmax([axis, out]) Return indices of the maximum values along the given

axis.
argmin([axis, out]) Return indices of the minimum values along the given

axis of a.
argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
argsort([axis, kind, order]) Returns the indices that would sort this array.
astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
byteswap([inplace]) Swap the bytes of the array elements
choose(choices[, out, mode]) Use an index array to construct a new array from a set

of choices.
clip([min, max, out]) Return an array whose values are limited to [min,

max].
compress(condition[, axis, out]) Return selected slices of this array along given axis.
conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.

Continued on next page

164 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Table 43 – continued from previous page
cumprod([axis, dtype, out]) Return the cumulative product of the elements along the

given axis.
cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the

given axis.
diagonal([offset, axis1, axis2]) Return specified diagonals.
dot(b[, out]) Dot product of two arrays.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
fill(value) Fill the array with a scalar value.
flatten([order]) Return a copy of the array collapsed into one dimension.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
item(*args) Copy an element of an array to a standard Python scalar

and return it.
itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype,

if possible)
max([axis, out, keepdims]) Return the maximum along a given axis.
mean([axis, dtype, out, keepdims]) Returns the average of the array elements along given

axis.
min([axis, out, keepdims]) Return the minimum along a given axis.
newbyteorder([new_order]) Return the array with the same data viewed with a dif-

ferent byte order.
nonzero() Return the indices of the elements that are non-zero.
partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way that

the value of the element in kth position is in the position
it would be in a sorted array.

prod([axis, dtype, out, keepdims]) Return the product of the array elements over the given
axis

ptp([axis, out, keepdims]) Peak to peak (maximum - minimum) value along a
given axis.

put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
reshape(shape[, order]) Returns an array containing the same data with a new

shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
round([decimals, out]) Return a with each element rounded to the given number

of decimals.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in

a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by a

data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, (WRITE-

BACKIFCOPY and UPDATEIFCOPY), respectively.
sort([axis, kind, order]) Sort an array, in-place.
squeeze([axis]) Remove single-dimensional entries from the shape of a.
std([axis, dtype, out, ddof, keepdims]) Returns the standard deviation of the array elements

along given axis.
sum([axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
Continued on next page

1.6. Standard array subclasses 165



NumPy Reference, Release 1.15.1

Table 43 – continued from previous page
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the

given indices.
tobytes([order]) Construct Python bytes containing the raw data bytes in

the array.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as a (possibly nested) list.
tostring([order]) Construct Python bytes containing the raw data bytes in

the array.
trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(*axes) Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof, keepdims]) Returns the variance of the array elements, along given

axis.
view([dtype, type]) New view of array with the same data.

recarray.all(axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also:

numpy.all equivalent function

recarray.any(axis=None, out=None, keepdims=False)
Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also:

numpy.any equivalent function

recarray.argmax(axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also:

numpy.argmax equivalent function

recarray.argmin(axis=None, out=None)
Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

See also:

numpy.argmin equivalent function

recarray.argpartition(kth, axis=-1, kind=’introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also:

166 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

numpy.argpartition equivalent function

recarray.argsort(axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also:

numpy.argsort equivalent function

recarray.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters

dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’
means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran
contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements
appear in memory as possible. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is
set to false, and the dtype, order, and subok requirements are satisfied, the input array is
returned instead of a copy.

Returns

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array
are satisfied (see description for copy input parameter), arr_t is a new array of the same
shape as the input array, with dtype, order given by dtype, order.

Raises

ComplexWarning When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

1.6. Standard array subclasses 167



NumPy Reference, Release 1.15.1

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([ 1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

recarray.byteswap(inplace=False)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

Parameters

inplace [bool, optional] If True, swap bytes in-place, default is False.

Returns

out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([ 256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],

dtype='|S3')

recarray.choose(choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also:

numpy.choose equivalent function

recarray.clip(min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

See also:

numpy.clip equivalent function

168 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

recarray.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also:

numpy.compress equivalent function

recarray.conj()
Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate equivalent function

recarray.conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate equivalent function

recarray.copy(order=’C’)
Return a copy of the array.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means
C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible. (Note that this function and numpy.
copy are very similar, but have different default values for their order= arguments.)

See also:

numpy.copy , numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

1.6. Standard array subclasses 169



NumPy Reference, Release 1.15.1

>>> y.flags['C_CONTIGUOUS']
True

recarray.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also:

numpy.cumprod equivalent function

recarray.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also:

numpy.cumsum equivalent function

recarray.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also:

numpy.diagonal equivalent function

recarray.dot(b, out=None)
Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also:

numpy.dot equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[ 2., 2.],

[ 2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[ 8., 8.],

[ 8., 8.]])

recarray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters

170 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

file [str] A string naming the dump file.

recarray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters

None

recarray.fill(value)
Fill the array with a scalar value.

Parameters

value [scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([ 1., 1.])

recarray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’
means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-
major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means
to flatten a in the order the elements occur in memory. The default is ‘C’.

Returns

y [ndarray] A copy of the input array, flattened to one dimension.

See also:

ravel Return a flattened array.

flat A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

recarray.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

1.6. Standard array subclasses 171



NumPy Reference, Release 1.15.1

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset [int] Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[ 1.+1.j, 0.+0.j],

[ 0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[ 1., 0.],

[ 0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[ 1., 0.],

[ 0., 4.]])

recarray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters

*args [Arguments (variable number and type)]

• none: in this case, the method only works for arrays with one element (a.size == 1),
which element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which
element to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argu-
ment is interpreted as an nd-index into the array.

Returns

z [Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

172 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

recarray.itemset(*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is
equivalent to but faster than a[args] = item. The item should be a scalar value and args must select
a single item in the array a.

Parameters

*args [Arguments] If one argument: a scalar, only used in case a is of size 1. If two ar-
guments: the last argument is the value to be set and must be a scalar, the first argument
specifies a single array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray , if you must do this. However, generally this is discouraged: among other
problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a
loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],

[2, 0, 3],
[8, 5, 9]])

1.6. Standard array subclasses 173



NumPy Reference, Release 1.15.1

recarray.max(axis=None, out=None, keepdims=False)
Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also:

numpy.amax equivalent function

recarray.mean(axis=None, dtype=None, out=None, keepdims=False)
Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also:

numpy.mean equivalent function

recarray.min(axis=None, out=None, keepdims=False)
Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also:

numpy.amin equivalent function

recarray.newbyteorder(new_order=’S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters

new_order [string, optional] Byte order to force; a value from the byte order specifications
below. new_order codes can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a case-
insensitive check on the first letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns

new_arr [array] New array object with the dtype reflecting given change to the byte order.

recarray.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

174 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

See also:

numpy.nonzero equivalent function

recarray.partition(kth, axis=-1, kind=’introselect’, order=None)
Rearranges the elements in the array in such a way that the value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

Parameters

kth [int or sequence of ints] Element index to partition by. The kth element value will be
in its final sorted position and all smaller elements will be moved before it and all equal
or greater elements behind it. The order of all elements in the partitions is undefined. If
provided with a sequence of kth it will partition all elements indexed by kth of them into
their sorted position at once.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order [str or list of str, optional] When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need to be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy.partition Return a parititioned copy of an array.

argpartition Indirect partition.

sort Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

recarray.prod(axis=None, dtype=None, out=None, keepdims=False)
Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

1.6. Standard array subclasses 175



NumPy Reference, Release 1.15.1

See also:

numpy.prod equivalent function

recarray.ptp(axis=None, out=None, keepdims=False)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also:

numpy.ptp equivalent function

recarray.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also:

numpy.put equivalent function

recarray.ravel([order ])
Return a flattened array.

Refer to numpy.ravel for full documentation.

See also:

numpy.ravel equivalent function

ndarray.flat a flat iterator on the array.

recarray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also:

numpy.repeat equivalent function

recarray.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also:

numpy.reshape equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to
a.reshape((10, 11)).

recarray.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

176 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Parameters

new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.

Returns

None

Raises

ValueError If a does not own its own data or references or views to it exist, and the data
memory must be changed. PyPy only: will always raise if the data memory must be
changed, since there is no reliable way to determine if references or views to it exist.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

1.6. Standard array subclasses 177



NumPy Reference, Release 1.15.1

Referencing an array prevents resizing. . .

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

recarray.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also:

numpy.around equivalent function

recarray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted equivalent function

recarray.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

Parameters

val [object] Value to be placed in field.

dtype [dtype object] Data-type of the field in which to place val.

offset [int, optional] The number of bytes into the field at which to place val.

Returns

None

See also:

getfield

Examples

178 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]])

>>> x
array([[ 1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[ 1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[ 1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

recarray.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a
writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done
without copying memory.)

Parameters

write [bool, optional] Describes whether or not a can be written to.

align [bool, optional] Describes whether or not a is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UP-
DATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of
this array.

All flags can be accessed using the single (upper case) letter as well as the full name.

1.6. Standard array subclasses 179



NumPy Reference, Release 1.15.1

Examples

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set WRITEBACKIFCOPY flag to True

recarray.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

Parameters

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. Default
is ‘quicksort’.

order [str or list of str, optional] When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy.sort Return a sorted copy of an array.

argsort Indirect sort.

lexsort Indirect stable sort on multiple keys.

searchsorted Find elements in sorted array.

partition Partial sort.

Notes

See sort for notes on the different sorting algorithms.

180 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

recarray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also:

numpy.squeeze equivalent function

recarray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also:

numpy.std equivalent function

recarray.sum(axis=None, dtype=None, out=None, keepdims=False)
Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also:

numpy.sum equivalent function

recarray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes equivalent function

1.6. Standard array subclasses 181



NumPy Reference, Release 1.15.1

recarray.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also:

numpy.take equivalent function

recarray.tobytes(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.

Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,
or the same as for the original array.

Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

recarray.tofile(fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters

fid [file or str] An open file object, or a string containing a filename.

sep [str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text by
first converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

182 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or
file-like objects that do not support fileno() (e.g., BytesIO).

recarray.tolist()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

Parameters

none

Returns

y [list] The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

recarray.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,
or the same as for the original array.

Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'

(continues on next page)

1.6. Standard array subclasses 183



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

recarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also:

numpy.trace equivalent function

recarray.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D ar-
ray into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape =
(i[n-1], i[n-2], ... i[1], i[0]).

Parameters

axes [None, tuple of ints, or n ints]

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s
j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “conve-
nience” alternative to the tuple form)

Returns

out [ndarray] View of a, with axes suitably permuted.

See also:

ndarray.T Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

184 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

recarray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also:

numpy.var equivalent function

recarray.view(dtype=None, type=None)
New view of array with the same data.

Parameters

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view,
e.g., float32 or int16. The default, None, results in the view having the same data-type as
a. This argument can also be specified as an ndarray sub-class, which then specifies the
type of the returned object (this is equivalent to setting the type parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv

(continues on next page)

1.6. Standard array subclasses 185



NumPy Reference, Release 1.15.1

(continued from previous page)

array([[1, 2],
[3, 4]], dtype=int8)

>>> xv.mean(0)
array([ 2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

field

class numpy.record
A data-type scalar that allows field access as attribute lookup.

Attributes

T transpose

base base object

data pointer to start of data

dtype dtype object

flags integer value of flags

flat a 1-d view of scalar

186 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

imag imaginary part of scalar

itemsize length of one element in bytes

nbytes length of item in bytes

ndim number of array dimensions

real real part of scalar

shape tuple of array dimensions

size number of elements in the gentype

strides tuple of bytes steps in each dimension

Methods

all Not implemented (virtual attribute)
any Not implemented (virtual attribute)
argmax Not implemented (virtual attribute)
argmin Not implemented (virtual attribute)
argsort Not implemented (virtual attribute)
astype Not implemented (virtual attribute)
byteswap Not implemented (virtual attribute)
choose Not implemented (virtual attribute)
clip Not implemented (virtual attribute)
compress Not implemented (virtual attribute)
conjugate Not implemented (virtual attribute)
copy Not implemented (virtual attribute)
cumprod Not implemented (virtual attribute)
cumsum Not implemented (virtual attribute)
diagonal Not implemented (virtual attribute)
dump Not implemented (virtual attribute)
dumps Not implemented (virtual attribute)
fill Not implemented (virtual attribute)
flatten Not implemented (virtual attribute)
getfield Not implemented (virtual attribute)
item Not implemented (virtual attribute)
itemset Not implemented (virtual attribute)
max Not implemented (virtual attribute)
mean Not implemented (virtual attribute)
min Not implemented (virtual attribute)
newbyteorder([new_order]) Return a new dtype with a different byte order.
nonzero Not implemented (virtual attribute)
pprint() Pretty-print all fields.
prod Not implemented (virtual attribute)
ptp Not implemented (virtual attribute)
put Not implemented (virtual attribute)
ravel Not implemented (virtual attribute)
repeat Not implemented (virtual attribute)
reshape Not implemented (virtual attribute)
resize Not implemented (virtual attribute)

Continued on next page

1.6. Standard array subclasses 187



NumPy Reference, Release 1.15.1

Table 44 – continued from previous page
round Not implemented (virtual attribute)
searchsorted Not implemented (virtual attribute)
setfield Not implemented (virtual attribute)
setflags Not implemented (virtual attribute)
sort Not implemented (virtual attribute)
squeeze Not implemented (virtual attribute)
std Not implemented (virtual attribute)
sum Not implemented (virtual attribute)
swapaxes Not implemented (virtual attribute)
take Not implemented (virtual attribute)
tofile Not implemented (virtual attribute)
tolist Not implemented (virtual attribute)
tostring Not implemented (virtual attribute)
trace Not implemented (virtual attribute)
transpose Not implemented (virtual attribute)
var Not implemented (virtual attribute)
view Not implemented (virtual attribute)

record.all()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.any()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.argmax()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.argmin()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.argsort()
Not implemented (virtual attribute)

188 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.astype()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.byteswap()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.choose()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.clip()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.compress()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.conjugate()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

1.6. Standard array subclasses 189



NumPy Reference, Release 1.15.1

record.copy()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.cumprod()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.cumsum()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.diagonal()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.dump()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.dumps()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.fill()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

190 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

The

record.flatten()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.getfield()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.item()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.itemset()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.max()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.mean()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.min()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

1.6. Standard array subclasses 191



NumPy Reference, Release 1.15.1

See also:

The

record.newbyteorder(new_order=’S’)
Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

The new_order code can be any from the following:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

Parameters

new_order [str, optional] Byte order to force; a value from the byte order specifications
above. The default value (‘S’) results in swapping the current byte order. The code does
a case-insensitive check on the first letter of new_order for the alternatives above. For
example, any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns

new_dtype [dtype] New dtype object with the given change to the byte order.

record.nonzero()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.pprint()
Pretty-print all fields.

record.prod()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.ptp()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

192 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

record.put()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.ravel()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.repeat()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.reshape()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.resize()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.round()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.searchsorted()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

1.6. Standard array subclasses 193



NumPy Reference, Release 1.15.1

The

record.setfield()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.setflags()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.sort()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.squeeze()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.std()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.sum()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.swapaxes()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

194 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

See also:

The

record.take()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.tofile()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.tolist()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.tostring()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.trace()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.transpose()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.var()
Not implemented (virtual attribute)

1.6. Standard array subclasses 195



NumPy Reference, Release 1.15.1

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.view()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

conj
tobytes

1.6.6 Masked arrays (numpy.ma)

See also:

Masked arrays

1.6.7 Standard container class

For backward compatibility and as a standard “container “class, the UserArray from Numeric has been brought over to
NumPy and named numpy.lib.user_array.container The container class is a Python class whose self.array
attribute is an ndarray. Multiple inheritance is probably easier with numpy.lib.user_array.container than with the
ndarray itself and so it is included by default. It is not documented here beyond mentioning its existence because you
are encouraged to use the ndarray class directly if you can.

numpy.lib.user_array.container(data[, . . . ]) Standard container-class for easy multiple-inheritance.

class numpy.lib.user_array.container(data, dtype=None, copy=True)
Standard container-class for easy multiple-inheritance.

Methods

copy
tostring
byteswap
astype

1.6.8 Array Iterators

Iterators are a powerful concept for array processing. Essentially, iterators implement a generalized for-loop. If myiter
is an iterator object, then the Python code:

196 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

for val in myiter:
...
some code involving val
...

calls val = myiter.next() repeatedly until StopIteration is raised by the iterator. There are several ways
to iterate over an array that may be useful: default iteration, flat iteration, and 𝑁 -dimensional enumeration.

Default iteration

The default iterator of an ndarray object is the default Python iterator of a sequence type. Thus, when the array object
itself is used as an iterator. The default behavior is equivalent to:

for i in range(arr.shape[0]):
val = arr[i]

This default iterator selects a sub-array of dimension 𝑁 − 1 from the array. This can be a useful construct for defining
recursive algorithms. To loop over the entire array requires 𝑁 for-loops.

>>> a = arange(24).reshape(3,2,4)+10
>>> for val in a:
... print 'item:', val
item: [[10 11 12 13]
[14 15 16 17]]

item: [[18 19 20 21]
[22 23 24 25]]

item: [[26 27 28 29]
[30 31 32 33]]

Flat iteration

ndarray.flat A 1-D iterator over the array.

As mentioned previously, the flat attribute of ndarray objects returns an iterator that will cycle over the entire array in
C-style contiguous order.

>>> for i, val in enumerate(a.flat):
... if i%5 == 0: print i, val
0 10
5 15
10 20
15 25
20 30

Here, I’ve used the built-in enumerate iterator to return the iterator index as well as the value.

N-dimensional enumeration

ndenumerate(arr) Multidimensional index iterator.

1.6. Standard array subclasses 197

https://docs.python.org/dev/library/exceptions.html#StopIteration


NumPy Reference, Release 1.15.1

class numpy.ndenumerate(arr)
Multidimensional index iterator.

Return an iterator yielding pairs of array coordinates and values.

Parameters

arr [ndarray] Input array.

See also:

ndindex, flatiter

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> for index, x in np.ndenumerate(a):
... print(index, x)
(0, 0) 1
(0, 1) 2
(1, 0) 3
(1, 1) 4

Methods

next() Standard iterator method, returns the index tuple and ar-
ray value.

ndenumerate.next()
Standard iterator method, returns the index tuple and array value.

Returns

coords [tuple of ints] The indices of the current iteration.

val [scalar] The array element of the current iteration.

Sometimes it may be useful to get the N-dimensional index while iterating. The ndenumerate iterator can achieve this.

>>> for i, val in ndenumerate(a):
... if sum(i)%5 == 0: print i, val
(0, 0, 0) 10
(1, 1, 3) 25
(2, 0, 3) 29
(2, 1, 2) 32

Iterator for broadcasting

broadcast Produce an object that mimics broadcasting.

class numpy.broadcast
Produce an object that mimics broadcasting.

Parameters

198 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

in1, in2, . . . [array_like] Input parameters.

Returns

b [broadcast object] Broadcast the input parameters against one another, and return an object
that encapsulates the result. Amongst others, it has shape and nd properties, and may be
used as an iterator.

See also:

broadcast_arrays, broadcast_to

Examples

Manually adding two vectors, using broadcasting:

>>> x = np.array([[1], [2], [3]])
>>> y = np.array([4, 5, 6])
>>> b = np.broadcast(x, y)

>>> out = np.empty(b.shape)
>>> out.flat = [u+v for (u,v) in b]
>>> out
array([[ 5., 6., 7.],

[ 6., 7., 8.],
[ 7., 8., 9.]])

Compare against built-in broadcasting:

>>> x + y
array([[5, 6, 7],

[6, 7, 8],
[7, 8, 9]])

Attributes

index current index in broadcasted result

iters tuple of iterators along self’s “components.”

nd Number of dimensions of broadcasted result. For code intended for NumPy 1.12.0 and later
the more consistent ndim is preferred.

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.nd
2

ndim Number of dimensions of broadcasted result. Alias for nd.

New in version 1.12.0.

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.ndim
2

1.6. Standard array subclasses 199



NumPy Reference, Release 1.15.1

numiter Number of iterators possessed by the broadcasted result.

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.numiter
2

shape Shape of broadcasted result.

size Total size of broadcasted result.

Methods

reset() Reset the broadcasted result’s iterator(s).

broadcast.reset()
Reset the broadcasted result’s iterator(s).

Parameters

None

Returns

None

Examples

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]]
>>> b = np.broadcast(x, y)
>>> b.index
0
>>> b.next(), b.next(), b.next()
((1, 4), (2, 4), (3, 4))
>>> b.index
3
>>> b.reset()
>>> b.index
0

The general concept of broadcasting is also available from Python using the broadcast iterator. This object takes
𝑁 objects as inputs and returns an iterator that returns tuples providing each of the input sequence elements in the
broadcasted result.

>>> for val in broadcast([[1,0],[2,3]],[0,1]):
... print val
(1, 0)
(0, 1)
(2, 0)
(3, 1)

200 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

1.7 Masked arrays

Masked arrays are arrays that may have missing or invalid entries. The numpy.ma module provides a nearly work-
alike replacement for numpy that supports data arrays with masks.

1.7.1 The numpy.ma module

Rationale

Masked arrays are arrays that may have missing or invalid entries. The numpy.ma module provides a nearly work-
alike replacement for numpy that supports data arrays with masks.

What is a masked array?

In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor
may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to
address this issue, by introducing masked arrays.

A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating
that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated
array whether the value is valid or not. When an element of the mask is False, the corresponding element of the
associated array is valid and is said to be unmasked. When an element of the mask is True, the corresponding element
of the associated array is said to be masked (invalid).

The package ensures that masked entries are not used in computations.

As an illustration, let’s consider the following dataset:

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = np.array([1, 2, 3, -1, 5])

We wish to mark the fourth entry as invalid. The easiest is to create a masked array:

>>> mx = ma.masked_array(x, mask=[0, 0, 0, 1, 0])

We can now compute the mean of the dataset, without taking the invalid data into account:

>>> mx.mean()
2.75

The numpy.ma module

The main feature of the numpy.ma module is the MaskedArray class, which is a subclass of numpy.ndarray .
The class, its attributes and methods are described in more details in the MaskedArray class section.

The numpy.ma module can be used as an addition to numpy:

>>> import numpy as np
>>> import numpy.ma as ma

To create an array with the second element invalid, we would do:

1.7. Masked arrays 201



NumPy Reference, Release 1.15.1

>>> y = ma.array([1, 2, 3], mask = [0, 1, 0])

To create a masked array where all values close to 1.e20 are invalid, we would do:

>>> z = masked_values([1.0, 1.e20, 3.0, 4.0], 1.e20)

For a complete discussion of creation methods for masked arrays please see section Constructing masked arrays.

1.7.2 Using numpy.ma

Constructing masked arrays

There are several ways to construct a masked array.

• A first possibility is to directly invoke the MaskedArray class.

• A second possibility is to use the two masked array constructors, array and masked_array .

array(data[, dtype, copy, order, mask, . . . ]) An array class with possibly masked values.
masked_array alias of numpy.ma.core.MaskedArray

numpy.ma.array(data, dtype=None, copy=False, order=None, mask=False, fill_value=None,
keep_mask=True, hard_mask=False, shrink=True, subok=True, ndmin=0)

An array class with possibly masked values.

Masked values of True exclude the corresponding element from any computation.

Construction:

x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True,
ndmin=0, fill_value=None, keep_mask=True, hard_mask=None,
shrink=True, order=None)

Parameters

data [array_like] Input data.

mask [sequence, optional] Mask. Must be convertible to an array of booleans with the same
shape as data. True indicates a masked (i.e. invalid) data.

dtype [dtype, optional] Data type of the output. If dtype is None, the type of the data argu-
ment (data.dtype) is used. If dtype is not None and different from data.dtype, a
copy is performed.

copy [bool, optional] Whether to copy the input data (True), or to use a reference instead.
Default is False.

subok [bool, optional] Whether to return a subclass of MaskedArray if possible (True)
or a plain MaskedArray . Default is True.

ndmin [int, optional] Minimum number of dimensions. Default is 0.

fill_value [scalar, optional] Value used to fill in the masked values when necessary. If None,
a default based on the data-type is used.

keep_mask [bool, optional] Whether to combine mask with the mask of the input data, if
any (True), or to use only mask for the output (False). Default is True.

202 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

hard_mask [bool, optional] Whether to use a hard mask or not. With a hard mask, masked
values cannot be unmasked. Default is False.

shrink [bool, optional] Whether to force compression of an empty mask. Default is True.

order [{‘C’, ‘F’, ‘A’}, optional] Specify the order of the array. If order is ‘C’, then the
array will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the
returned array will be in Fortran-contiguous order (first-index varies the fastest). If order
is ‘A’ (default), then the returned array may be in any order (either C-, Fortran-contiguous,
or even discontiguous), unless a copy is required, in which case it will be C-contiguous.

numpy.ma.masked_array
alias of numpy.ma.core.MaskedArray

• A third option is to take the view of an existing array. In that case, the mask of the view is set to nomask if the
array has no named fields, or an array of boolean with the same structure as the array otherwise.

>>> x = np.array([1, 2, 3])
>>> x.view(ma.MaskedArray)
masked_array(data = [1 2 3],

mask = False,
fill_value = 999999)

>>> x = np.array([(1, 1.), (2, 2.)], dtype=[('a',int), ('b', float)])
>>> x.view(ma.MaskedArray)
masked_array(data = [(1, 1.0) (2, 2.0)],

mask = [(False, False) (False, False)],
fill_value = (999999, 1e+20),

dtype = [('a', '<i4'), ('b', '<f8')])

• Yet another possibility is to use any of the following functions:

asarray(a[, dtype, order]) Convert the input to a masked array of the given data-
type.

asanyarray(a[, dtype]) Convert the input to a masked array, conserving sub-
classes.

fix_invalid(a[, mask, copy, fill_value]) Return input with invalid data masked and replaced by
a fill value.

masked_equal(x, value[, copy]) Mask an array where equal to a given value.
masked_greater(x, value[, copy]) Mask an array where greater than a given value.
masked_greater_equal(x, value[, copy]) Mask an array where greater than or equal to a given

value.
masked_inside(x, v1, v2[, copy]) Mask an array inside a given interval.
masked_invalid(a[, copy]) Mask an array where invalid values occur (NaNs or

infs).
masked_less(x, value[, copy]) Mask an array where less than a given value.
masked_less_equal(x, value[, copy]) Mask an array where less than or equal to a given value.
masked_not_equal(x, value[, copy]) Mask an array where not equal to a given value.
masked_object(x, value[, copy, shrink]) Mask the array x where the data are exactly equal to

value.
masked_outside(x, v1, v2[, copy]) Mask an array outside a given interval.
masked_values(x, value[, rtol, atol, copy, . . . ]) Mask using floating point equality.
masked_where(condition, a[, copy]) Mask an array where a condition is met.

numpy.ma.asarray(a, dtype=None, order=None)
Convert the input to a masked array of the given data-type.

1.7. Masked arrays 203



NumPy Reference, Release 1.15.1

No copy is performed if the input is already an ndarray. If a is a subclass of MaskedArray , a base class
MaskedArray is returned.

Parameters

a [array_like] Input data, in any form that can be converted to a masked array. This includes
lists, lists of tuples, tuples, tuples of tuples, tuples of lists, ndarrays and masked arrays.

dtype [dtype, optional] By default, the data-type is inferred from the input data.

order [{‘C’, ‘F’}, optional] Whether to use row-major (‘C’) or column-major (‘FOR-
TRAN’) memory representation. Default is ‘C’.

Returns

out [MaskedArray] Masked array interpretation of a.

See also:

asanyarray Similar to asarray , but conserves subclasses.

Examples

>>> x = np.arange(10.).reshape(2, 5)
>>> x
array([[ 0., 1., 2., 3., 4.],

[ 5., 6., 7., 8., 9.]])
>>> np.ma.asarray(x)
masked_array(data =
[[ 0. 1. 2. 3. 4.]
[ 5. 6. 7. 8. 9.]],

mask =
False,

fill_value = 1e+20)
>>> type(np.ma.asarray(x))
<class 'numpy.ma.core.MaskedArray'>

numpy.ma.asanyarray(a, dtype=None)
Convert the input to a masked array, conserving subclasses.

If a is a subclass of MaskedArray , its class is conserved. No copy is performed if the input is already
an ndarray.

Parameters

a [array_like] Input data, in any form that can be converted to an array.

dtype [dtype, optional] By default, the data-type is inferred from the input data.

order [{‘C’, ‘F’}, optional] Whether to use row-major (‘C’) or column-major (‘FOR-
TRAN’) memory representation. Default is ‘C’.

Returns

out [MaskedArray] MaskedArray interpretation of a.

See also:

asarray Similar to asanyarray , but does not conserve subclass.

204 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Examples

>>> x = np.arange(10.).reshape(2, 5)
>>> x
array([[ 0., 1., 2., 3., 4.],

[ 5., 6., 7., 8., 9.]])
>>> np.ma.asanyarray(x)
masked_array(data =
[[ 0. 1. 2. 3. 4.]
[ 5. 6. 7. 8. 9.]],

mask =
False,

fill_value = 1e+20)
>>> type(np.ma.asanyarray(x))
<class 'numpy.ma.core.MaskedArray'>

numpy.ma.fix_invalid(a, mask=False, copy=True, fill_value=None)
Return input with invalid data masked and replaced by a fill value.

Invalid data means values of nan, inf, etc.

Parameters

a [array_like] Input array, a (subclass of) ndarray.

mask [sequence, optional] Mask. Must be convertible to an array of booleans with the same
shape as data. True indicates a masked (i.e. invalid) data.

copy [bool, optional] Whether to use a copy of a (True) or to fix a in place (False). Default
is True.

fill_value [scalar, optional] Value used for fixing invalid data. Default is None, in which
case the a.fill_value is used.

Returns

b [MaskedArray] The input array with invalid entries fixed.

Notes

A copy is performed by default.

Examples

>>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3)
>>> x
masked_array(data = [-- -1.0 nan inf],

mask = [ True False False False],
fill_value = 1e+20)

>>> np.ma.fix_invalid(x)
masked_array(data = [-- -1.0 -- --],

mask = [ True False True True],
fill_value = 1e+20)

1.7. Masked arrays 205



NumPy Reference, Release 1.15.1

>>> fixed = np.ma.fix_invalid(x)
>>> fixed.data
array([ 1.00000000e+00, -1.00000000e+00, 1.00000000e+20,

1.00000000e+20])
>>> x.data
array([ 1., -1., NaN, Inf])

numpy.ma.masked_equal(x, value, copy=True)
Mask an array where equal to a given value.

This function is a shortcut to masked_where, with condition = (x == value). For floating point arrays,
consider using masked_values(x, value).

See also:

masked_where Mask where a condition is met.

masked_values Mask using floating point equality.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_equal(a, 2)
masked_array(data = [0 1 -- 3],

mask = [False False True False],
fill_value=999999)

numpy.ma.masked_greater(x, value, copy=True)
Mask an array where greater than a given value.

This function is a shortcut to masked_where, with condition = (x > value).

See also:

masked_where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater(a, 2)
masked_array(data = [0 1 2 --],

mask = [False False False True],
fill_value=999999)

numpy.ma.masked_greater_equal(x, value, copy=True)
Mask an array where greater than or equal to a given value.

This function is a shortcut to masked_where, with condition = (x >= value).

See also:

206 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

masked_where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater_equal(a, 2)
masked_array(data = [0 1 -- --],

mask = [False False True True],
fill_value=999999)

numpy.ma.masked_inside(x, v1, v2, copy=True)
Mask an array inside a given interval.

Shortcut to masked_where, where condition is True for x inside the interval [v1,v2] (v1 <= x <= v2).
The boundaries v1 and v2 can be given in either order.

See also:

masked_where Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_inside(x, -0.3, 0.3)
masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],

mask = [False False True True False False],
fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

>>> ma.masked_inside(x, 0.3, -0.3)
masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],

mask = [False False True True False False],
fill_value=1e+20)

numpy.ma.masked_invalid(a, copy=True)
Mask an array where invalid values occur (NaNs or infs).

This function is a shortcut to masked_where, with condition = ~(np.isfinite(a)). Any pre-existing mask
is conserved. Only applies to arrays with a dtype where NaNs or infs make sense (i.e. floating point types),
but accepts any array_like object.

See also:

masked_where Mask where a condition is met.

1.7. Masked arrays 207



NumPy Reference, Release 1.15.1

Examples

>>> import numpy.ma as ma
>>> a = np.arange(5, dtype=float)
>>> a[2] = np.NaN
>>> a[3] = np.PINF
>>> a
array([ 0., 1., NaN, Inf, 4.])
>>> ma.masked_invalid(a)
masked_array(data = [0.0 1.0 -- -- 4.0],

mask = [False False True True False],
fill_value=1e+20)

numpy.ma.masked_less(x, value, copy=True)
Mask an array where less than a given value.

This function is a shortcut to masked_where, with condition = (x < value).

See also:

masked_where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less(a, 2)
masked_array(data = [-- -- 2 3],

mask = [ True True False False],
fill_value=999999)

numpy.ma.masked_less_equal(x, value, copy=True)
Mask an array where less than or equal to a given value.

This function is a shortcut to masked_where, with condition = (x <= value).

See also:

masked_where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less_equal(a, 2)
masked_array(data = [-- -- -- 3],

mask = [ True True True False],
fill_value=999999)

numpy.ma.masked_not_equal(x, value, copy=True)
Mask an array where not equal to a given value.

208 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

This function is a shortcut to masked_where, with condition = (x != value).

See also:

masked_where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_not_equal(a, 2)
masked_array(data = [-- -- 2 --],

mask = [ True True False True],
fill_value=999999)

numpy.ma.masked_object(x, value, copy=True, shrink=True)
Mask the array x where the data are exactly equal to value.

This function is similar to masked_values, but only suitable for object arrays: for floating point, use
masked_values instead.

Parameters

x [array_like] Array to mask

value [object] Comparison value

copy [{True, False}, optional] Whether to return a copy of x.

shrink [{True, False}, optional] Whether to collapse a mask full of False to nomask

Returns

result [MaskedArray] The result of masking x where equal to value.

See also:

masked_where Mask where a condition is met.

masked_equal Mask where equal to a given value (integers).

masked_values Mask using floating point equality.

Examples

>>> import numpy.ma as ma
>>> food = np.array(['green_eggs', 'ham'], dtype=object)
>>> # don't eat spoiled food
>>> eat = ma.masked_object(food, 'green_eggs')
>>> print(eat)
[-- ham]
>>> # plain ol` ham is boring
>>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object)
>>> eat = ma.masked_object(fresh_food, 'green_eggs')
>>> print(eat)
[cheese ham pineapple]

1.7. Masked arrays 209



NumPy Reference, Release 1.15.1

Note that mask is set to nomask if possible.

>>> eat
masked_array(data = [cheese ham pineapple],

mask = False,
fill_value=?)

numpy.ma.masked_outside(x, v1, v2, copy=True)
Mask an array outside a given interval.

Shortcut to masked_where, where condition is True for x outside the interval [v1,v2] (x < v1)|(x > v2).
The boundaries v1 and v2 can be given in either order.

See also:

masked_where Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_outside(x, -0.3, 0.3)
masked_array(data = [-- -- 0.01 0.2 -- --],

mask = [ True True False False True True],
fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

>>> ma.masked_outside(x, 0.3, -0.3)
masked_array(data = [-- -- 0.01 0.2 -- --],

mask = [ True True False False True True],
fill_value=1e+20)

numpy.ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)
Mask using floating point equality.

Return a MaskedArray, masked where the data in array x are approximately equal to value, determined
using isclose. The default tolerances for masked_values are the same as those for isclose.

For integer types, exact equality is used, in the same way as masked_equal.

The fill_value is set to value and the mask is set to nomask if possible.

Parameters

x [array_like] Array to mask.

value [float] Masking value.

rtol, atol [float, optional] Tolerance parameters passed on to isclose

copy [bool, optional] Whether to return a copy of x.

shrink [bool, optional] Whether to collapse a mask full of False to nomask.

210 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Returns

result [MaskedArray] The result of masking x where approximately equal to value.

See also:

masked_where Mask where a condition is met.

masked_equal Mask where equal to a given value (integers).

Examples

>>> import numpy.ma as ma
>>> x = np.array([1, 1.1, 2, 1.1, 3])
>>> ma.masked_values(x, 1.1)
masked_array(data = [1.0 -- 2.0 -- 3.0],

mask = [False True False True False],
fill_value=1.1)

Note that mask is set to nomask if possible.

>>> ma.masked_values(x, 1.5)
masked_array(data = [ 1. 1.1 2. 1.1 3. ],

mask = False,
fill_value=1.5)

For integers, the fill value will be different in general to the result of masked_equal.

>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])
>>> ma.masked_values(x, 2)
masked_array(data = [0 1 -- 3 4],

mask = [False False True False False],
fill_value=2)

>>> ma.masked_equal(x, 2)
masked_array(data = [0 1 -- 3 4],

mask = [False False True False False],
fill_value=999999)

numpy.ma.masked_where(condition, a, copy=True)
Mask an array where a condition is met.

Return a as an array masked where condition is True. Any masked values of a or condition are also masked
in the output.

Parameters

condition [array_like] Masking condition. When condition tests floating point values for
equality, consider using masked_values instead.

a [array_like] Array to mask.

copy [bool] If True (default) make a copy of a in the result. If False modify a in place and
return a view.

Returns

result [MaskedArray] The result of masking a where condition is True.

1.7. Masked arrays 211



NumPy Reference, Release 1.15.1

See also:

masked_values Mask using floating point equality.

masked_equal Mask where equal to a given value.

masked_not_equal Mask where not equal to a given value.

masked_less_equal Mask where less than or equal to a given value.

masked_greater_equal Mask where greater than or equal to a given value.

masked_less Mask where less than a given value.

masked_greater Mask where greater than a given value.

masked_inside Mask inside a given interval.

masked_outside Mask outside a given interval.

masked_invalid Mask invalid values (NaNs or infs).

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_where(a <= 2, a)
masked_array(data = [-- -- -- 3],

mask = [ True True True False],
fill_value=999999)

Mask array b conditional on a.

>>> b = ['a', 'b', 'c', 'd']
>>> ma.masked_where(a == 2, b)
masked_array(data = [a b -- d],

mask = [False False True False],
fill_value=N/A)

Effect of the copy argument.

>>> c = ma.masked_where(a <= 2, a)
>>> c
masked_array(data = [-- -- -- 3],

mask = [ True True True False],
fill_value=999999)

>>> c[0] = 99
>>> c
masked_array(data = [99 -- -- 3],

mask = [False True True False],
fill_value=999999)

>>> a
array([0, 1, 2, 3])
>>> c = ma.masked_where(a <= 2, a, copy=False)
>>> c[0] = 99
>>> c
masked_array(data = [99 -- -- 3],

(continues on next page)

212 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

mask = [False True True False],
fill_value=999999)

>>> a
array([99, 1, 2, 3])

When condition or a contain masked values.

>>> a = np.arange(4)
>>> a = ma.masked_where(a == 2, a)
>>> a
masked_array(data = [0 1 -- 3],

mask = [False False True False],
fill_value=999999)

>>> b = np.arange(4)
>>> b = ma.masked_where(b == 0, b)
>>> b
masked_array(data = [-- 1 2 3],

mask = [ True False False False],
fill_value=999999)

>>> ma.masked_where(a == 3, b)
masked_array(data = [-- 1 -- --],

mask = [ True False True True],
fill_value=999999)

Accessing the data

The underlying data of a masked array can be accessed in several ways:

• through the data attribute. The output is a view of the array as a numpy.ndarray or one of its subclasses,
depending on the type of the underlying data at the masked array creation.

• through the __array__ method. The output is then a numpy.ndarray .

• by directly taking a view of the masked array as a numpy.ndarray or one of its subclass (which is actually
what using the data attribute does).

• by using the getdata function.

None of these methods is completely satisfactory if some entries have been marked as invalid. As a general rule,
where a representation of the array is required without any masked entries, it is recommended to fill the array with the
filled method.

Accessing the mask

The mask of a masked array is accessible through its mask attribute. We must keep in mind that a True entry in the
mask indicates an invalid data.

Another possibility is to use the getmask and getmaskarray functions. getmask(x) outputs the mask of x if
x is a masked array, and the special value nomask otherwise. getmaskarray(x) outputs the mask of x if x is a
masked array. If x has no invalid entry or is not a masked array, the function outputs a boolean array of False with
as many elements as x.

1.7. Masked arrays 213



NumPy Reference, Release 1.15.1

Accessing only the valid entries

To retrieve only the valid entries, we can use the inverse of the mask as an index. The inverse of the mask can be
calculated with the numpy.logical_not function or simply with the ~ operator:

>>> x = ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]])
>>> x[~x.mask]
masked_array(data = [1 4],

mask = [False False],
fill_value = 999999)

Another way to retrieve the valid data is to use the compressed method, which returns a one-dimensional ndarray
(or one of its subclasses, depending on the value of the baseclass attribute):

>>> x.compressed()
array([1, 4])

Note that the output of compressed is always 1D.

Modifying the mask

Masking an entry

The recommended way to mark one or several specific entries of a masked array as invalid is to assign the special
value masked to them:

>>> x = ma.array([1, 2, 3])
>>> x[0] = ma.masked
>>> x
masked_array(data = [-- 2 3],

mask = [ True False False],
fill_value = 999999)

>>> y = ma.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> y[(0, 1, 2), (1, 2, 0)] = ma.masked
>>> y
masked_array(data =
[[1 -- 3]
[4 5 --]
[-- 8 9]],

mask =
[[False True False]
[False False True]
[ True False False]],

fill_value = 999999)
>>> z = ma.array([1, 2, 3, 4])
>>> z[:-2] = ma.masked
>>> z
masked_array(data = [-- -- 3 4],

mask = [ True True False False],
fill_value = 999999)

A second possibility is to modify the mask directly, but this usage is discouraged.

Note: When creating a new masked array with a simple, non-structured datatype, the mask is initially set to the
special value nomask, that corresponds roughly to the boolean False. Trying to set an element of nomask will fail

214 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

with a TypeError exception, as a boolean does not support item assignment.

All the entries of an array can be masked at once by assigning True to the mask:

>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x.mask = True
>>> x
masked_array(data = [-- -- --],

mask = [ True True True],
fill_value = 999999)

Finally, specific entries can be masked and/or unmasked by assigning to the mask a sequence of booleans:

>>> x = ma.array([1, 2, 3])
>>> x.mask = [0, 1, 0]
>>> x
masked_array(data = [1 -- 3],

mask = [False True False],
fill_value = 999999)

Unmasking an entry

To unmask one or several specific entries, we can just assign one or several new valid values to them:

>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x
masked_array(data = [1 2 --],

mask = [False False True],
fill_value = 999999)

>>> x[-1] = 5
>>> x
masked_array(data = [1 2 5],

mask = [False False False],
fill_value = 999999)

Note: Unmasking an entry by direct assignment will silently fail if the masked array has a hard mask, as shown by
the hardmask attribute. This feature was introduced to prevent overwriting the mask. To force the unmasking of an
entry where the array has a hard mask, the mask must first to be softened using the soften_mask method before
the allocation. It can be re-hardened with harden_mask:

>>> x = ma.array([1, 2, 3], mask=[0, 0, 1], hard_mask=True)
>>> x
masked_array(data = [1 2 --],

mask = [False False True],
fill_value = 999999)

>>> x[-1] = 5
>>> x
masked_array(data = [1 2 --],

mask = [False False True],
fill_value = 999999)

>>> x.soften_mask()
>>> x[-1] = 5
>>> x
masked_array(data = [1 2 5],

(continues on next page)

1.7. Masked arrays 215

https://docs.python.org/dev/library/exceptions.html#TypeError


NumPy Reference, Release 1.15.1

(continued from previous page)

mask = [False False False],
fill_value = 999999)

>>> x.harden_mask()

To unmask all masked entries of a masked array (provided the mask isn’t a hard mask), the simplest solution is to
assign the constant nomask to the mask:

>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x
masked_array(data = [1 2 --],

mask = [False False True],
fill_value = 999999)

>>> x.mask = ma.nomask
>>> x
masked_array(data = [1 2 3],

mask = [False False False],
fill_value = 999999)

Indexing and slicing

As a MaskedArray is a subclass of numpy.ndarray , it inherits its mechanisms for indexing and slicing.

When accessing a single entry of a masked array with no named fields, the output is either a scalar (if the corresponding
entry of the mask is False) or the special value masked (if the corresponding entry of the mask is True):

>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x[0]
1
>>> x[-1]
masked_array(data = --,

mask = True,
fill_value = 1e+20)

>>> x[-1] is ma.masked
True

If the masked array has named fields, accessing a single entry returns a numpy.void object if none of the fields are
masked, or a 0d masked array with the same dtype as the initial array if at least one of the fields is masked.

>>> y = ma.masked_array([(1,2), (3, 4)],
... mask=[(0, 0), (0, 1)],
... dtype=[('a', int), ('b', int)])
>>> y[0]
(1, 2)
>>> y[-1]
masked_array(data = (3, --),

mask = (False, True),
fill_value = (999999, 999999),

dtype = [('a', '<i4'), ('b', '<i4')])

When accessing a slice, the output is a masked array whose data attribute is a view of the original data, and whose
mask is either nomask (if there was no invalid entries in the original array) or a view of the corresponding slice of
the original mask. The view is required to ensure propagation of any modification of the mask to the original.

216 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> x = ma.array([1, 2, 3, 4, 5], mask=[0, 1, 0, 0, 1])
>>> mx = x[:3]
>>> mx
masked_array(data = [1 -- 3],

mask = [False True False],
fill_value = 999999)

>>> mx[1] = -1
>>> mx
masked_array(data = [1 -1 3],

mask = [False False False],
fill_value = 999999)

>>> x.mask
array([False, True, False, False, True])
>>> x.data
array([ 1, -1, 3, 4, 5])

Accessing a field of a masked array with structured datatype returns a MaskedArray .

Operations on masked arrays

Arithmetic and comparison operations are supported by masked arrays. As much as possible, invalid entries of a
masked array are not processed, meaning that the corresponding data entries should be the same before and after the
operation.

Warning: We need to stress that this behavior may not be systematic, that masked data may be affected by the
operation in some cases and therefore users should not rely on this data remaining unchanged.

The numpy.ma module comes with a specific implementation of most ufuncs. Unary and binary functions that have a
validity domain (such as log or divide) return the masked constant whenever the input is masked or falls outside
the validity domain:

>>> ma.log([-1, 0, 1, 2])
masked_array(data = [-- -- 0.0 0.69314718056],

mask = [ True True False False],
fill_value = 1e+20)

Masked arrays also support standard numpy ufuncs. The output is then a masked array. The result of a unary ufunc is
masked wherever the input is masked. The result of a binary ufunc is masked wherever any of the input is masked. If
the ufunc also returns the optional context output (a 3-element tuple containing the name of the ufunc, its arguments
and its domain), the context is processed and entries of the output masked array are masked wherever the corresponding
input fall outside the validity domain:

>>> x = ma.array([-1, 1, 0, 2, 3], mask=[0, 0, 0, 0, 1])
>>> np.log(x)
masked_array(data = [-- -- 0.0 0.69314718056 --],

mask = [ True True False False True],
fill_value = 1e+20)

1.7.3 Examples

1.7. Masked arrays 217



NumPy Reference, Release 1.15.1

Data with a given value representing missing data

Let’s consider a list of elements, x, where values of -9999. represent missing data. We wish to compute the average
value of the data and the vector of anomalies (deviations from the average):

>>> import numpy.ma as ma
>>> x = [0.,1.,-9999.,3.,4.]
>>> mx = ma.masked_values (x, -9999.)
>>> print mx.mean()
2.0
>>> print mx - mx.mean()
[-2.0 -1.0 -- 1.0 2.0]
>>> print mx.anom()
[-2.0 -1.0 -- 1.0 2.0]

Filling in the missing data

Suppose now that we wish to print that same data, but with the missing values replaced by the average value.

>>> print mx.filled(mx.mean())
[ 0. 1. 2. 3. 4.]

Numerical operations

Numerical operations can be easily performed without worrying about missing values, dividing by zero, square roots
of negative numbers, etc.:

>>> import numpy as np, numpy.ma as ma
>>> x = ma.array([1., -1., 3., 4., 5., 6.], mask=[0,0,0,0,1,0])
>>> y = ma.array([1., 2., 0., 4., 5., 6.], mask=[0,0,0,0,0,1])
>>> print np.sqrt(x/y)
[1.0 -- -- 1.0 -- --]

Four values of the output are invalid: the first one comes from taking the square root of a negative number, the second
from the division by zero, and the last two where the inputs were masked.

Ignoring extreme values

Let’s consider an array d of random floats between 0 and 1. We wish to compute the average of the values of d while
ignoring any data outside the range [0.1, 0.9]:

>>> print ma.masked_outside(d, 0.1, 0.9).mean()

1.7.4 Constants of the numpy.ma module

In addition to the MaskedArray class, the numpy.ma module defines several constants.

numpy.ma.masked
The masked constant is a special case of MaskedArray , with a float datatype and a null shape. It is used to
test whether a specific entry of a masked array is masked, or to mask one or several entries of a masked array:

218 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> x = ma.array([1, 2, 3], mask=[0, 1, 0])
>>> x[1] is ma.masked
True
>>> x[-1] = ma.masked
>>> x
masked_array(data = [1 -- --],

mask = [False True True],
fill_value = 999999)

numpy.ma.nomask
Value indicating that a masked array has no invalid entry. nomask is used internally to speed up computations
when the mask is not needed.

numpy.ma.masked_print_options
String used in lieu of missing data when a masked array is printed. By default, this string is '--'.

1.7.5 The MaskedArray class

class numpy.ma.MaskedArray

A subclass of ndarray designed to manipulate numerical arrays with missing data.

An instance of MaskedArray can be thought as the combination of several elements:

• The data, as a regular numpy.ndarray of any shape or datatype (the data).

• A boolean mask with the same shape as the data, where a True value indicates that the corresponding element
of the data is invalid. The special value nomask is also acceptable for arrays without named fields, and indicates
that no data is invalid.

• A fill_value, a value that may be used to replace the invalid entries in order to return a standard numpy.
ndarray .

Attributes and properties of masked arrays

See also:

Array Attributes

MaskedArray.data
Returns the underlying data, as a view of the masked array. If the underlying data is a subclass of numpy.
ndarray , it is returned as such.

>>> x = ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.data
matrix([[1, 2],

[3, 4]])

The type of the data can be accessed through the baseclass attribute.

MaskedArray.mask
Returns the underlying mask, as an array with the same shape and structure as the data, but where all fields are
atomically booleans. A value of True indicates an invalid entry.

MaskedArray.recordmask
Returns the mask of the array if it has no named fields. For structured arrays, returns a ndarray of booleans
where entries are True if all the fields are masked, False otherwise:

1.7. Masked arrays 219



NumPy Reference, Release 1.15.1

>>> x = ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)],
... mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)],
... dtype=[('a', int), ('b', int)])
>>> x.recordmask
array([False, False, True, False, False])

MaskedArray.fill_value
Returns the value used to fill the invalid entries of a masked array. The value is either a scalar (if the masked
array has no named fields), or a 0-D ndarray with the same dtype as the masked array if it has named fields.

The default filling value depends on the datatype of the array:

datatype default
bool True
int 999999
float 1.e20
complex 1.e20+0j
object ‘?’
string ‘N/A’

MaskedArray.baseclass
Returns the class of the underlying data.

>>> x = ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 0], [1, 0]])
>>> x.baseclass
<class 'numpy.matrixlib.defmatrix.matrix'>

MaskedArray.sharedmask
Returns whether the mask of the array is shared between several masked arrays. If this is the case, any modifi-
cation to the mask of one array will be propagated to the others.

MaskedArray.hardmask
Returns whether the mask is hard (True) or soft (False). When the mask is hard, masked entries cannot be
unmasked.

As MaskedArray is a subclass of ndarray , a masked array also inherits all the attributes and properties of a
ndarray instance.

MaskedArray.base Base object if memory is from some other object.
MaskedArray.ctypes An object to simplify the interaction of the array with the

ctypes module.
MaskedArray.dtype Data-type of the array’s elements.
MaskedArray.flags Information about the memory layout of the array.
MaskedArray.itemsize Length of one array element in bytes.
MaskedArray.nbytes Total bytes consumed by the elements of the array.
MaskedArray.ndim Number of array dimensions.
MaskedArray.shape Tuple of array dimensions.
MaskedArray.size Number of elements in the array.
MaskedArray.strides Tuple of bytes to step in each dimension when traversing

an array.
MaskedArray.imag Imaginary part.
MaskedArray.real Real part
MaskedArray.flat Flat version of the array.

Continued on next page

220 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Table 53 – continued from previous page
MaskedArray.__array_priority__

MaskedArray.base
Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

MaskedArray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes
module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which
themselves return ctypes objects that can be used as arguments to a shared library.

Parameters

None

Returns

c [Python object] Possessing attributes data, shape, strides, etc.

See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted
undocumented public attributes, as well as documented private attributes):

• data: A pointer to the memory area of the array as a Python integer. This memory area may contain data
that is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid
trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as
self._array_interface_[‘data’][0].

• shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corre-
sponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong depending
on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes array contains the
shape of the underlying array.

• strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the
shape attribute. This ctypes array contains the strides information from the underlying array. This strides

1.7. Masked arrays 221



NumPy Reference, Release 1.15.1

information is important for showing how many bytes must be jumped to get to the next element in the
array.

• data_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data as
a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

• shape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

• strides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory that is
invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid this
problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a reference to the array
until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful, but
ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the as
parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],

[2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

MaskedArray.dtype
Data-type of the array’s elements.

Parameters

None

Returns

d [numpy dtype object]

See also:

numpy.dtype

222 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Examples

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

MaskedArray.flags
Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lowercased
attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary access.

Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by
the user, via direct assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

• UPDATEIFCOPY can only be set False.

• WRITEBACKIFCOPY can only be set False.

• ALIGNED can only be set True if the data is truly aligned.

• WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the memory
exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays,
but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary if arr.
shape[dim] == 1 or the array has no elements. It does not generally hold that self.strides[-1]
== self.itemsize for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Attributes

C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment.

F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment.

OWNDATA (O) The array owns the memory it uses or borrows it from another object.

WRITEABLE (W) The data area can be written to. Setting this to False locks the data, making
it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time,
but a view of a writeable array may be subsequently locked while the base array remains
writeable. (The opposite is not true, in that a view of a locked array may not be made
writeable. However, currently, locking a base object does not lock any views that already
reference it, so under that circumstance it is possible to alter the contents of a locked array
via a previously created writeable view onto it.) Attempting to change a non-writeable array
raises a RuntimeError exception.

ALIGNED (A) The data and all elements are aligned appropriately for the hardware.

1.7. Masked arrays 223



NumPy Reference, Release 1.15.1

WRITEBACKIFCOPY (X) This array is a copy of some other array. The C-API function
PyArray_ResolveWritebackIfCopy must be called before deallocating to the base array will
be updated with the contents of this array.

UPDATEIFCOPY (U) (Deprecated, use WRITEBACKIFCOPY) This array is a copy of some
other array. When this array is deallocated, the base array will be updated with the contents
of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED (B) ALIGNED and WRITEABLE.

CARRAY (CA) BEHAVED and C_CONTIGUOUS.

FARRAY (FA) BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

MaskedArray.itemsize
Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

MaskedArray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

MaskedArray.ndim
Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1

(continues on next page)

224 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

MaskedArray.shape
Tuple of array dimensions.

The shape property is usually used to get the current shape of an array, but may also be used to reshape the
array in-place by assigning a tuple of array dimensions to it. As with numpy.reshape, one of the new shape
dimensions can be -1, in which case its value is inferred from the size of the array and the remaining dimensions.
Reshaping an array in-place will fail if a copy is required.

See also:

numpy.reshape similar function

ndarray.reshape similar method

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[ 0., 0., 0., 0., 0., 0., 0., 0.],

[ 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: total size of new array must be unchanged
>>> np.zeros((4,2))[::2].shape = (-1,)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: incompatible shape for a non-contiguous array

MaskedArray.size
Number of elements in the array.

Equal to np.prod(a.shape), i.e., the product of the array’s dimensions.

Notes

a.size returns a standard arbitrary precision Python integer. This may not be the case with other methods of
obtaining the same value (like the suggested np.prod(a.shape), which returns an instance of np.int_),
and may be relevant if the value is used further in calculations that may overflow a fixed size integer type.

1.7. Masked arrays 225



NumPy Reference, Release 1.15.1

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

MaskedArray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

See also:

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The
strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain
axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get
to the same position in the next row. As such, the strides for the array x will be (20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)

(continues on next page)

226 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

MaskedArray.imag
Imaginary part.

MaskedArray.real
Real part

MaskedArray.flat
Flat version of the array.

MaskedArray.__array_priority__ = 15

1.7.6 MaskedArray methods

See also:

Array methods

Conversion

MaskedArray.__float__() Convert to float.
MaskedArray.__hex__
MaskedArray.__int__() Convert to int.
MaskedArray.__long__() Convert to long.
MaskedArray.__oct__
MaskedArray.view([dtype, type]) New view of array with the same data.
MaskedArray.astype(dtype[, order, casting, . . . ]) Copy of the array, cast to a specified type.
MaskedArray.byteswap([inplace]) Swap the bytes of the array elements
MaskedArray.compressed() Return all the non-masked data as a 1-D array.
MaskedArray.filled([fill_value]) Return a copy of self, with masked values filled with a

given value.
MaskedArray.tofile(fid[, sep, format]) Save a masked array to a file in binary format.
MaskedArray.toflex() Transforms a masked array into a flexible-type array.
MaskedArray.tolist([fill_value]) Return the data portion of the masked array as a hierarchi-

cal Python list.
MaskedArray.torecords() Transforms a masked array into a flexible-type array.
MaskedArray.tostring([fill_value, order]) This function is a compatibility alias for tobytes.
MaskedArray.tobytes([fill_value, order]) Return the array data as a string containing the raw bytes in

the array.

MaskedArray.__float__()
Convert to float.

MaskedArray.__int__()
Convert to int.

MaskedArray.__long__()

1.7. Masked arrays 227



NumPy Reference, Release 1.15.1

Convert to long.

MaskedArray.view(dtype=None, type=None)
New view of array with the same data.

Parameters

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g.,
float32 or int16. The default, None, results in the view having the same data-type as a. This
argument can also be specified as an ndarray sub-class, which then specifies the type of the
returned object (this is equivalent to setting the type parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory with
a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance of
ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation
of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the previous
dtype (for example, converting a regular array to a structured array), then the behavior of the view cannot be
predicted just from the superficial appearance of a (shown by print(a)). It also depends on exactly how a
is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a slice or transpose,
etc., the view may give different results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([ 2., 3.])

Making changes to the view changes the underlying array

228 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

MaskedArray.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters

dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means
C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contigu-
ous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in
memory as possible. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise the
returned array will be forced to be a base-class array.

1.7. Masked arrays 229



NumPy Reference, Release 1.15.1

copy [bool, optional] By default, astype always returns a newly allocated array. If this is set to
false, and the dtype, order, and subok requirements are satisfied, the input array is returned
instead of a copy.

Returns

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array are
satisfied (see description for copy input parameter), arr_t is a new array of the same shape
as the input array, with dtype, order given by dtype, order.

Raises

ComplexWarning When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough in
‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the casting was
allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([ 1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

MaskedArray.byteswap(inplace=False)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place.

Parameters

inplace [bool, optional] If True, swap bytes in-place, default is False.

Returns

out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([ 256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

230 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],

dtype='|S3')

MaskedArray.compressed()
Return all the non-masked data as a 1-D array.

Returns

data [ndarray] A new ndarray holding the non-masked data is returned.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array(np.arange(5), mask=[0]*2 + [1]*3)
>>> x.compressed()
array([0, 1])
>>> type(x.compressed())
<type 'numpy.ndarray'>

MaskedArray.filled(fill_value=None)
Return a copy of self, with masked values filled with a given value. However, if there are no masked values to
fill, self will be returned instead as an ndarray.

Parameters

fill_value [scalar, optional] The value to use for invalid entries (None by default). If None, the
fill_value attribute of the array is used instead.

Returns

filled_array [ndarray] A copy of self with invalid entries replaced by fill_value (be it the
function argument or the attribute of self), or self itself as an ndarray if there are no
invalid entries to be replaced.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
>>> x.filled()
array([1, 2, -999, 4, -999])
>>> type(x.filled())
<type 'numpy.ndarray'>

Subclassing is preserved. This means that if, e.g., the data part of the masked array is a recarray, filled
returns a recarray:

1.7. Masked arrays 231



NumPy Reference, Release 1.15.1

>>> x = np.array([(-1, 2), (-3, 4)], dtype='i8,i8').view(np.recarray)
>>> m = np.ma.array(x, mask=[(True, False), (False, True)])
>>> m.filled()
rec.array([(999999, 2), ( -3, 999999)],

dtype=[('f0', '<i8'), ('f1', '<i8')])

MaskedArray.tofile(fid, sep=”, format=’%s’)
Save a masked array to a file in binary format.

Warning: This function is not implemented yet.

Raises

NotImplementedError When tofile is called.

MaskedArray.toflex()
Transforms a masked array into a flexible-type array.

The flexible type array that is returned will have two fields:

• the _data field stores the _data part of the array.

• the _mask field stores the _mask part of the array.

Parameters

None

Returns

record [ndarray] A new flexible-type ndarray with two fields: the first element containing a
value, the second element containing the corresponding mask boolean. The returned record
shape matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is that meta information (fill_value,
. . . ) will be lost.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> print(x.toflex())
[[(1, False) (2, True) (3, False)]
[(4, True) (5, False) (6, True)]
[(7, False) (8, True) (9, False)]]

MaskedArray.tolist(fill_value=None)
Return the data portion of the masked array as a hierarchical Python list.

232 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Data items are converted to the nearest compatible Python type. Masked values are converted to fill_value.
If fill_value is None, the corresponding entries in the output list will be None.

Parameters

fill_value [scalar, optional] The value to use for invalid entries. Default is None.

Returns

result [list] The Python list representation of the masked array.

Examples

>>> x = np.ma.array([[1,2,3], [4,5,6], [7,8,9]], mask=[0] + [1,0]*4)
>>> x.tolist()
[[1, None, 3], [None, 5, None], [7, None, 9]]
>>> x.tolist(-999)
[[1, -999, 3], [-999, 5, -999], [7, -999, 9]]

MaskedArray.torecords()
Transforms a masked array into a flexible-type array.

The flexible type array that is returned will have two fields:

• the _data field stores the _data part of the array.

• the _mask field stores the _mask part of the array.

Parameters

None

Returns

record [ndarray] A new flexible-type ndarray with two fields: the first element containing a
value, the second element containing the corresponding mask boolean. The returned record
shape matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is that meta information (fill_value,
. . . ) will be lost.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> print(x.toflex())
[[(1, False) (2, True) (3, False)]
[(4, True) (5, False) (6, True)]
[(7, False) (8, True) (9, False)]]

MaskedArray.tostring(fill_value=None, order=’C’)
This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

1.7. Masked arrays 233



NumPy Reference, Release 1.15.1

MaskedArray.tobytes(fill_value=None, order=’C’)
Return the array data as a string containing the raw bytes in the array.

The array is filled with a fill value before the string conversion.

New in version 1.9.0.

Parameters

fill_value [scalar, optional] Value used to fill in the masked values. Default is None, in which
case MaskedArray.fill_value is used.

order [{‘C’,’F’,’A’}, optional] Order of the data item in the copy. Default is ‘C’.

• ‘C’ – C order (row major).

• ‘F’ – Fortran order (column major).

• ‘A’ – Any, current order of array.

• None – Same as ‘A’.

See also:

ndarray.tobytes, tolist, tofile

Notes

As for ndarray.tobytes, information about the shape, dtype, etc., but also about fill_value, will be lost.

Examples

>>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.tobytes()
'\x01\x00\x00\x00?B\x0f\x00?B\x0f\x00\x04\x00\x00\x00'

Shape manipulation

For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted
as an n-tuple.

MaskedArray.flatten([order]) Return a copy of the array collapsed into one dimension.
MaskedArray.ravel([order]) Returns a 1D version of self, as a view.
MaskedArray.reshape(*s, **kwargs) Give a new shape to the array without changing its data.
MaskedArray.resize(newshape[, refcheck, order])
MaskedArray.squeeze([axis]) Remove single-dimensional entries from the shape of a.
MaskedArray.swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.
MaskedArray.T

MaskedArray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

Parameters

234 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’
means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-
major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to
flatten a in the order the elements occur in memory. The default is ‘C’.

Returns

y [ndarray] A copy of the input array, flattened to one dimension.

See also:

ravel Return a flattened array.

flat A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

MaskedArray.ravel(order=’C’)
Returns a 1D version of self, as a view.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] The elements of a are read using this index order. ‘C’
means to index the elements in C-like order, with the last axis index changing fastest, back
to the first axis index changing slowest. ‘F’ means to index the elements in Fortran-like
index order, with the first index changing fastest, and the last index changing slowest. Note
that the ‘C’ and ‘F’ options take no account of the memory layout of the underlying array,
and only refer to the order of axis indexing. ‘A’ means to read the elements in Fortran-like
index order if m is Fortran contiguous in memory, C-like order otherwise. ‘K’ means to read
the elements in the order they occur in memory, except for reversing the data when strides
are negative. By default, ‘C’ index order is used.

Returns

MaskedArray Output view is of shape (self.size,) (or (np.ma.product(self.
shape),)).

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> print(x.ravel())
[1 -- 3 -- 5 -- 7 -- 9]

MaskedArray.reshape(*s, **kwargs)
Give a new shape to the array without changing its data.

1.7. Masked arrays 235



NumPy Reference, Release 1.15.1

Returns a masked array containing the same data, but with a new shape. The result is a view on the original
array; if this is not possible, a ValueError is raised.

Parameters

shape [int or tuple of ints] The new shape should be compatible with the original shape. If an
integer is supplied, then the result will be a 1-D array of that length.

order [{‘C’, ‘F’}, optional] Determines whether the array data should be viewed as in C (row-
major) or FORTRAN (column-major) order.

Returns

reshaped_array [array] A new view on the array.

See also:

reshape Equivalent function in the masked array module.

numpy.ndarray.reshape Equivalent method on ndarray object.

numpy.reshape Equivalent function in the NumPy module.

Notes

The reshaping operation cannot guarantee that a copy will not be made, to modify the shape in place, use
a.shape = s

Examples

>>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1])
>>> print(x)
[[-- 2]
[3 --]]
>>> x = x.reshape((4,1))
>>> print(x)
[[--]
[2]
[3]
[--]]

MaskedArray.resize(newshape, refcheck=True, order=False)

Warning: This method does nothing, except raise a ValueError exception. A masked array does not own
its data and therefore cannot safely be resized in place. Use the numpy.ma.resize function instead.

This method is difficult to implement safely and may be deprecated in future releases of NumPy.

MaskedArray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also:

numpy.squeeze equivalent function

236 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

MaskedArray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes equivalent function

MaskedArray.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array into
a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes are given,
their order indicates how the axes are permuted (see Examples). If axes are not provided and a.shape =
(i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape = (i[n-1], i[n-2],
... i[1], i[0]).

Parameters

axes [None, tuple of ints, or n ints]

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s
j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns

out [ndarray] View of a, with axes suitably permuted.

See also:

ndarray.T Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

MaskedArray.T

1.7. Masked arrays 237



NumPy Reference, Release 1.15.1

Item selection and manipulation

For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D
array. Any other value for axis represents the dimension along which the operation should proceed.

MaskedArray.argmax([axis, fill_value, out]) Returns array of indices of the maximum values along the
given axis.

MaskedArray.argmin([axis, fill_value, out]) Return array of indices to the minimum values along the
given axis.

MaskedArray.argsort([axis, kind, order, . . . ]) Return an ndarray of indices that sort the array along the
specified axis.

MaskedArray.choose(choices[, out, mode]) Use an index array to construct a new array from a set of
choices.

MaskedArray.compress(condition[, axis, out]) Return a where condition is True.
MaskedArray.diagonal([offset, axis1, axis2]) Return specified diagonals.
MaskedArray.fill(value) Fill the array with a scalar value.
MaskedArray.item(*args) Copy an element of an array to a standard Python scalar

and return it.
MaskedArray.nonzero() Return the indices of unmasked elements that are not zero.
MaskedArray.put(indices, values[, mode]) Set storage-indexed locations to corresponding values.
MaskedArray.repeat(repeats[, axis]) Repeat elements of an array.
MaskedArray.searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in a to

maintain order.
MaskedArray.sort([axis, kind, order, . . . ]) Sort the array, in-place
MaskedArray.take(indices[, axis, out, mode])

MaskedArray.argmax(axis=None, fill_value=None, out=None)
Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had
the value fill_value.

Parameters

axis [{None, integer}] If None, the index is into the flattened array, otherwise along the specified
axis

fill_value [{var}, optional] Value used to fill in the masked values. If None, the output of
maximum_fill_value(self._data) is used instead.

out [{None, array}, optional] Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

Returns

index_array [{integer_array}]

Examples

>>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
array([1, 1, 1])
>>> a.argmax(1)
array([2, 2])

238 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

MaskedArray.argmin(axis=None, fill_value=None, out=None)
Return array of indices to the minimum values along the given axis.

Parameters

axis [{None, integer}] If None, the index is into the flattened array, otherwise along the specified
axis

fill_value [{var}, optional] Value used to fill in the masked values. If None, the output of
minimum_fill_value(self._data) is used instead.

out [{None, array}, optional] Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

Returns

ndarray or scalar If multi-dimension input, returns a new ndarray of indices to the minimum
values along the given axis. Otherwise, returns a scalar of index to the minimum values
along the given axis.

Examples

>>> x = np.ma.array(arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
>>> print(x)
[[-- --]
[2 3]]
>>> print(x.argmin(axis=0, fill_value=-1))
[0 0]
>>> print(x.argmin(axis=0, fill_value=9))
[1 1]

MaskedArray.argsort(axis=<no value>, kind=’quicksort’, order=None, endwith=True,
fill_value=None)

Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to
fill_value.

Parameters

axis [int, optional] Axis along which to sort. If None, the default, the flattened array is used.

Changed in version 1.13.0: Previously, the default was documented to be -1, but that was in
error. At some future date, the default will change to -1, as originally intended. Until then,
the axis should be given explicitly when arr.ndim > 1, to avoid a FutureWarning.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm.

order [list, optional] When a is an array with fields defined, this argument specifies which fields
to compare first, second, etc. Not all fields need be specified.

endwith [{True, False}, optional] Whether missing values (if any) should be treated as the
largest values (True) or the smallest values (False) When the array contains unmasked values
at the same extremes of the datatype, the ordering of these values and the masked values is
undefined.

fill_value [{var}, optional] Value used internally for the masked values. If fill_value is
not None, it supersedes endwith.

Returns

1.7. Masked arrays 239



NumPy Reference, Release 1.15.1

index_array [ndarray, int] Array of indices that sort a along the specified axis. In other words,
a[index_array] yields a sorted a.

See also:

MaskedArray.sort Describes sorting algorithms used.

lexsort Indirect stable sort with multiple keys.

ndarray.sort Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array(data = [3 2 --],

mask = [False False True],
fill_value = 999999)

>>> a.argsort()
array([1, 0, 2])

MaskedArray.choose(choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also:

numpy.choose equivalent function

MaskedArray.compress(condition, axis=None, out=None)
Return a where condition is True.

If condition is a MaskedArray , missing values are considered as False.

Parameters

condition [var] Boolean 1-d array selecting which entries to return. If len(condition) is less
than the size of a along the axis, then output is truncated to length of condition array.

axis [{None, int}, optional] Axis along which the operation must be performed.

out [{None, ndarray}, optional] Alternative output array in which to place the result. It must
have the same shape as the expected output but the type will be cast if necessary.

Returns

result [MaskedArray] A MaskedArray object.

Notes

Please note the difference with compressed ! The output of compress has a mask, the output of
compressed does not.

240 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> x.compress([1, 0, 1])
masked_array(data = [1 3],

mask = [False False],
fill_value=999999)

>>> x.compress([1, 0, 1], axis=1)
masked_array(data =
[[1 3]
[-- --]
[7 9]],

mask =
[[False False]
[ True True]
[False False]],

fill_value=999999)

MaskedArray.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in previous
NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also:

numpy.diagonal equivalent function

MaskedArray.fill(value)
Fill the array with a scalar value.

Parameters

value [scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([ 1., 1.])

MaskedArray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters

*args [Arguments (variable number and type)]

1.7. Masked arrays 241



NumPy Reference, Release 1.15.1

• none: in this case, the method only works for arrays with one element (a.size == 1),
which element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which
element to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns

z [Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless
fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This can
be useful for speeding up access to elements of the array and doing arithmetic on elements of the array using
Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

MaskedArray.nonzero()
Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that
dimension. The corresponding non-zero values can be obtained with:

a[a.nonzero()]

To group the indices by element, rather than dimension, use instead:

np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero element.

Parameters

None

242 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Returns

tuple_of_arrays [tuple] Indices of elements that are non-zero.

See also:

numpy.nonzero Function operating on ndarrays.

flatnonzero Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero Equivalent ndarray method.

count_nonzero Counts the number of non-zero elements in the input array.

Examples

>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array(data =
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]],

mask =
False,

fill_value=1e+20)
>>> x.nonzero()
(array([0, 1, 2]), array([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array(data =
[[1.0 0.0 0.0]
[0.0 -- 0.0]
[0.0 0.0 1.0]],

mask =
[[False False False]
[False True False]
[False False False]],

fill_value=1e+20)
>>> x.nonzero()
(array([0, 2]), array([0, 2]))

Indices can also be grouped by element.

>>> np.transpose(x.nonzero())
array([[0, 0],

[2, 2]])

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, ma.nonzero(a > 3) yields the indices of the
a where the condition is true.

>>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3

(continues on next page)

1.7. Masked arrays 243



NumPy Reference, Release 1.15.1

(continued from previous page)

masked_array(data =
[[False False False]
[ True True True]
[ True True True]],

mask =
False,

fill_value=999999)
>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

MaskedArray.put(indices, values, mode=’raise’)
Set storage-indexed locations to corresponding values.

Sets self._data.flat[n] = values[n] for each n in indices. If values is shorter than indices then it will repeat. If
values has some masked values, the initial mask is updated in consequence, else the corresponding values are
unmasked.

Parameters

indices [1-D array_like] Target indices, interpreted as integers.

values [array_like] Values to place in self._data copy at target indices.

mode [{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices will behave.
‘raise’ : raise an error. ‘wrap’ : wrap around. ‘clip’ : clip to the range.

Notes

values can be a scalar or length 1 array.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> x.put([0,4,8],[10,20,30])
>>> print(x)
[[10 -- 3]
[-- 20 --]
[7 -- 30]]

>>> x.put(4,999)
>>> print(x)
[[10 -- 3]
[-- 999 --]
[7 -- 30]]

244 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

MaskedArray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also:

numpy.repeat equivalent function

MaskedArray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted equivalent function

MaskedArray.sort(axis=-1, kind=’quicksort’, order=None, endwith=True, fill_value=None)
Sort the array, in-place

Parameters

a [array_like] Array to be sorted.

axis [int, optional] Axis along which to sort. If None, the array is flattened before sorting. The
default is -1, which sorts along the last axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. Default is
‘quicksort’.

order [list, optional] When a is a structured array, this argument specifies which fields to com-
pare first, second, and so on. This list does not need to include all of the fields.

endwith [{True, False}, optional] Whether missing values (if any) should be treated as the
largest values (True) or the smallest values (False) When the array contains unmasked values
at the same extremes of the datatype, the ordering of these values and the masked values is
undefined.

fill_value [{var}, optional] Value used internally for the masked values. If fill_value is
not None, it supersedes endwith.

Returns

sorted_array [ndarray] Array of the same type and shape as a.

See also:

ndarray.sort Method to sort an array in-place.

argsort Indirect sort.

lexsort Indirect stable sort on multiple keys.

searchsorted Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

1.7. Masked arrays 245



NumPy Reference, Release 1.15.1

Examples

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Default
>>> a.sort()
>>> print(a)
[1 3 5 -- --]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Put missing values in the front
>>> a.sort(endwith=False)
>>> print(a)
[-- -- 1 3 5]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # fill_value takes over endwith
>>> a.sort(endwith=False, fill_value=3)
>>> print(a)
[1 -- -- 3 5]

MaskedArray.take(indices, axis=None, out=None, mode=’raise’)

Pickling and copy

MaskedArray.copy([order]) Return a copy of the array.
MaskedArray.dump(file) Dump a pickle of the array to the specified file.
MaskedArray.dumps() Returns the pickle of the array as a string.

MaskedArray.copy(order=’C’)
Return a copy of the array.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-
order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means
match the layout of a as closely as possible. (Note that this function and numpy.copy are
very similar, but have different default values for their order= arguments.)

See also:

numpy.copy , numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

246 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

MaskedArray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters

file [str] A string naming the dump file.

MaskedArray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an array.

Parameters

None

Calculations

MaskedArray.all([axis, out, keepdims]) Returns True if all elements evaluate to True.
MaskedArray.anom([axis, dtype]) Compute the anomalies (deviations from the arithmetic

mean) along the given axis.
MaskedArray.any([axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.
MaskedArray.clip([min, max, out]) Return an array whose values are limited to [min, max].
MaskedArray.conj() Complex-conjugate all elements.
MaskedArray.conjugate() Return the complex conjugate, element-wise.
MaskedArray.cumprod([axis, dtype, out]) Return the cumulative product of the array elements over

the given axis.
MaskedArray.cumsum([axis, dtype, out]) Return the cumulative sum of the array elements over the

given axis.
MaskedArray.max([axis, out, fill_value, . . . ]) Return the maximum along a given axis.
MaskedArray.mean([axis, dtype, out, keepdims]) Returns the average of the array elements along given axis.
MaskedArray.min([axis, out, fill_value, . . . ]) Return the minimum along a given axis.
MaskedArray.prod([axis, dtype, out, keepdims]) Return the product of the array elements over the given

axis.
MaskedArray.product([axis, dtype, out, keepdims]) Return the product of the array elements over the given

axis.
MaskedArray.ptp([axis, out, fill_value, . . . ]) Return (maximum - minimum) along the given dimension

(i.e.
MaskedArray.round([decimals, out]) Return each element rounded to the given number of deci-

mals.
MaskedArray.std([axis, dtype, out, ddof, . . . ]) Returns the standard deviation of the array elements along

given axis.
MaskedArray.sum([axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.
MaskedArray.trace([offset, axis1, axis2, . . . ]) Return the sum along diagonals of the array.

Continued on next page

1.7. Masked arrays 247



NumPy Reference, Release 1.15.1

Table 58 – continued from previous page
MaskedArray.var([axis, dtype, out, ddof, . . . ]) Compute the variance along the specified axis.

MaskedArray.all(axis=None, out=None, keepdims=<no value>)
Returns True if all elements evaluate to True.

The output array is masked where all the values along the given axis are masked: if the output would have been
a scalar and that all the values are masked, then the output is masked.

Refer to numpy.all for full documentation.

See also:

ndarray.all corresponding function for ndarrays

numpy.all equivalent function

Examples

>>> np.ma.array([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True

MaskedArray.anom(axis=None, dtype=None)
Compute the anomalies (deviations from the arithmetic mean) along the given axis.

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed
along the given axis.

Parameters

axis [int, optional] Axis over which the anomalies are taken. The default is to use the mean of
the flattened array as reference.

dtype [dtype, optional]

Type to use in computing the variance. For arrays of integer type the default is
float32; for arrays of float types it is the same as the array type.

See also:

mean Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data = [-1. 0. 1.],

mask = False,
fill_value = 1e+20)

MaskedArray.any(axis=None, out=None, keepdims=<no value>)
Returns True if any of the elements of a evaluate to True.

Masked values are considered as False during computation.

248 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Refer to numpy.any for full documentation.

See also:

ndarray.any corresponding function for ndarrays

numpy.any equivalent function

MaskedArray.clip(min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

See also:

numpy.clip equivalent function

MaskedArray.conj()
Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate equivalent function

MaskedArray.conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate equivalent function

MaskedArray.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the array elements over the given axis.

Masked values are set to 1 internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Refer to numpy.cumprod for full documentation.

See also:

ndarray.cumprod corresponding function for ndarrays

numpy.cumprod equivalent function

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

MaskedArray.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the array elements over the given axis.

Masked values are set to 0 internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

1.7. Masked arrays 249



NumPy Reference, Release 1.15.1

Refer to numpy.cumsum for full documentation.

See also:

ndarray.cumsum corresponding function for ndarrays

numpy.cumsum equivalent function

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
>>> print(marr.cumsum())
[0 1 3 -- -- -- 9 16 24 33]

MaskedArray.max(axis=None, out=None, fill_value=None, keepdims=<no value>)
Return the maximum along a given axis.

Parameters

axis [{None, int}, optional] Axis along which to operate. By default, axis is None and the
flattened input is used.

out [array_like, optional] Alternative output array in which to place the result. Must be of the
same shape and buffer length as the expected output.

fill_value [{var}, optional] Value used to fill in the masked values. If None, use the output of
maximum_fill_value().

Returns

amax [array_like] New array holding the result. If out was specified, out is returned.

See also:

maximum_fill_value Returns the maximum filling value for a given datatype.

MaskedArray.mean(axis=None, dtype=None, out=None, keepdims=<no value>)
Returns the average of the array elements along given axis.

Masked entries are ignored, and result elements which are not finite will be masked.

Refer to numpy.mean for full documentation.

See also:

ndarray.mean corresponding function for ndarrays

numpy.mean Equivalent function

numpy.ma.average Weighted average.

250 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Examples

>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
masked_array(data = [1 2 --],

mask = [False False True],
fill_value = 999999)

>>> a.mean()
1.5

MaskedArray.min(axis=None, out=None, fill_value=None, keepdims=<no value>)
Return the minimum along a given axis.

Parameters

axis [{None, int}, optional] Axis along which to operate. By default, axis is None and the
flattened input is used.

out [array_like, optional] Alternative output array in which to place the result. Must be of the
same shape and buffer length as the expected output.

fill_value [{var}, optional] Value used to fill in the masked values. If None, use the output of
minimum_fill_value.

Returns

amin [array_like] New array holding the result. If out was specified, out is returned.

See also:

minimum_fill_value Returns the minimum filling value for a given datatype.

MaskedArray.prod(axis=None, dtype=None, out=None, keepdims=<no value>)
Return the product of the array elements over the given axis.

Masked elements are set to 1 internally for computation.

Refer to numpy.prod for full documentation.

See also:

ndarray.prod corresponding function for ndarrays

numpy.prod equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

MaskedArray.product(axis=None, dtype=None, out=None, keepdims=<no value>)
Return the product of the array elements over the given axis.

Masked elements are set to 1 internally for computation.

Refer to numpy.prod for full documentation.

See also:

ndarray.prod corresponding function for ndarrays

numpy.prod equivalent function

1.7. Masked arrays 251



NumPy Reference, Release 1.15.1

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

MaskedArray.ptp(axis=None, out=None, fill_value=None, keepdims=False)
Return (maximum - minimum) along the given dimension (i.e. peak-to-peak value).

Parameters

axis [{None, int}, optional] Axis along which to find the peaks. If None (default) the flattened
array is used.

out [{None, array_like}, optional] Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output but the type will be cast if
necessary.

fill_value [{var}, optional] Value used to fill in the masked values.

Returns

ptp [ndarray.] A new array holding the result, unless out was specified, in which case a refer-
ence to out is returned.

MaskedArray.round(decimals=0, out=None)
Return each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also:

ndarray.around corresponding function for ndarrays

numpy.around equivalent function

MaskedArray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>)
Returns the standard deviation of the array elements along given axis.

Masked entries are ignored.

Refer to numpy.std for full documentation.

See also:

ndarray.std corresponding function for ndarrays

numpy.std Equivalent function

MaskedArray.sum(axis=None, dtype=None, out=None, keepdims=<no value>)
Return the sum of the array elements over the given axis.

Masked elements are set to 0 internally.

Refer to numpy.sum for full documentation.

See also:

ndarray.sum corresponding function for ndarrays

numpy.sum equivalent function

252 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> print(x.sum())
25
>>> print(x.sum(axis=1))
[4 5 16]
>>> print(x.sum(axis=0))
[8 5 12]
>>> print(type(x.sum(axis=0, dtype=np.int64)[0]))
<type 'numpy.int64'>

MaskedArray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also:

numpy.trace equivalent function

MaskedArray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>)
Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed
for the flattened array by default, otherwise over the specified axis.

Parameters

a [array_like] Array containing numbers whose variance is desired. If a is not an array, a con-
version is attempted.

axis [None or int or tuple of ints, optional] Axis or axes along which the variance is computed.
The default is to compute the variance of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a variance is performed over multiple axes, instead of a single axis
or all the axes as before.

dtype [data-type, optional] Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

out [ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output, but the type is cast if necessary.

ddof [int, optional] “Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of elements. By default ddof is zero.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the var method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

1.7. Masked arrays 253



NumPy Reference, Release 1.15.1

Returns

variance [ndarray, see dtype parameter above] If out=None, returns a new array containing
the variance; otherwise, a reference to the output array is returned.

See also:

std, mean, nanmean, nanstd, nanvar

numpy.doc.ufuncs Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean(abs(x - x.
mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x). If, however, ddof is specified, the
divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator
of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a
higher-accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([ 1., 1.])
>>> np.var(a, axis=1)
array([ 0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.var(a)
0.20250003

Computing the variance in float64 is more accurate:

>>> np.var(a, dtype=np.float64)
0.20249999932944759
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.2025

Arithmetic and comparison operations

254 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Comparison operators:

MaskedArray.__lt__($self, value, /) Return self<value.
MaskedArray.__le__($self, value, /) Return self<=value.
MaskedArray.__gt__($self, value, /) Return self>value.
MaskedArray.__ge__($self, value, /) Return self>=value.
MaskedArray.__eq__(other) Check whether other equals self elementwise.
MaskedArray.__ne__(other) Check whether other does not equal self elementwise.

MaskedArray.__lt__($self, value, /)
Return self<value.

MaskedArray.__le__($self, value, /)
Return self<=value.

MaskedArray.__gt__($self, value, /)
Return self>value.

MaskedArray.__ge__($self, value, /)
Return self>=value.

MaskedArray.__eq__(other)
Check whether other equals self elementwise.

When either of the elements is masked, the result is masked as well, but the underlying boolean data are still set,
with self and other considered equal if both are masked, and unequal otherwise.

For structured arrays, all fields are combined, with masked values ignored. The result is masked if all fields
were masked, with self and other considered equal only if both were fully masked.

MaskedArray.__ne__(other)
Check whether other does not equal self elementwise.

When either of the elements is masked, the result is masked as well, but the underlying boolean data are still set,
with self and other considered equal if both are masked, and unequal otherwise.

For structured arrays, all fields are combined, with masked values ignored. The result is masked if all fields
were masked, with self and other considered equal only if both were fully masked.

Truth value of an array (bool):

MaskedArray.__nonzero__

Arithmetic:

MaskedArray.__abs__(self)
MaskedArray.__add__(other) Add self to other, and return a new masked array.
MaskedArray.__radd__(other) Add other to self, and return a new masked array.
MaskedArray.__sub__(other) Subtract other from self, and return a new masked array.
MaskedArray.__rsub__(other) Subtract self from other, and return a new masked array.
MaskedArray.__mul__(other) Multiply self by other, and return a new masked array.
MaskedArray.__rmul__(other) Multiply other by self, and return a new masked array.
MaskedArray.__div__(other) Divide other into self, and return a new masked array.

Continued on next page

1.7. Masked arrays 255



NumPy Reference, Release 1.15.1

Table 61 – continued from previous page
MaskedArray.__rdiv__
MaskedArray.__truediv__(other) Divide other into self, and return a new masked array.
MaskedArray.__rtruediv__(other) Divide self into other, and return a new masked array.
MaskedArray.__floordiv__(other) Divide other into self, and return a new masked array.
MaskedArray.__rfloordiv__(other) Divide self into other, and return a new masked array.
MaskedArray.__mod__($self, value, /) Return self%value.
MaskedArray.__rmod__($self, value, /) Return value%self.
MaskedArray.__divmod__($self, value, /) Return divmod(self, value).
MaskedArray.__rdivmod__($self, value, /) Return divmod(value, self).
MaskedArray.__pow__(other) Raise self to the power other, masking the potential

NaNs/Infs
MaskedArray.__rpow__(other) Raise other to the power self, masking the potential

NaNs/Infs
MaskedArray.__lshift__($self, value, /) Return self<<value.
MaskedArray.__rlshift__($self, value, /) Return value<<self.
MaskedArray.__rshift__($self, value, /) Return self>>value.
MaskedArray.__rrshift__($self, value, /) Return value>>self.
MaskedArray.__and__($self, value, /) Return self&value.
MaskedArray.__rand__($self, value, /) Return value&self.
MaskedArray.__or__($self, value, /) Return self|value.
MaskedArray.__ror__($self, value, /) Return value|self.
MaskedArray.__xor__($self, value, /) Return self^value.
MaskedArray.__rxor__($self, value, /) Return value^self.

MaskedArray.__abs__(self)

MaskedArray.__add__(other)
Add self to other, and return a new masked array.

MaskedArray.__radd__(other)
Add other to self, and return a new masked array.

MaskedArray.__sub__(other)
Subtract other from self, and return a new masked array.

MaskedArray.__rsub__(other)
Subtract self from other, and return a new masked array.

MaskedArray.__mul__(other)
Multiply self by other, and return a new masked array.

MaskedArray.__rmul__(other)
Multiply other by self, and return a new masked array.

MaskedArray.__div__(other)
Divide other into self, and return a new masked array.

MaskedArray.__truediv__(other)
Divide other into self, and return a new masked array.

MaskedArray.__rtruediv__(other)
Divide self into other, and return a new masked array.

MaskedArray.__floordiv__(other)
Divide other into self, and return a new masked array.

MaskedArray.__rfloordiv__(other)
Divide self into other, and return a new masked array.

256 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

MaskedArray.__mod__($self, value, /)
Return self%value.

MaskedArray.__rmod__($self, value, /)
Return value%self.

MaskedArray.__divmod__($self, value, /)
Return divmod(self, value).

MaskedArray.__rdivmod__($self, value, /)
Return divmod(value, self).

MaskedArray.__pow__(other)
Raise self to the power other, masking the potential NaNs/Infs

MaskedArray.__rpow__(other)
Raise other to the power self, masking the potential NaNs/Infs

MaskedArray.__lshift__($self, value, /)
Return self<<value.

MaskedArray.__rlshift__($self, value, /)
Return value<<self.

MaskedArray.__rshift__($self, value, /)
Return self>>value.

MaskedArray.__rrshift__($self, value, /)
Return value>>self.

MaskedArray.__and__($self, value, /)
Return self&value.

MaskedArray.__rand__($self, value, /)
Return value&self.

MaskedArray.__or__($self, value, /)
Return self|value.

MaskedArray.__ror__($self, value, /)
Return value|self.

MaskedArray.__xor__($self, value, /)
Return self^value.

MaskedArray.__rxor__($self, value, /)
Return value^self.

Arithmetic, in-place:

MaskedArray.__iadd__(other) Add other to self in-place.
MaskedArray.__isub__(other) Subtract other from self in-place.
MaskedArray.__imul__(other) Multiply self by other in-place.
MaskedArray.__idiv__(other) Divide self by other in-place.
MaskedArray.__itruediv__(other) True divide self by other in-place.
MaskedArray.__ifloordiv__(other) Floor divide self by other in-place.
MaskedArray.__imod__($self, value, /) Return self%=value.
MaskedArray.__ipow__(other) Raise self to the power other, in place.

Continued on next page

1.7. Masked arrays 257



NumPy Reference, Release 1.15.1

Table 62 – continued from previous page
MaskedArray.__ilshift__($self, value, /) Return self<<=value.
MaskedArray.__irshift__($self, value, /) Return self>>=value.
MaskedArray.__iand__($self, value, /) Return self&=value.
MaskedArray.__ior__($self, value, /) Return self|=value.
MaskedArray.__ixor__($self, value, /) Return self^=value.

MaskedArray.__iadd__(other)
Add other to self in-place.

MaskedArray.__isub__(other)
Subtract other from self in-place.

MaskedArray.__imul__(other)
Multiply self by other in-place.

MaskedArray.__idiv__(other)
Divide self by other in-place.

MaskedArray.__itruediv__(other)
True divide self by other in-place.

MaskedArray.__ifloordiv__(other)
Floor divide self by other in-place.

MaskedArray.__imod__($self, value, /)
Return self%=value.

MaskedArray.__ipow__(other)
Raise self to the power other, in place.

MaskedArray.__ilshift__($self, value, /)
Return self<<=value.

MaskedArray.__irshift__($self, value, /)
Return self>>=value.

MaskedArray.__iand__($self, value, /)
Return self&=value.

MaskedArray.__ior__($self, value, /)
Return self|=value.

MaskedArray.__ixor__($self, value, /)
Return self^=value.

Representation

MaskedArray.__repr__() Literal string representation.
MaskedArray.__str__() Return str(self).
MaskedArray.ids() Return the addresses of the data and mask areas.
MaskedArray.iscontiguous() Return a boolean indicating whether the data is contiguous.

MaskedArray.__repr__()
Literal string representation.

MaskedArray.__str__()
Return str(self).

258 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

MaskedArray.ids()
Return the addresses of the data and mask areas.

Parameters

None

Examples

>>> x = np.ma.array([1, 2, 3], mask=[0, 1, 1])
>>> x.ids()
(166670640, 166659832)

If the array has no mask, the address of nomask is returned. This address is typically not close to the data in
memory:

>>> x = np.ma.array([1, 2, 3])
>>> x.ids()
(166691080, 3083169284L)

MaskedArray.iscontiguous()
Return a boolean indicating whether the data is contiguous.

Parameters

None

Examples

>>> x = np.ma.array([1, 2, 3])
>>> x.iscontiguous()
True

iscontiguous returns one of the flags of the masked array:

>>> x.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : True
OWNDATA : False
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

Special methods

For standard library functions:

MaskedArray.__copy__() Used if copy.copy is called on an array.
MaskedArray.__deepcopy__(memo, /) Used if copy.deepcopy is called on an array.
MaskedArray.__getstate__() Return the internal state of the masked array, for pickling

purposes.
MaskedArray.__reduce__() Return a 3-tuple for pickling a MaskedArray.

Continued on next page

1.7. Masked arrays 259

https://docs.python.org/dev/library/copy.html#copy.copy
https://docs.python.org/dev/library/copy.html#copy.deepcopy


NumPy Reference, Release 1.15.1

Table 64 – continued from previous page
MaskedArray.__setstate__(state) Restore the internal state of the masked array, for pickling

purposes.

MaskedArray.__copy__()
Used if copy.copy is called on an array. Returns a copy of the array.

Equivalent to a.copy(order='K').

MaskedArray.__deepcopy__(memo, /)→ Deep copy of array.
Used if copy.deepcopy is called on an array.

MaskedArray.__getstate__()
Return the internal state of the masked array, for pickling purposes.

MaskedArray.__reduce__()
Return a 3-tuple for pickling a MaskedArray.

MaskedArray.__setstate__(state)
Restore the internal state of the masked array, for pickling purposes. state is typically the output of the
__getstate__ output, and is a 5-tuple:

• class name

• a tuple giving the shape of the data

• a typecode for the data

• a binary string for the data

• a binary string for the mask.

Basic customization:

MaskedArray.__new__([data, mask, dtype, . . . ]) Create a new masked array from scratch.
MaskedArray.__array__(|dtype) Returns either a new reference to self if dtype is not given

or a new array of provided data type if dtype is different
from the current dtype of the array.

MaskedArray.__array_wrap__(obj[, context]) Special hook for ufuncs.

static MaskedArray.__new__(data=None, mask=False, dtype=None, copy=False, subok=True,
ndmin=0, fill_value=None, keep_mask=True, hard_mask=None,
shrink=True, order=None, **options)

Create a new masked array from scratch.

Notes

A masked array can also be created by taking a .view(MaskedArray).

MaskedArray.__array__(|dtype)→ reference if type unchanged, copy otherwise.
Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is
different from the current dtype of the array.

MaskedArray.__array_wrap__(obj, context=None)
Special hook for ufuncs.

Wraps the numpy array and sets the mask according to context.

Container customization: (see Indexing)

260 Chapter 1. Array objects

https://docs.python.org/dev/library/copy.html#copy.copy
https://docs.python.org/dev/library/copy.html#copy.deepcopy


NumPy Reference, Release 1.15.1

MaskedArray.__len__($self, /) Return len(self).
MaskedArray.__getitem__(indx) x.__getitem__(y) <==> x[y]
MaskedArray.__setitem__(indx, value) x.__setitem__(i, y) <==> x[i]=y
MaskedArray.__delitem__($self, key, /) Delete self[key].
MaskedArray.__contains__($self, key, /) Return key in self.

MaskedArray.__len__($self, /)
Return len(self).

MaskedArray.__getitem__(indx)
x.__getitem__(y) <==> x[y]

Return the item described by i, as a masked array.

MaskedArray.__setitem__(indx, value)
x.__setitem__(i, y) <==> x[i]=y

Set item described by index. If value is masked, masks those locations.

MaskedArray.__delitem__($self, key, /)
Delete self[key].

MaskedArray.__contains__($self, key, /)
Return key in self.

Specific methods

Handling the mask

The following methods can be used to access information about the mask or to manipulate the mask.

MaskedArray.__setmask__(mask[, copy]) Set the mask.
MaskedArray.harden_mask() Force the mask to hard.
MaskedArray.soften_mask() Force the mask to soft.
MaskedArray.unshare_mask() Copy the mask and set the sharedmask flag to False.
MaskedArray.shrink_mask() Reduce a mask to nomask when possible.

MaskedArray.__setmask__(mask, copy=False)
Set the mask.

MaskedArray.harden_mask()
Force the mask to hard.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. harden_mask
sets hardmask to True.

See also:

hardmask

MaskedArray.soften_mask()
Force the mask to soft.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. soften_mask
sets hardmask to False.

See also:

1.7. Masked arrays 261



NumPy Reference, Release 1.15.1

hardmask

MaskedArray.unshare_mask()
Copy the mask and set the sharedmask flag to False.

Whether the mask is shared between masked arrays can be seen from the sharedmask property.
unshare_mask ensures the mask is not shared. A copy of the mask is only made if it was shared.

See also:

sharedmask

MaskedArray.shrink_mask()
Reduce a mask to nomask when possible.

Parameters

None

Returns

None

Examples

>>> x = np.ma.array([[1,2 ], [3, 4]], mask=[0]*4)
>>> x.mask
array([[False, False],

[False, False]])
>>> x.shrink_mask()
>>> x.mask
False

Handling the fill_value

MaskedArray.get_fill_value() Return the filling value of the masked array.
MaskedArray.set_fill_value([value]) Set the filling value of the masked array.

MaskedArray.get_fill_value()
Return the filling value of the masked array.

Returns

fill_value [scalar] The filling value.

Examples

>>> for dt in [np.int32, np.int64, np.float64, np.complex128]:
... np.ma.array([0, 1], dtype=dt).get_fill_value()
...
999999
999999
1e+20
(1e+20+0j)

262 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> x = np.ma.array([0, 1.], fill_value=-np.inf)
>>> x.get_fill_value()
-inf

MaskedArray.set_fill_value(value=None)
Set the filling value of the masked array.

Parameters

value [scalar, optional] The new filling value. Default is None, in which case a default based
on the data type is used.

See also:

ma.set_fill_value Equivalent function.

Examples

>>> x = np.ma.array([0, 1.], fill_value=-np.inf)
>>> x.fill_value
-inf
>>> x.set_fill_value(np.pi)
>>> x.fill_value
3.1415926535897931

Reset to default:

>>> x.set_fill_value()
>>> x.fill_value
1e+20

Counting the missing elements

MaskedArray.count([axis, keepdims]) Count the non-masked elements of the array along the
given axis.

MaskedArray.count(axis=None, keepdims=<no value>)
Count the non-masked elements of the array along the given axis.

Parameters

axis [None or int or tuple of ints, optional] Axis or axes along which the count is performed.
The default (axis = None) performs the count over all the dimensions of the input array. axis
may be negative, in which case it counts from the last to the first axis.

New in version 1.10.0.

If this is a tuple of ints, the count is performed on multiple axes, instead of a single axis or
all the axes as before.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
array.

Returns

1.7. Masked arrays 263



NumPy Reference, Release 1.15.1

result [ndarray or scalar] An array with the same shape as the input array, with the specified
axis removed. If the array is a 0-d array, or if axis is None, a scalar is returned.

See also:

count_masked Count masked elements in array or along a given axis.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(6).reshape((2, 3))
>>> a[1, :] = ma.masked
>>> a
masked_array(data =
[[0 1 2]
[-- -- --]],

mask =
[[False False False]
[ True True True]],

fill_value = 999999)
>>> a.count()
3

When the axis keyword is specified an array of appropriate size is returned.

>>> a.count(axis=0)
array([1, 1, 1])
>>> a.count(axis=1)
array([3, 0])

1.7.7 Masked array operations

Constants

ma.MaskType alias of numpy.bool_

numpy.ma.MaskType
alias of numpy.bool_

Creation

From existing data

ma.masked_array alias of numpy.ma.core.MaskedArray
ma.array(data[, dtype, copy, order, mask, . . . ]) An array class with possibly masked values.
ma.copy(self, *args, **params) a.copy(order=) Return a copy of the array.
ma.frombuffer(buffer[, dtype, count, offset]) Interpret a buffer as a 1-dimensional array.
ma.fromfunction(function, shape, **kwargs) Construct an array by executing a function over each coor-

dinate.
Continued on next page

264 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Table 71 – continued from previous page
ma.MaskedArray.copy([order]) Return a copy of the array.

numpy.ma.copy(self, *args, **params) a.copy(order=’C’) = <numpy.ma.core._frommethod
object>

Return a copy of the array.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-
order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means
match the layout of a as closely as possible. (Note that this function and numpy.copy are
very similar, but have different default values for their order= arguments.)

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

numpy.ma.frombuffer(buffer, dtype=float, count=-1, offset=0) = <numpy.ma.core.
_convert2ma object>

Interpret a buffer as a 1-dimensional array.

Parameters

buffer [buffer_like] An object that exposes the buffer interface.

dtype [data-type, optional] Data-type of the returned array; default: float.

count [int, optional] Number of items to read. -1 means all data in the buffer.

offset [int, optional] Start reading the buffer from this offset (in bytes); default: 0.

Notes

If the buffer has data that is not in machine byte-order, this should be specified as part of the data-type, e.g.:

>>> dt = np.dtype(int)
>>> dt = dt.newbyteorder('>')
>>> np.frombuffer(buf, dtype=dt)

1.7. Masked arrays 265



NumPy Reference, Release 1.15.1

The data of the resulting array will not be byteswapped, but will be interpreted correctly.

Examples

>>> s = 'hello world'
>>> np.frombuffer(s, dtype='S1', count=5, offset=6)
array(['w', 'o', 'r', 'l', 'd'],

dtype='|S1')

>>> np.frombuffer(b'\x01\x02', dtype=np.uint8)
array([1, 2], dtype=uint8)
>>> np.frombuffer(b'\x01\x02\x03\x04\x05', dtype=np.uint8, count=3)
array([1, 2, 3], dtype=uint8)

numpy.ma.fromfunction(function, shape, **kwargs) = <numpy.ma.core._convert2ma
object>

Construct an array by executing a function over each coordinate.

The resulting array therefore has a value fn(x, y, z) at coordinate (x, y, z).

Parameters

function [callable] The function is called with N parameters, where N is the rank of shape.
Each parameter represents the coordinates of the array varying along a specific axis. For ex-
ample, if shape were (2, 2), then the parameters would be array([[0, 0], [1,
1]]) and array([[0, 1], [0, 1]])

shape [(N,) tuple of ints] Shape of the output array, which also determines the shape of the
coordinate arrays passed to function.

dtype [data-type, optional] Data-type of the coordinate arrays passed to function. By default,
dtype is float.

Returns

fromfunction [any] The result of the call to function is passed back directly. Therefore the
shape of fromfunction is completely determined by function. If function returns a scalar
value, the shape of fromfunction would match the shape parameter.

See also:

indices, meshgrid

Notes

Keywords other than dtype are passed to function.

Examples

>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array([[ True, False, False],

[False, True, False],
[False, False, True]])

266 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array([[0, 1, 2],

[1, 2, 3],
[2, 3, 4]])

Ones and zeros

ma.empty(shape[, dtype, order]) Return a new array of given shape and type, without initial-
izing entries.

ma.empty_like(prototype[, dtype, order, subok]) Return a new array with the same shape and type as a given
array.

ma.masked_all(shape[, dtype]) Empty masked array with all elements masked.
ma.masked_all_like(arr) Empty masked array with the properties of an existing ar-

ray.
ma.ones(shape[, dtype, order]) Return a new array of given shape and type, filled with

ones.
ma.zeros(shape[, dtype, order]) Return a new array of given shape and type, filled with ze-

ros.

numpy.ma.empty(shape, dtype=float, order=’C’) = <numpy.ma.core._convert2ma object>
Return a new array of given shape and type, without initializing entries.

Parameters

shape [int or tuple of int] Shape of the empty array, e.g., (2, 3) or 2.

dtype [data-type, optional] Desired output data-type for the array, e.g, numpy.int8. Default
is numpy.float64.

order [{‘C’, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

Returns

out [ndarray] Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Object
arrays will be initialized to None.

See also:

empty_like Return an empty array with shape and type of input.

ones Return a new array setting values to one.

zeros Return a new array setting values to zero.

full Return a new array of given shape filled with value.

Notes

empty , unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the
other hand, it requires the user to manually set all the values in the array, and should be used with caution.

1.7. Masked arrays 267



NumPy Reference, Release 1.15.1

Examples

>>> np.empty([2, 2])
array([[ -9.74499359e+001, 6.69583040e-309],

[ 2.13182611e-314, 3.06959433e-309]]) #random

>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],

[ 496041986, 19249760]]) #random

numpy.ma.empty_like(prototype, dtype=None, order=’K’, subok=True) = <numpy.ma.core.
_convert2ma object>

Return a new array with the same shape and type as a given array.

Parameters

prototype [array_like] The shape and data-type of prototype define these same attributes of the
returned array.

dtype [data-type, optional] Overrides the data type of the result.

New in version 1.6.0.

order [{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-
order, ‘F’ means F-order, ‘A’ means ‘F’ if prototype is Fortran contiguous, ‘C’ otherwise.
‘K’ means match the layout of prototype as closely as possible.

New in version 1.6.0.

subok [bool, optional.] If True, then the newly created array will use the sub-class type of ‘a’,
otherwise it will be a base-class array. Defaults to True.

Returns

out [ndarray] Array of uninitialized (arbitrary) data with the same shape and type as prototype.

See also:

ones_like Return an array of ones with shape and type of input.

zeros_like Return an array of zeros with shape and type of input.

full_like Return a new array with shape of input filled with value.

empty Return a new uninitialized array.

Notes

This function does not initialize the returned array; to do that use zeros_like or ones_like instead. It may be
marginally faster than the functions that do set the array values.

Examples

>>> a = ([1,2,3], [4,5,6]) # a is array-like
>>> np.empty_like(a)
array([[-1073741821, -1073741821, 3], #random

[ 0, 0, -1073741821]])
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]])

(continues on next page)

268 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> np.empty_like(a)
array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random

[ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])

numpy.ma.masked_all(shape, dtype=<class ’float’>)
Empty masked array with all elements masked.

Return an empty masked array of the given shape and dtype, where all the data are masked.

Parameters

shape [tuple] Shape of the required MaskedArray.

dtype [dtype, optional] Data type of the output.

Returns

a [MaskedArray] A masked array with all data masked.

See also:

masked_all_like Empty masked array modelled on an existing array.

Examples

>>> import numpy.ma as ma
>>> ma.masked_all((3, 3))
masked_array(data =
[[-- -- --]
[-- -- --]
[-- -- --]],

mask =
[[ True True True]
[ True True True]
[ True True True]],

fill_value=1e+20)

The dtype parameter defines the underlying data type.

>>> a = ma.masked_all((3, 3))
>>> a.dtype
dtype('float64')
>>> a = ma.masked_all((3, 3), dtype=np.int32)
>>> a.dtype
dtype('int32')

numpy.ma.masked_all_like(arr)
Empty masked array with the properties of an existing array.

Return an empty masked array of the same shape and dtype as the array arr, where all the data are masked.

Parameters

arr [ndarray] An array describing the shape and dtype of the required MaskedArray.

Returns

a [MaskedArray] A masked array with all data masked.

Raises

1.7. Masked arrays 269



NumPy Reference, Release 1.15.1

AttributeError If arr doesn’t have a shape attribute (i.e. not an ndarray)

See also:

masked_all Empty masked array with all elements masked.

Examples

>>> import numpy.ma as ma
>>> arr = np.zeros((2, 3), dtype=np.float32)
>>> arr
array([[ 0., 0., 0.],

[ 0., 0., 0.]], dtype=float32)
>>> ma.masked_all_like(arr)
masked_array(data =
[[-- -- --]
[-- -- --]],

mask =
[[ True True True]
[ True True True]],

fill_value=1e+20)

The dtype of the masked array matches the dtype of arr.

>>> arr.dtype
dtype('float32')
>>> ma.masked_all_like(arr).dtype
dtype('float32')

numpy.ma.ones(shape, dtype=None, order=’C’) = <numpy.ma.core._convert2ma object>
Return a new array of given shape and type, filled with ones.

Parameters

shape [int or sequence of ints] Shape of the new array, e.g., (2, 3) or 2.

dtype [data-type, optional] The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order [{‘C’, ‘F’}, optional, default: C] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

Returns

out [ndarray] Array of ones with the given shape, dtype, and order.

See also:

ones_like Return an array of ones with shape and type of input.

empty Return a new uninitialized array.

zeros Return a new array setting values to zero.

full Return a new array of given shape filled with value.

270 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Examples

>>> np.ones(5)
array([ 1., 1., 1., 1., 1.])

>>> np.ones((5,), dtype=int)
array([1, 1, 1, 1, 1])

>>> np.ones((2, 1))
array([[ 1.],

[ 1.]])

>>> s = (2,2)
>>> np.ones(s)
array([[ 1., 1.],

[ 1., 1.]])

numpy.ma.zeros(shape, dtype=float, order=’C’) = <numpy.ma.core._convert2ma object>
Return a new array of given shape and type, filled with zeros.

Parameters

shape [int or tuple of ints] Shape of the new array, e.g., (2, 3) or 2.

dtype [data-type, optional] The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order [{‘C’, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

Returns

out [ndarray] Array of zeros with the given shape, dtype, and order.

See also:

zeros_like Return an array of zeros with shape and type of input.

empty Return a new uninitialized array.

ones Return a new array setting values to one.

full Return a new array of given shape filled with value.

Examples

>>> np.zeros(5)
array([ 0., 0., 0., 0., 0.])

>>> np.zeros((5,), dtype=int)
array([0, 0, 0, 0, 0])

>>> np.zeros((2, 1))
array([[ 0.],

[ 0.]])

1.7. Masked arrays 271



NumPy Reference, Release 1.15.1

>>> s = (2,2)
>>> np.zeros(s)
array([[ 0., 0.],

[ 0., 0.]])

>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
array([(0, 0), (0, 0)],

dtype=[('x', '<i4'), ('y', '<i4')])

Inspecting the array

ma.all(self[, axis, out, keepdims]) Returns True if all elements evaluate to True.
ma.any(self[, axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.
ma.count(self[, axis, keepdims]) Count the non-masked elements of the array along the

given axis.
ma.count_masked(arr[, axis]) Count the number of masked elements along the given axis.
ma.getmask(a) Return the mask of a masked array, or nomask.
ma.getmaskarray(arr) Return the mask of a masked array, or full boolean array of

False.
ma.getdata(a[, subok]) Return the data of a masked array as an ndarray.
ma.nonzero(self) Return the indices of unmasked elements that are not zero.
ma.shape(obj) Return the shape of an array.
ma.size(obj[, axis]) Return the number of elements along a given axis.
ma.is_masked(x) Determine whether input has masked values.
ma.is_mask(m) Return True if m is a valid, standard mask.
ma.MaskedArray.data Return the current data, as a view of the original underlying

data.
ma.MaskedArray.mask Mask
ma.MaskedArray.recordmask Return the mask of the records.
ma.MaskedArray.all([axis, out, keepdims]) Returns True if all elements evaluate to True.
ma.MaskedArray.any([axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.
ma.MaskedArray.count([axis, keepdims]) Count the non-masked elements of the array along the

given axis.
ma.MaskedArray.nonzero() Return the indices of unmasked elements that are not zero.
ma.shape(obj) Return the shape of an array.
ma.size(obj[, axis]) Return the number of elements along a given axis.

numpy.ma.all(self, axis=None, out=None, keepdims=<no value>) = <numpy.ma.core.
_frommethod object>

Returns True if all elements evaluate to True.

The output array is masked where all the values along the given axis are masked: if the output would have been
a scalar and that all the values are masked, then the output is masked.

Refer to numpy.all for full documentation.

See also:

ndarray.all corresponding function for ndarrays

numpy.all equivalent function

272 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Examples

>>> np.ma.array([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True

numpy.ma.any(self, axis=None, out=None, keepdims=<no value>) = <numpy.ma.core.
_frommethod object>

Returns True if any of the elements of a evaluate to True.

Masked values are considered as False during computation.

Refer to numpy.any for full documentation.

See also:

ndarray.any corresponding function for ndarrays

numpy.any equivalent function

numpy.ma.count(self, axis=None, keepdims=<no value>) = <numpy.ma.core._frommethod
object>

Count the non-masked elements of the array along the given axis.

Parameters

axis [None or int or tuple of ints, optional] Axis or axes along which the count is performed.
The default (axis = None) performs the count over all the dimensions of the input array. axis
may be negative, in which case it counts from the last to the first axis.

New in version 1.10.0.

If this is a tuple of ints, the count is performed on multiple axes, instead of a single axis or
all the axes as before.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
array.

Returns

result [ndarray or scalar] An array with the same shape as the input array, with the specified
axis removed. If the array is a 0-d array, or if axis is None, a scalar is returned.

See also:

count_masked Count masked elements in array or along a given axis.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(6).reshape((2, 3))
>>> a[1, :] = ma.masked
>>> a
masked_array(data =
[[0 1 2]
[-- -- --]],

(continues on next page)

1.7. Masked arrays 273



NumPy Reference, Release 1.15.1

(continued from previous page)

mask =
[[False False False]
[ True True True]],

fill_value = 999999)
>>> a.count()
3

When the axis keyword is specified an array of appropriate size is returned.

>>> a.count(axis=0)
array([1, 1, 1])
>>> a.count(axis=1)
array([3, 0])

numpy.ma.count_masked(arr, axis=None)
Count the number of masked elements along the given axis.

Parameters

arr [array_like] An array with (possibly) masked elements.

axis [int, optional] Axis along which to count. If None (default), a flattened version of the array
is used.

Returns

count [int, ndarray] The total number of masked elements (axis=None) or the number of
masked elements along each slice of the given axis.

See also:

MaskedArray.count Count non-masked elements.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(9).reshape((3,3))
>>> a = ma.array(a)
>>> a[1, 0] = ma.masked
>>> a[1, 2] = ma.masked
>>> a[2, 1] = ma.masked
>>> a
masked_array(data =
[[0 1 2]
[-- 4 --]
[6 -- 8]],

mask =
[[False False False]
[ True False True]
[False True False]],

fill_value=999999)
>>> ma.count_masked(a)
3

When the axis keyword is used an array is returned.

274 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> ma.count_masked(a, axis=0)
array([1, 1, 1])
>>> ma.count_masked(a, axis=1)
array([0, 2, 1])

numpy.ma.getmask(a)
Return the mask of a masked array, or nomask.

Return the mask of a as an ndarray if a is a MaskedArray and the mask is not nomask, else return nomask.
To guarantee a full array of booleans of the same shape as a, use getmaskarray .

Parameters

a [array_like] Input MaskedArray for which the mask is required.

See also:

getdata Return the data of a masked array as an ndarray.

getmaskarray Return the mask of a masked array, or full array of False.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
[[1 --]
[3 4]],

mask =
[[False True]
[False False]],

fill_value=999999)
>>> ma.getmask(a)
array([[False, True],

[False, False]])

Equivalently use the MaskedArray mask attribute.

>>> a.mask
array([[False, True],

[False, False]])

Result when mask == nomask

>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
masked_array(data =
[[1 2]
[3 4]],

mask =
False,

fill_value=999999)
>>> ma.nomask
False
>>> ma.getmask(b) == ma.nomask
True

(continues on next page)

1.7. Masked arrays 275



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> b.mask == ma.nomask
True

numpy.ma.getmaskarray(arr)
Return the mask of a masked array, or full boolean array of False.

Return the mask of arr as an ndarray if arr is a MaskedArray and the mask is not nomask, else return a full
boolean array of False of the same shape as arr.

Parameters

arr [array_like] Input MaskedArray for which the mask is required.

See also:

getmask Return the mask of a masked array, or nomask.

getdata Return the data of a masked array as an ndarray.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
[[1 --]
[3 4]],

mask =
[[False True]
[False False]],

fill_value=999999)
>>> ma.getmaskarray(a)
array([[False, True],

[False, False]])

Result when mask == nomask

>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
masked_array(data =
[[1 2]
[3 4]],

mask =
False,

fill_value=999999)
>>> >ma.getmaskarray(b)
array([[False, False],

[False, False]])

numpy.ma.getdata(a, subok=True)
Return the data of a masked array as an ndarray.

Return the data of a (if any) as an ndarray if a is a MaskedArray, else return a as a ndarray or subclass
(depending on subok) if not.

Parameters

a [array_like] Input MaskedArray, alternatively a ndarray or a subclass thereof.

276 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

subok [bool] Whether to force the output to be a pure ndarray (False) or to return a subclass of
ndarray if appropriate (True, default).

See also:

getmask Return the mask of a masked array, or nomask.

getmaskarray Return the mask of a masked array, or full array of False.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
[[1 --]
[3 4]],

mask =
[[False True]
[False False]],

fill_value=999999)
>>> ma.getdata(a)
array([[1, 2],

[3, 4]])

Equivalently use the MaskedArray data attribute.

>>> a.data
array([[1, 2],

[3, 4]])

numpy.ma.nonzero(self) = <numpy.ma.core._frommethod object>
Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that
dimension. The corresponding non-zero values can be obtained with:

a[a.nonzero()]

To group the indices by element, rather than dimension, use instead:

np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero element.

Parameters

None

Returns

tuple_of_arrays [tuple] Indices of elements that are non-zero.

See also:

numpy.nonzero Function operating on ndarrays.

flatnonzero Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero Equivalent ndarray method.

1.7. Masked arrays 277



NumPy Reference, Release 1.15.1

count_nonzero Counts the number of non-zero elements in the input array.

Examples

>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array(data =
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]],

mask =
False,

fill_value=1e+20)
>>> x.nonzero()
(array([0, 1, 2]), array([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array(data =
[[1.0 0.0 0.0]
[0.0 -- 0.0]
[0.0 0.0 1.0]],

mask =
[[False False False]
[False True False]
[False False False]],

fill_value=1e+20)
>>> x.nonzero()
(array([0, 2]), array([0, 2]))

Indices can also be grouped by element.

>>> np.transpose(x.nonzero())
array([[0, 0],

[2, 2]])

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, ma.nonzero(a > 3) yields the indices of the
a where the condition is true.

>>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
masked_array(data =
[[False False False]
[ True True True]
[ True True True]],

mask =
False,

fill_value=999999)
>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the condition array can also be called.

278 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

numpy.ma.shape(obj)
Return the shape of an array.

Parameters

a [array_like] Input array.

Returns

shape [tuple of ints] The elements of the shape tuple give the lengths of the corresponding array
dimensions.

See also:

alen

ndarray.shape Equivalent array method.

Examples

>>> np.shape(np.eye(3))
(3, 3)
>>> np.shape([[1, 2]])
(1, 2)
>>> np.shape([0])
(1,)
>>> np.shape(0)
()

>>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
>>> np.shape(a)
(2,)
>>> a.shape
(2,)

numpy.ma.size(obj, axis=None)
Return the number of elements along a given axis.

Parameters

a [array_like] Input data.

axis [int, optional] Axis along which the elements are counted. By default, give the total number
of elements.

Returns

element_count [int] Number of elements along the specified axis.

See also:

shape dimensions of array

ndarray.shape dimensions of array

ndarray.size number of elements in array

1.7. Masked arrays 279



NumPy Reference, Release 1.15.1

Examples

>>> a = np.array([[1,2,3],[4,5,6]])
>>> np.size(a)
6
>>> np.size(a,1)
3
>>> np.size(a,0)
2

numpy.ma.is_masked(x)
Determine whether input has masked values.

Accepts any object as input, but always returns False unless the input is a MaskedArray containing masked
values.

Parameters

x [array_like] Array to check for masked values.

Returns

result [bool] True if x is a MaskedArray with masked values, False otherwise.

Examples

>>> import numpy.ma as ma
>>> x = ma.masked_equal([0, 1, 0, 2, 3], 0)
>>> x
masked_array(data = [-- 1 -- 2 3],

mask = [ True False True False False],
fill_value=999999)

>>> ma.is_masked(x)
True
>>> x = ma.masked_equal([0, 1, 0, 2, 3], 42)
>>> x
masked_array(data = [0 1 0 2 3],

mask = False,
fill_value=999999)

>>> ma.is_masked(x)
False

Always returns False if x isn’t a MaskedArray.

>>> x = [False, True, False]
>>> ma.is_masked(x)
False
>>> x = 'a string'
>>> ma.is_masked(x)
False

numpy.ma.is_mask(m)
Return True if m is a valid, standard mask.

This function does not check the contents of the input, only that the type is MaskType. In particular, this function
returns False if the mask has a flexible dtype.

Parameters

280 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

m [array_like] Array to test.

Returns

result [bool] True if m.dtype.type is MaskType, False otherwise.

See also:

isMaskedArray Test whether input is an instance of MaskedArray.

Examples

>>> import numpy.ma as ma
>>> m = ma.masked_equal([0, 1, 0, 2, 3], 0)
>>> m
masked_array(data = [-- 1 -- 2 3],

mask = [ True False True False False],
fill_value=999999)

>>> ma.is_mask(m)
False
>>> ma.is_mask(m.mask)
True

Input must be an ndarray (or have similar attributes) for it to be considered a valid mask.

>>> m = [False, True, False]
>>> ma.is_mask(m)
False
>>> m = np.array([False, True, False])
>>> m
array([False, True, False])
>>> ma.is_mask(m)
True

Arrays with complex dtypes don’t return True.

>>> dtype = np.dtype({'names':['monty', 'pithon'],
'formats':[bool, bool]})

>>> dtype
dtype([('monty', '|b1'), ('pithon', '|b1')])
>>> m = np.array([(True, False), (False, True), (True, False)],

dtype=dtype)
>>> m
array([(True, False), (False, True), (True, False)],

dtype=[('monty', '|b1'), ('pithon', '|b1')])
>>> ma.is_mask(m)
False

MaskedArray.data
Return the current data, as a view of the original underlying data.

MaskedArray.mask
Mask

MaskedArray.recordmask
Return the mask of the records.

A record is masked when all the fields are masked.

1.7. Masked arrays 281



NumPy Reference, Release 1.15.1

Manipulating a MaskedArray

Changing the shape

ma.ravel(self[, order]) Returns a 1D version of self, as a view.
ma.reshape(a, new_shape[, order]) Returns an array containing the same data with a new

shape.
ma.resize(x, new_shape) Return a new masked array with the specified size and

shape.
ma.MaskedArray.flatten([order]) Return a copy of the array collapsed into one dimension.
ma.MaskedArray.ravel([order]) Returns a 1D version of self, as a view.
ma.MaskedArray.reshape(*s, **kwargs) Give a new shape to the array without changing its data.
ma.MaskedArray.resize(newshape[, refcheck, . . . ])

numpy.ma.ravel(self, order=’C’) = <numpy.ma.core._frommethod object>
Returns a 1D version of self, as a view.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] The elements of a are read using this index order. ‘C’
means to index the elements in C-like order, with the last axis index changing fastest, back
to the first axis index changing slowest. ‘F’ means to index the elements in Fortran-like
index order, with the first index changing fastest, and the last index changing slowest. Note
that the ‘C’ and ‘F’ options take no account of the memory layout of the underlying array,
and only refer to the order of axis indexing. ‘A’ means to read the elements in Fortran-like
index order if m is Fortran contiguous in memory, C-like order otherwise. ‘K’ means to read
the elements in the order they occur in memory, except for reversing the data when strides
are negative. By default, ‘C’ index order is used.

Returns

MaskedArray Output view is of shape (self.size,) (or (np.ma.product(self.
shape),)).

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> print(x.ravel())
[1 -- 3 -- 5 -- 7 -- 9]

numpy.ma.reshape(a, new_shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to MaskedArray.reshape for full documentation.

See also:

282 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

MaskedArray.reshape equivalent function

numpy.ma.resize(x, new_shape)
Return a new masked array with the specified size and shape.

This is the masked equivalent of the numpy.resize function. The new array is filled with repeated copies of
x (in the order that the data are stored in memory). If x is masked, the new array will be masked, and the new
mask will be a repetition of the old one.

See also:

numpy.resize Equivalent function in the top level NumPy module.

Examples

>>> import numpy.ma as ma
>>> a = ma.array([[1, 2] ,[3, 4]])
>>> a[0, 1] = ma.masked
>>> a
masked_array(data =
[[1 --]
[3 4]],

mask =
[[False True]
[False False]],

fill_value = 999999)
>>> np.resize(a, (3, 3))
array([[1, 2, 3],

[4, 1, 2],
[3, 4, 1]])

>>> ma.resize(a, (3, 3))
masked_array(data =
[[1 -- 3]
[4 1 --]
[3 4 1]],

mask =
[[False True False]
[False False True]
[False False False]],

fill_value = 999999)

A MaskedArray is always returned, regardless of the input type.

>>> a = np.array([[1, 2] ,[3, 4]])
>>> ma.resize(a, (3, 3))
masked_array(data =
[[1 2 3]
[4 1 2]
[3 4 1]],

mask =
False,

fill_value = 999999)

1.7. Masked arrays 283



NumPy Reference, Release 1.15.1

Modifying axes

ma.swapaxes(self, *args, . . . ) Return a view of the array with axis1 and axis2 inter-
changed.

ma.transpose(a[, axes]) Permute the dimensions of an array.
ma.MaskedArray.swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
ma.MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.

numpy.ma.swapaxes(self, *args, **params) a.swapaxes(axis1, axis2) = <numpy.ma.core.
_frommethod object>

Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes equivalent function

numpy.ma.transpose(a, axes=None)
Permute the dimensions of an array.

This function is exactly equivalent to numpy.transpose.

See also:

numpy.transpose Equivalent function in top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> x = ma.arange(4).reshape((2,2))
>>> x[1, 1] = ma.masked
>>>> x
masked_array(data =
[[0 1]
[2 --]],

mask =
[[False False]
[False True]],

fill_value = 999999)

>>> ma.transpose(x)
masked_array(data =
[[0 2]
[1 --]],

mask =
[[False False]
[False True]],

fill_value = 999999)

284 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Changing the number of dimensions

ma.atleast_1d(*arys) Convert inputs to arrays with at least one dimension.
ma.atleast_2d(*arys) View inputs as arrays with at least two dimensions.
ma.atleast_3d(*arys) View inputs as arrays with at least three dimensions.
ma.expand_dims(x, axis) Expand the shape of an array.
ma.squeeze(a[, axis]) Remove single-dimensional entries from the shape of an

array.
ma.MaskedArray.squeeze([axis]) Remove single-dimensional entries from the shape of a.
ma.stack(arrays[, axis, out]) Join a sequence of arrays along a new axis.
ma.column_stack(tup) Stack 1-D arrays as columns into a 2-D array.
ma.concatenate(arrays[, axis]) Concatenate a sequence of arrays along the given axis.
ma.dstack(tup) Stack arrays in sequence depth wise (along third axis).
ma.hstack(tup) Stack arrays in sequence horizontally (column wise).
ma.hsplit(ary, indices_or_sections) Split an array into multiple sub-arrays horizontally

(column-wise).
ma.mr_ Translate slice objects to concatenation along the first axis.
ma.row_stack(tup) Stack arrays in sequence vertically (row wise).
ma.vstack(tup) Stack arrays in sequence vertically (row wise).

numpy.ma.atleast_1d(*arys) = <numpy.ma.extras._fromnxfunction_allargs
object>

Convert inputs to arrays with at least one dimension.

Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Parameters

arys1, arys2, . . . [array_like] One or more input arrays.

Returns

ret [ndarray] An array, or list of arrays, each with a.ndim >= 1. Copies are made only if
necessary.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_1d(1.0)
array([ 1.])

>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[ 0., 1., 2.],

[ 3., 4., 5.],
[ 6., 7., 8.]])

>>> np.atleast_1d(x) is x
True

1.7. Masked arrays 285



NumPy Reference, Release 1.15.1

>>> np.atleast_1d(1, [3, 4])
[array([1]), array([3, 4])]

numpy.ma.atleast_2d(*arys) = <numpy.ma.extras._fromnxfunction_allargs
object>

View inputs as arrays with at least two dimensions.

Parameters

arys1, arys2, . . . [array_like] One or more array-like sequences. Non-array inputs are con-
verted to arrays. Arrays that already have two or more dimensions are preserved.

Returns

res, res2, . . . [ndarray] An array, or list of arrays, each with a.ndim >= 2. Copies are
avoided where possible, and views with two or more dimensions are returned.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_2d(3.0)
array([[ 3.]])

>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
array([[ 0., 1., 2.]])
>>> np.atleast_2d(x).base is x
True

>>> np.atleast_2d(1, [1, 2], [[1, 2]])
[array([[1]]), array([[1, 2]]), array([[1, 2]])]

numpy.ma.atleast_3d(*arys) = <numpy.ma.extras._fromnxfunction_allargs
object>

View inputs as arrays with at least three dimensions.

Parameters

arys1, arys2, . . . [array_like] One or more array-like sequences. Non-array inputs are con-
verted to arrays. Arrays that already have three or more dimensions are preserved.

Returns

res1, res2, . . . [ndarray] An array, or list of arrays, each with a.ndim >= 3. Copies are
avoided where possible, and views with three or more dimensions are returned. For example,
a 1-D array of shape (N,) becomes a view of shape (1, N, 1), and a 2-D array of shape
(M, N) becomes a view of shape (M, N, 1).

286 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_3d(3.0)
array([[[ 3.]]])

>>> x = np.arange(3.0)
>>> np.atleast_3d(x).shape
(1, 3, 1)

>>> x = np.arange(12.0).reshape(4,3)
>>> np.atleast_3d(x).shape
(4, 3, 1)
>>> np.atleast_3d(x).base is x.base # x is a reshape, so not base itself
True

>>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
... print(arr, arr.shape)
...
[[[1]
[2]]] (1, 2, 1)

[[[1]
[2]]] (1, 2, 1)

[[[1 2]]] (1, 1, 2)

numpy.ma.expand_dims(x, axis)
Expand the shape of an array.

Expands the shape of the array by including a new axis before the one specified by the axis parameter. This
function behaves the same as numpy.expand_dims but preserves masked elements.

See also:

numpy.expand_dims Equivalent function in top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> x = ma.array([1, 2, 4])
>>> x[1] = ma.masked
>>> x
masked_array(data = [1 -- 4],

mask = [False True False],
fill_value = 999999)

>>> np.expand_dims(x, axis=0)
array([[1, 2, 4]])
>>> ma.expand_dims(x, axis=0)
masked_array(data =
[[1 -- 4]],

mask =

(continues on next page)

1.7. Masked arrays 287



NumPy Reference, Release 1.15.1

(continued from previous page)

[[False True False]],
fill_value = 999999)

The same result can be achieved using slicing syntax with np.newaxis.

>>> x[np.newaxis, :]
masked_array(data =
[[1 -- 4]],

mask =
[[False True False]],

fill_value = 999999)

numpy.ma.squeeze(a, axis=None)
Remove single-dimensional entries from the shape of an array.

Parameters

a [array_like] Input data.

axis [None or int or tuple of ints, optional] New in version 1.7.0.

Selects a subset of the single-dimensional entries in the shape. If an axis is selected with
shape entry greater than one, an error is raised.

Returns

squeezed [ndarray] The input array, but with all or a subset of the dimensions of length 1 re-
moved. This is always a itself or a view into a.

Raises

ValueError If axis is not None, and an axis being squeezed is not of length 1

See also:

expand_dims The inverse operation, adding singleton dimensions

reshape Insert, remove, and combine dimensions, and resize existing ones

Examples

>>> x = np.array([[[0], [1], [2]]])
>>> x.shape
(1, 3, 1)
>>> np.squeeze(x).shape
(3,)
>>> np.squeeze(x, axis=0).shape
(3, 1)
>>> np.squeeze(x, axis=1).shape
Traceback (most recent call last):
...
ValueError: cannot select an axis to squeeze out which has size not equal to one
>>> np.squeeze(x, axis=2).shape
(1, 3)

numpy.ma.stack(arrays, axis=0, out=None) = <numpy.ma.extras._fromnxfunction_seq
object>

288 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Join a sequence of arrays along a new axis.

The axis parameter specifies the index of the new axis in the dimensions of the result. For example,
if axis=0 it will be the first dimension and if axis=-1 it will be the last dimension.

New in version 1.10.0.

Parameters

arrays [sequence of array_like]

Each array must have the same shape.

axis [int, optional] The axis in the result array along which the input arrays are stacked.

out [ndarray, optional] If provided, the destination to place the result. The shape must
be correct, matching that of what stack would have returned if no out argument were
specified.

Returns

stacked [ndarray] The stacked array has one more dimension than the input arrays.

See also:

concatenate Join a sequence of arrays along an existing axis.

split Split array into a list of multiple sub-arrays of equal size.

block Assemble arrays from blocks.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> arrays = [np.random.randn(3, 4) for _ in range(10)]
>>> np.stack(arrays, axis=0).shape
(10, 3, 4)

>>> np.stack(arrays, axis=1).shape
(3, 10, 4)

>>> np.stack(arrays, axis=2).shape
(3, 4, 10)

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.stack((a, b))
array([[1, 2, 3],

[2, 3, 4]])

1.7. Masked arrays 289



NumPy Reference, Release 1.15.1

>>> np.stack((a, b), axis=-1)
array([[1, 2],

[2, 3],
[3, 4]])

numpy.ma.column_stack(tup) = <numpy.ma.extras._fromnxfunction_seq object>

Stack 1-D arrays as columns into a 2-D array.

Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are
stacked as-is, just like with hstack. 1-D arrays are turned into 2-D columns first.

Parameters

tup [sequence of 1-D or 2-D arrays.] Arrays to stack. All of them must have the same first
dimension.

Returns

stacked [2-D array] The array formed by stacking the given arrays.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack((a,b))
array([[1, 2],

[2, 3],
[3, 4]])

numpy.ma.concatenate(arrays, axis=0)
Concatenate a sequence of arrays along the given axis.

Parameters

arrays [sequence of array_like] The arrays must have the same shape, except in the dimension
corresponding to axis (the first, by default).

axis [int, optional] The axis along which the arrays will be joined. Default is 0.

Returns

result [MaskedArray] The concatenated array with any masked entries preserved.

See also:

numpy.concatenate Equivalent function in the top-level NumPy module.

Examples

290 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> import numpy.ma as ma
>>> a = ma.arange(3)
>>> a[1] = ma.masked
>>> b = ma.arange(2, 5)
>>> a
masked_array(data = [0 -- 2],

mask = [False True False],
fill_value = 999999)

>>> b
masked_array(data = [2 3 4],

mask = False,
fill_value = 999999)

>>> ma.concatenate([a, b])
masked_array(data = [0 -- 2 2 3 4],

mask = [False True False False False False],
fill_value = 999999)

numpy.ma.dstack(tup) = <numpy.ma.extras._fromnxfunction_seq object>

Stack arrays in sequence depth wise (along third axis).

This is equivalent to concatenation along the third axis after 2-D arrays of shape (M,N) have been
reshaped to (M,N,1) and 1-D arrays of shape (N,) have been reshaped to (1,N,1). Rebuilds arrays
divided by dsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-
data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions
concatenate, stack and block provide more general stacking and concatenation operations.

Parameters

tup [sequence of arrays] The arrays must have the same shape along all but the third axis. 1-D
or 2-D arrays must have the same shape.

Returns

stacked [ndarray] The array formed by stacking the given arrays, will be at least 3-D.

See also:

stack Join a sequence of arrays along a new axis.

vstack Stack along first axis.

hstack Stack along second axis.

concatenate Join a sequence of arrays along an existing axis.

dsplit Split array along third axis.

Notes

The function is applied to both the _data and the _mask, if any.

1.7. Masked arrays 291



NumPy Reference, Release 1.15.1

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],

[2, 3],
[3, 4]]])

>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],

[[2, 3]],
[[3, 4]]])

numpy.ma.hstack(tup) = <numpy.ma.extras._fromnxfunction_seq object>

Stack arrays in sequence horizontally (column wise).

This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates
along the first axis. Rebuilds arrays divided by hsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-
data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions
concatenate, stack and block provide more general stacking and concatenation operations.

Parameters

tup [sequence of ndarrays] The arrays must have the same shape along all but the second axis,
except 1-D arrays which can be any length.

Returns

stacked [ndarray] The array formed by stacking the given arrays.

See also:

stack Join a sequence of arrays along a new axis.

vstack Stack arrays in sequence vertically (row wise).

dstack Stack arrays in sequence depth wise (along third axis).

concatenate Join a sequence of arrays along an existing axis.

hsplit Split array along second axis.

block Assemble arrays from blocks.

Notes

The function is applied to both the _data and the _mask, if any.

292 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],

[2, 3],
[3, 4]])

numpy.ma.hsplit(ary, indices_or_sections) = <numpy.ma.extras.
_fromnxfunction_single object>

Split an array into multiple sub-arrays horizontally (column-wise).

Please refer to the split documentation. hsplit is equivalent to split with axis=1, the array is
always split along the second axis regardless of the array dimension.

See also:

split Split an array into multiple sub-arrays of equal size.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[ 0., 1., 2., 3.],

[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[ 12., 13., 14., 15.]])

>>> np.hsplit(x, 2)
[array([[ 0., 1.],

[ 4., 5.],
[ 8., 9.],
[ 12., 13.]]),

array([[ 2., 3.],
[ 6., 7.],
[ 10., 11.],
[ 14., 15.]])]

>>> np.hsplit(x, np.array([3, 6]))
[array([[ 0., 1., 2.],

[ 4., 5., 6.],
[ 8., 9., 10.],
[ 12., 13., 14.]]),

array([[ 3.],
[ 7.],
[ 11.],

(continues on next page)

1.7. Masked arrays 293



NumPy Reference, Release 1.15.1

(continued from previous page)

[ 15.]]),
array([], dtype=float64)]

With a higher dimensional array the split is still along the second axis.

>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[ 0., 1.],

[ 2., 3.]],
[[ 4., 5.],
[ 6., 7.]]])

>>> np.hsplit(x, 2)
[array([[[ 0., 1.]],

[[ 4., 5.]]]),
array([[[ 2., 3.]],

[[ 6., 7.]]])]

numpy.ma.mr_ = <numpy.ma.extras.mr_class object>
Translate slice objects to concatenation along the first axis.

This is the masked array version of lib.index_tricks.RClass.

See also:

lib.index_tricks.RClass

Examples

>>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])]
array([1, 2, 3, 0, 0, 4, 5, 6])

numpy.ma.row_stack(tup) = <numpy.ma.extras._fromnxfunction_seq object>

Stack arrays in sequence vertically (row wise).

This is equivalent to concatenation along the first axis after 1-D arrays of shape (N,) have been
reshaped to (1,N). Rebuilds arrays divided by vsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-
data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions
concatenate, stack and block provide more general stacking and concatenation operations.

Parameters

tup [sequence of ndarrays] The arrays must have the same shape along all but the first axis. 1-D
arrays must have the same length.

Returns

stacked [ndarray] The array formed by stacking the given arrays, will be at least 2-D.

See also:

stack Join a sequence of arrays along a new axis.

hstack Stack arrays in sequence horizontally (column wise).

dstack Stack arrays in sequence depth wise (along third dimension).

294 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

concatenate Join a sequence of arrays along an existing axis.

vsplit Split array into a list of multiple sub-arrays vertically.

block Assemble arrays from blocks.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],

[2, 3, 4]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],

[2],
[3],
[2],
[3],
[4]])

numpy.ma.vstack(tup) = <numpy.ma.extras._fromnxfunction_seq object>

Stack arrays in sequence vertically (row wise).

This is equivalent to concatenation along the first axis after 1-D arrays of shape (N,) have been
reshaped to (1,N). Rebuilds arrays divided by vsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-
data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions
concatenate, stack and block provide more general stacking and concatenation operations.

Parameters

tup [sequence of ndarrays] The arrays must have the same shape along all but the first axis. 1-D
arrays must have the same length.

Returns

stacked [ndarray] The array formed by stacking the given arrays, will be at least 2-D.

See also:

stack Join a sequence of arrays along a new axis.

hstack Stack arrays in sequence horizontally (column wise).

dstack Stack arrays in sequence depth wise (along third dimension).

concatenate Join a sequence of arrays along an existing axis.

vsplit Split array into a list of multiple sub-arrays vertically.

1.7. Masked arrays 295



NumPy Reference, Release 1.15.1

block Assemble arrays from blocks.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],

[2, 3, 4]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],

[2],
[3],
[2],
[3],
[4]])

Joining arrays

ma.stack(arrays[, axis, out]) Join a sequence of arrays along a new axis.
ma.column_stack(tup) Stack 1-D arrays as columns into a 2-D array.
ma.concatenate(arrays[, axis]) Concatenate a sequence of arrays along the given axis.
ma.append(a, b[, axis]) Append values to the end of an array.
ma.dstack(tup) Stack arrays in sequence depth wise (along third axis).
ma.hstack(tup) Stack arrays in sequence horizontally (column wise).
ma.vstack(tup) Stack arrays in sequence vertically (row wise).

numpy.ma.append(a, b, axis=None)
Append values to the end of an array.

New in version 1.9.0.

Parameters

a [array_like] Values are appended to a copy of this array.

b [array_like] These values are appended to a copy of a. It must be of the correct shape (the
same shape as a, excluding axis). If axis is not specified, b can be any shape and will be
flattened before use.

axis [int, optional] The axis along which v are appended. If axis is not given, both a and b are
flattened before use.

Returns

append [MaskedArray] A copy of a with b appended to axis. Note that append does not occur

296 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

in-place: a new array is allocated and filled. If axis is None, the result is a flattened array.

See also:

numpy.append Equivalent function in the top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_values([1, 2, 3], 2)
>>> b = ma.masked_values([[4, 5, 6], [7, 8, 9]], 7)
>>> print(ma.append(a, b))
[1 -- 3 4 5 6 -- 8 9]

Operations on masks

Creating a mask

ma.make_mask(m[, copy, shrink, dtype]) Create a boolean mask from an array.
ma.make_mask_none(newshape[, dtype]) Return a boolean mask of the given shape, filled with False.
ma.mask_or(m1, m2[, copy, shrink]) Combine two masks with the logical_or operator.
ma.make_mask_descr(ndtype) Construct a dtype description list from a given dtype.

numpy.ma.make_mask(m, copy=False, shrink=True, dtype=<class ’numpy.bool_’>)
Create a boolean mask from an array.

Return m as a boolean mask, creating a copy if necessary or requested. The function can accept any sequence
that is convertible to integers, or nomask. Does not require that contents must be 0s and 1s, values of 0 are
interepreted as False, everything else as True.

Parameters

m [array_like] Potential mask.

copy [bool, optional] Whether to return a copy of m (True) or m itself (False).

shrink [bool, optional] Whether to shrink m to nomask if all its values are False.

dtype [dtype, optional] Data-type of the output mask. By default, the output mask has a dtype
of MaskType (bool). If the dtype is flexible, each field has a boolean dtype. This is ignored
when m is nomask, in which case nomask is always returned.

Returns

result [ndarray] A boolean mask derived from m.

Examples

>>> import numpy.ma as ma
>>> m = [True, False, True, True]
>>> ma.make_mask(m)

(continues on next page)

1.7. Masked arrays 297



NumPy Reference, Release 1.15.1

(continued from previous page)

array([ True, False, True, True])
>>> m = [1, 0, 1, 1]
>>> ma.make_mask(m)
array([ True, False, True, True])
>>> m = [1, 0, 2, -3]
>>> ma.make_mask(m)
array([ True, False, True, True])

Effect of the shrink parameter.

>>> m = np.zeros(4)
>>> m
array([ 0., 0., 0., 0.])
>>> ma.make_mask(m)
False
>>> ma.make_mask(m, shrink=False)
array([False, False, False, False])

Using a flexible dtype.

>>> m = [1, 0, 1, 1]
>>> n = [0, 1, 0, 0]
>>> arr = []
>>> for man, mouse in zip(m, n):
... arr.append((man, mouse))
>>> arr
[(1, 0), (0, 1), (1, 0), (1, 0)]
>>> dtype = np.dtype({'names':['man', 'mouse'],

'formats':[int, int]})
>>> arr = np.array(arr, dtype=dtype)
>>> arr
array([(1, 0), (0, 1), (1, 0), (1, 0)],

dtype=[('man', '<i4'), ('mouse', '<i4')])
>>> ma.make_mask(arr, dtype=dtype)
array([(True, False), (False, True), (True, False), (True, False)],

dtype=[('man', '|b1'), ('mouse', '|b1')])

numpy.ma.make_mask_none(newshape, dtype=None)
Return a boolean mask of the given shape, filled with False.

This function returns a boolean ndarray with all entries False, that can be used in common mask manipulations.
If a complex dtype is specified, the type of each field is converted to a boolean type.

Parameters

newshape [tuple] A tuple indicating the shape of the mask.

dtype [{None, dtype}, optional] If None, use a MaskType instance. Otherwise, use a new
datatype with the same fields as dtype, converted to boolean types.

Returns

result [ndarray] An ndarray of appropriate shape and dtype, filled with False.

See also:

make_mask Create a boolean mask from an array.

make_mask_descr Construct a dtype description list from a given dtype.

298 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Examples

>>> import numpy.ma as ma
>>> ma.make_mask_none((3,))
array([False, False, False])

Defining a more complex dtype.

>>> dtype = np.dtype({'names':['foo', 'bar'],
'formats':[np.float32, int]})

>>> dtype
dtype([('foo', '<f4'), ('bar', '<i4')])
>>> ma.make_mask_none((3,), dtype=dtype)
array([(False, False), (False, False), (False, False)],

dtype=[('foo', '|b1'), ('bar', '|b1')])

numpy.ma.mask_or(m1, m2, copy=False, shrink=True)
Combine two masks with the logical_or operator.

The result may be a view on m1 or m2 if the other is nomask (i.e. False).

Parameters

m1, m2 [array_like] Input masks.

copy [bool, optional] If copy is False and one of the inputs is nomask, return a view of the
other input mask. Defaults to False.

shrink [bool, optional] Whether to shrink the output to nomask if all its values are False.
Defaults to True.

Returns

mask [output mask] The result masks values that are masked in either m1 or m2.

Raises

ValueError If m1 and m2 have different flexible dtypes.

Examples

>>> m1 = np.ma.make_mask([0, 1, 1, 0])
>>> m2 = np.ma.make_mask([1, 0, 0, 0])
>>> np.ma.mask_or(m1, m2)
array([ True, True, True, False])

numpy.ma.make_mask_descr(ndtype)
Construct a dtype description list from a given dtype.

Returns a new dtype object, with the type of all fields in ndtype to a boolean type. Field names are not altered.

Parameters

ndtype [dtype] The dtype to convert.

Returns

result [dtype] A dtype that looks like ndtype, the type of all fields is boolean.

1.7. Masked arrays 299



NumPy Reference, Release 1.15.1

Examples

>>> import numpy.ma as ma
>>> dtype = np.dtype({'names':['foo', 'bar'],

'formats':[np.float32, int]})
>>> dtype
dtype([('foo', '<f4'), ('bar', '<i4')])
>>> ma.make_mask_descr(dtype)
dtype([('foo', '|b1'), ('bar', '|b1')])
>>> ma.make_mask_descr(np.float32)
dtype('bool')

Accessing a mask

ma.getmask(a) Return the mask of a masked array, or nomask.
ma.getmaskarray(arr) Return the mask of a masked array, or full boolean array of

False.
ma.masked_array.mask Mask

masked_array.mask
Mask

Finding masked data

ma.flatnotmasked_contiguous(a) Find contiguous unmasked data in a masked array along
the given axis.

ma.flatnotmasked_edges(a) Find the indices of the first and last unmasked values.
ma.notmasked_contiguous(a[, axis]) Find contiguous unmasked data in a masked array along

the given axis.
ma.notmasked_edges(a[, axis]) Find the indices of the first and last unmasked values along

an axis.
ma.clump_masked(a) Returns a list of slices corresponding to the masked clumps

of a 1-D array.
ma.clump_unmasked(a) Return list of slices corresponding to the unmasked clumps

of a 1-D array.

numpy.ma.flatnotmasked_contiguous(a)
Find contiguous unmasked data in a masked array along the given axis.

Parameters

a [narray] The input array.

Returns

slice_list [list] A sorted sequence of slice objects (start index, end index).

..versionchanged:: 1.15.0 Now returns an empty list instead of None for a fully masked
array

See also:

300 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

flatnotmasked_edges, notmasked_contiguous, notmasked_edges, clump_masked,
clump_unmasked

Notes

Only accepts 2-D arrays at most.

Examples

>>> a = np.ma.arange(10)
>>> np.ma.flatnotmasked_contiguous(a)
[slice(0, 10, None)]

>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked
>>> np.array(a[~a.mask])
array([3, 4, 6, 7, 8])

>>> np.ma.flatnotmasked_contiguous(a)
[slice(3, 5, None), slice(6, 9, None)]
>>> a[:] = np.ma.masked
>>> np.ma.flatnotmasked_contiguous(a)
[]

numpy.ma.flatnotmasked_edges(a)
Find the indices of the first and last unmasked values.

Expects a 1-D MaskedArray , returns None if all values are masked.

Parameters

a [array_like] Input 1-D MaskedArray

Returns

edges [ndarray or None] The indices of first and last non-masked value in the array. Returns
None if all values are masked.

See also:

flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges, clump_masked,
clump_unmasked

Notes

Only accepts 1-D arrays.

Examples

>>> a = np.ma.arange(10)
>>> flatnotmasked_edges(a)
[0,-1]

1.7. Masked arrays 301



NumPy Reference, Release 1.15.1

>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked
>>> np.array(a[~a.mask])
array([3, 4, 6, 7, 8])

>>> flatnotmasked_edges(a)
array([3, 8])

>>> a[:] = np.ma.masked
>>> print(flatnotmasked_edges(ma))
None

numpy.ma.notmasked_contiguous(a, axis=None)
Find contiguous unmasked data in a masked array along the given axis.

Parameters

a [array_like] The input array.

axis [int, optional] Axis along which to perform the operation. If None (default), applies to a
flattened version of the array, and this is the same as flatnotmasked_contiguous.

Returns

endpoints [list] A list of slices (start and end indexes) of unmasked indexes in the array.

If the input is 2d and axis is specified, the result is a list of lists.

See also:

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges, clump_masked,
clump_unmasked

Notes

Only accepts 2-D arrays at most.

Examples

>>> a = np.arange(12).reshape((3, 4))
>>> mask = np.zeros_like(a)
>>> mask[1:, :-1] = 1; mask[0, 1] = 1; mask[-1, 0] = 0
>>> ma = np.ma.array(a, mask=mask)
>>> ma
masked_array(
data=[[0, --, 2, 3],

[--, --, --, 7],
[8, --, --, 11]],

mask=[[False, True, False, False],
[ True, True, True, False],
[False, True, True, False]],

fill_value=999999)
>>> np.array(ma[~ma.mask])
array([ 0, 2, 3, 7, 8, 11])

302 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> np.ma.notmasked_contiguous(ma)
[slice(0, 1, None), slice(2, 4, None), slice(7, 9, None), slice(11, 12, None)]

>>> np.ma.notmasked_contiguous(ma, axis=0)
[[slice(0, 1, None), slice(2, 3, None)], # column broken into two segments
[], # fully masked column
[slice(0, 1, None)],
[slice(0, 3, None)]]

>>> np.ma.notmasked_contiguous(ma, axis=1)
[[slice(0, 1, None), slice(2, 4, None)], # row broken into two segments
[slice(3, 4, None)],
[slice(0, 1, None), slice(3, 4, None)]]

numpy.ma.notmasked_edges(a, axis=None)
Find the indices of the first and last unmasked values along an axis.

If all values are masked, return None. Otherwise, return a list of two tuples, corresponding to the indices of the
first and last unmasked values respectively.

Parameters

a [array_like] The input array.

axis [int, optional] Axis along which to perform the operation. If None (default), applies to a
flattened version of the array.

Returns

edges [ndarray or list] An array of start and end indexes if there are any masked data in the
array. If there are no masked data in the array, edges is a list of the first and last index.

See also:

flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous,
clump_masked, clump_unmasked

Examples

>>> a = np.arange(9).reshape((3, 3))
>>> m = np.zeros_like(a)
>>> m[1:, 1:] = 1

>>> am = np.ma.array(a, mask=m)
>>> np.array(am[~am.mask])
array([0, 1, 2, 3, 6])

>>> np.ma.notmasked_edges(ma)
array([0, 6])

numpy.ma.clump_masked(a)
Returns a list of slices corresponding to the masked clumps of a 1-D array. (A “clump” is defined as a contiguous
region of the array).

Parameters

a [ndarray] A one-dimensional masked array.

1.7. Masked arrays 303



NumPy Reference, Release 1.15.1

Returns

slices [list of slice] The list of slices, one for each continuous region of masked elements in a.

See also:

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges,
notmasked_contiguous, clump_unmasked

Notes

New in version 1.4.0.

Examples

>>> a = np.ma.masked_array(np.arange(10))
>>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
>>> np.ma.clump_masked(a)
[slice(0, 3, None), slice(6, 7, None), slice(8, 10, None)]

numpy.ma.clump_unmasked(a)
Return list of slices corresponding to the unmasked clumps of a 1-D array. (A “clump” is defined as a contiguous
region of the array).

Parameters

a [ndarray] A one-dimensional masked array.

Returns

slices [list of slice] The list of slices, one for each continuous region of unmasked elements in
a.

See also:

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges,
notmasked_contiguous, clump_masked

Notes

New in version 1.4.0.

Examples

>>> a = np.ma.masked_array(np.arange(10))
>>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
>>> np.ma.clump_unmasked(a)
[slice(3, 6, None), slice(7, 8, None)]

Modifying a mask

304 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

ma.mask_cols(a[, axis]) Mask columns of a 2D array that contain masked values.
ma.mask_or(m1, m2[, copy, shrink]) Combine two masks with the logical_or operator.
ma.mask_rowcols(a[, axis]) Mask rows and/or columns of a 2D array that contain

masked values.
ma.mask_rows(a[, axis]) Mask rows of a 2D array that contain masked values.
ma.harden_mask(self) Force the mask to hard.
ma.soften_mask(self) Force the mask to soft.
ma.MaskedArray.harden_mask() Force the mask to hard.
ma.MaskedArray.soften_mask() Force the mask to soft.
ma.MaskedArray.shrink_mask() Reduce a mask to nomask when possible.
ma.MaskedArray.unshare_mask() Copy the mask and set the sharedmask flag to False.

numpy.ma.mask_cols(a, axis=None)
Mask columns of a 2D array that contain masked values.

This function is a shortcut to mask_rowcols with axis equal to 1.

See also:

mask_rowcols Mask rows and/or columns of a 2D array.

masked_where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],

[0, 1, 0],
[0, 0, 0]])

>>> a = ma.masked_equal(a, 1)
>>> a
masked_array(data =
[[0 0 0]
[0 -- 0]
[0 0 0]],

mask =
[[False False False]
[False True False]
[False False False]],

fill_value=999999)
>>> ma.mask_cols(a)
masked_array(data =
[[0 -- 0]
[0 -- 0]
[0 -- 0]],

mask =
[[False True False]
[False True False]
[False True False]],

fill_value=999999)

1.7. Masked arrays 305



NumPy Reference, Release 1.15.1

numpy.ma.mask_rowcols(a, axis=None)
Mask rows and/or columns of a 2D array that contain masked values.

Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected
using the axis parameter.

• If axis is None, rows and columns are masked.

• If axis is 0, only rows are masked.

• If axis is 1 or -1, only columns are masked.

Parameters

a [array_like, MaskedArray] The array to mask. If not a MaskedArray instance (or if no array
elements are masked). The result is a MaskedArray with mask set to nomask (False). Must
be a 2D array.

axis [int, optional] Axis along which to perform the operation. If None, applies to a flattened
version of the array.

Returns

a [MaskedArray] A modified version of the input array, masked depending on the value of the
axis parameter.

Raises

NotImplementedError If input array a is not 2D.

See also:

mask_rows Mask rows of a 2D array that contain masked values.

mask_cols Mask cols of a 2D array that contain masked values.

masked_where Mask where a condition is met.

Notes

The input array’s mask is modified by this function.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],

[0, 1, 0],
[0, 0, 0]])

>>> a = ma.masked_equal(a, 1)
>>> a
masked_array(data =
[[0 0 0]
[0 -- 0]
[0 0 0]],

mask =

(continues on next page)

306 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

[[False False False]
[False True False]
[False False False]],

fill_value=999999)
>>> ma.mask_rowcols(a)
masked_array(data =
[[0 -- 0]
[-- -- --]
[0 -- 0]],

mask =
[[False True False]
[ True True True]
[False True False]],

fill_value=999999)

numpy.ma.mask_rows(a, axis=None)
Mask rows of a 2D array that contain masked values.

This function is a shortcut to mask_rowcols with axis equal to 0.

See also:

mask_rowcols Mask rows and/or columns of a 2D array.

masked_where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],

[0, 1, 0],
[0, 0, 0]])

>>> a = ma.masked_equal(a, 1)
>>> a
masked_array(data =
[[0 0 0]
[0 -- 0]
[0 0 0]],

mask =
[[False False False]
[False True False]
[False False False]],

fill_value=999999)
>>> ma.mask_rows(a)
masked_array(data =
[[0 0 0]
[-- -- --]
[0 0 0]],

mask =
[[False False False]
[ True True True]
[False False False]],

fill_value=999999)

1.7. Masked arrays 307



NumPy Reference, Release 1.15.1

numpy.ma.harden_mask(self) = <numpy.ma.core._frommethod object>
Force the mask to hard.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. harden_mask
sets hardmask to True.

See also:

hardmask

numpy.ma.soften_mask(self) = <numpy.ma.core._frommethod object>
Force the mask to soft.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. soften_mask
sets hardmask to False.

See also:

hardmask

Conversion operations

> to a masked array

ma.asarray(a[, dtype, order]) Convert the input to a masked array of the given data-type.
ma.asanyarray(a[, dtype]) Convert the input to a masked array, conserving subclasses.
ma.fix_invalid(a[, mask, copy, fill_value]) Return input with invalid data masked and replaced by a fill

value.
ma.masked_equal(x, value[, copy]) Mask an array where equal to a given value.
ma.masked_greater(x, value[, copy]) Mask an array where greater than a given value.
ma.masked_greater_equal(x, value[, copy]) Mask an array where greater than or equal to a given value.
ma.masked_inside(x, v1, v2[, copy]) Mask an array inside a given interval.
ma.masked_invalid(a[, copy]) Mask an array where invalid values occur (NaNs or infs).
ma.masked_less(x, value[, copy]) Mask an array where less than a given value.
ma.masked_less_equal(x, value[, copy]) Mask an array where less than or equal to a given value.
ma.masked_not_equal(x, value[, copy]) Mask an array where not equal to a given value.
ma.masked_object(x, value[, copy, shrink]) Mask the array x where the data are exactly equal to value.
ma.masked_outside(x, v1, v2[, copy]) Mask an array outside a given interval.
ma.masked_values(x, value[, rtol, atol, . . . ]) Mask using floating point equality.
ma.masked_where(condition, a[, copy]) Mask an array where a condition is met.

> to a ndarray

ma.compress_cols(a) Suppress whole columns of a 2-D array that contain
masked values.

ma.compress_rowcols(x[, axis]) Suppress the rows and/or columns of a 2-D array that con-
tain masked values.

ma.compress_rows(a) Suppress whole rows of a 2-D array that contain masked
values.

ma.compressed(x) Return all the non-masked data as a 1-D array.
Continued on next page

308 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Table 83 – continued from previous page
ma.filled(a[, fill_value]) Return input as an array with masked data replaced by a fill

value.
ma.MaskedArray.compressed() Return all the non-masked data as a 1-D array.
ma.MaskedArray.filled([fill_value]) Return a copy of self, with masked values filled with a

given value.

numpy.ma.compress_cols(a)
Suppress whole columns of a 2-D array that contain masked values.

This is equivalent to np.ma.compress_rowcols(a, 1), see extras.compress_rowcols for de-
tails.

See also:

extras.compress_rowcols

numpy.ma.compress_rowcols(x, axis=None)
Suppress the rows and/or columns of a 2-D array that contain masked values.

The suppression behavior is selected with the axis parameter.

• If axis is None, both rows and columns are suppressed.

• If axis is 0, only rows are suppressed.

• If axis is 1 or -1, only columns are suppressed.

Parameters

x [array_like, MaskedArray] The array to operate on. If not a MaskedArray instance (or if no
array elements are masked), x is interpreted as a MaskedArray with mask set to nomask.
Must be a 2D array.

axis [int, optional] Axis along which to perform the operation. Default is None.

Returns

compressed_array [ndarray] The compressed array.

Examples

>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> x
masked_array(data =
[[-- 1 2]
[-- 4 5]
[6 7 8]],

mask =
[[ True False False]
[ True False False]
[False False False]],

fill_value = 999999)

>>> np.ma.compress_rowcols(x)
array([[7, 8]])
>>> np.ma.compress_rowcols(x, 0)

(continues on next page)

1.7. Masked arrays 309



NumPy Reference, Release 1.15.1

(continued from previous page)

array([[6, 7, 8]])
>>> np.ma.compress_rowcols(x, 1)
array([[1, 2],

[4, 5],
[7, 8]])

numpy.ma.compress_rows(a)
Suppress whole rows of a 2-D array that contain masked values.

This is equivalent to np.ma.compress_rowcols(a, 0), see extras.compress_rowcols for de-
tails.

See also:

extras.compress_rowcols

numpy.ma.compressed(x)
Return all the non-masked data as a 1-D array.

This function is equivalent to calling the “compressed” method of a MaskedArray , see MaskedArray.
compressed for details.

See also:

MaskedArray.compressed Equivalent method.

numpy.ma.filled(a, fill_value=None)
Return input as an array with masked data replaced by a fill value.

If a is not a MaskedArray , a itself is returned. If a is a MaskedArray and fill_value is None, fill_value is
set to a.fill_value.

Parameters

a [MaskedArray or array_like] An input object.

fill_value [scalar, optional] Filling value. Default is None.

Returns

a [ndarray] The filled array.

See also:

compressed

Examples

>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> x.filled()
array([[999999, 1, 2],

[999999, 4, 5],
[ 6, 7, 8]])

310 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

> to another object

ma.MaskedArray.tofile(fid[, sep, format]) Save a masked array to a file in binary format.
ma.MaskedArray.tolist([fill_value]) Return the data portion of the masked array as a hierarchi-

cal Python list.
ma.MaskedArray.torecords() Transforms a masked array into a flexible-type array.
ma.MaskedArray.tobytes([fill_value, order]) Return the array data as a string containing the raw bytes in

the array.

Pickling and unpickling

ma.dump(a, F) Pickle a masked array to a file.
ma.dumps(a) Return a string corresponding to the pickling of a masked

array.
ma.load(F) Wrapper around cPickle.load which accepts either a

file-like object or a filename.
ma.loads(strg) Load a pickle from the current string.

numpy.ma.dump(a, F)
Pickle a masked array to a file.

This is a wrapper around cPickle.dump.

Parameters

a [MaskedArray] The array to be pickled.

F [str or file-like object] The file to pickle a to. If a string, the full path to the file.

numpy.ma.dumps(a)
Return a string corresponding to the pickling of a masked array.

This is a wrapper around cPickle.dumps.

Parameters

a [MaskedArray] The array for which the string representation of the pickle is returned.

numpy.ma.load(F)
Wrapper around cPickle.load which accepts either a file-like object or a filename.

Parameters

F [str or file] The file or file name to load.

See also:

dump Pickle an array

Notes

This is different from numpy.load, which does not use cPickle but loads the NumPy binary .npy format.

numpy.ma.loads(strg)
Load a pickle from the current string.

The result of cPickle.loads(strg) is returned.

1.7. Masked arrays 311



NumPy Reference, Release 1.15.1

Parameters

strg [str] The string to load.

See also:

dumps Return a string corresponding to the pickling of a masked array.

Filling a masked array

ma.common_fill_value(a, b) Return the common filling value of two masked arrays, if
any.

ma.default_fill_value(obj) Return the default fill value for the argument object.
ma.maximum_fill_value(obj) Return the minimum value that can be represented by the

dtype of an object.
ma.maximum_fill_value(obj) Return the minimum value that can be represented by the

dtype of an object.
ma.set_fill_value(a, fill_value) Set the filling value of a, if a is a masked array.
ma.MaskedArray.get_fill_value() Return the filling value of the masked array.
ma.MaskedArray.set_fill_value([value]) Set the filling value of the masked array.
ma.MaskedArray.fill_value Filling value.

numpy.ma.common_fill_value(a, b)
Return the common filling value of two masked arrays, if any.

If a.fill_value == b.fill_value, return the fill value, otherwise return None.

Parameters

a, b [MaskedArray] The masked arrays for which to compare fill values.

Returns

fill_value [scalar or None] The common fill value, or None.

Examples

>>> x = np.ma.array([0, 1.], fill_value=3)
>>> y = np.ma.array([0, 1.], fill_value=3)
>>> np.ma.common_fill_value(x, y)
3.0

numpy.ma.default_fill_value(obj)
Return the default fill value for the argument object.

The default filling value depends on the datatype of the input array or the type of the input scalar:

datatype default
bool True
int 999999
float 1.e20
complex 1.e20+0j
object ‘?’
string ‘N/A’

312 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

For structured types, a structured scalar is returned, with each field the default fill value for its type.

For subarray types, the fill value is an array of the same size containing the default scalar fill value.

Parameters

obj [ndarray, dtype or scalar] The array data-type or scalar for which the default fill value is
returned.

Returns

fill_value [scalar] The default fill value.

Examples

>>> np.ma.default_fill_value(1)
999999
>>> np.ma.default_fill_value(np.array([1.1, 2., np.pi]))
1e+20
>>> np.ma.default_fill_value(np.dtype(complex))
(1e+20+0j)

numpy.ma.maximum_fill_value(obj)
Return the minimum value that can be represented by the dtype of an object.

This function is useful for calculating a fill value suitable for taking the maximum of an array with a given dtype.

Parameters

obj [ndarray, dtype or scalar] An object that can be queried for it’s numeric type.

Returns

val [scalar] The minimum representable value.

Raises

TypeError If obj isn’t a suitable numeric type.

See also:

minimum_fill_value The inverse function.

set_fill_value Set the filling value of a masked array.

MaskedArray.fill_value Return current fill value.

Examples

>>> import numpy.ma as ma
>>> a = np.int8()
>>> ma.maximum_fill_value(a)
-128
>>> a = np.int32()
>>> ma.maximum_fill_value(a)
-2147483648

An array of numeric data can also be passed.

1.7. Masked arrays 313



NumPy Reference, Release 1.15.1

>>> a = np.array([1, 2, 3], dtype=np.int8)
>>> ma.maximum_fill_value(a)
-128
>>> a = np.array([1, 2, 3], dtype=np.float32)
>>> ma.maximum_fill_value(a)
-inf

numpy.ma.set_fill_value(a, fill_value)
Set the filling value of a, if a is a masked array.

This function changes the fill value of the masked array a in place. If a is not a masked array, the function
returns silently, without doing anything.

Parameters

a [array_like] Input array.

fill_value [dtype] Filling value. A consistency test is performed to make sure the value is com-
patible with the dtype of a.

Returns

None Nothing returned by this function.

See also:

maximum_fill_value Return the default fill value for a dtype.

MaskedArray.fill_value Return current fill value.

MaskedArray.set_fill_value Equivalent method.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> a = ma.masked_where(a < 3, a)
>>> a
masked_array(data = [-- -- -- 3 4],

mask = [ True True True False False],
fill_value=999999)

>>> ma.set_fill_value(a, -999)
>>> a
masked_array(data = [-- -- -- 3 4],

mask = [ True True True False False],
fill_value=-999)

Nothing happens if a is not a masked array.

>>> a = range(5)
>>> a
[0, 1, 2, 3, 4]
>>> ma.set_fill_value(a, 100)
>>> a
[0, 1, 2, 3, 4]
>>> a = np.arange(5)

(continues on next page)

314 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> a
array([0, 1, 2, 3, 4])
>>> ma.set_fill_value(a, 100)
>>> a
array([0, 1, 2, 3, 4])

MaskedArray.fill_value
Filling value.

Masked arrays arithmetics

Arithmetics

ma.anom(self[, axis, dtype]) Compute the anomalies (deviations from the arithmetic
mean) along the given axis.

ma.anomalies(self[, axis, dtype]) Compute the anomalies (deviations from the arithmetic
mean) along the given axis.

ma.average(a[, axis, weights, returned]) Return the weighted average of array over the given axis.
ma.conjugate(x, /[, out, where, casting, . . . ]) Return the complex conjugate, element-wise.
ma.corrcoef(x[, y, rowvar, bias, . . . ]) Return Pearson product-moment correlation coefficients.
ma.cov(x[, y, rowvar, bias, allow_masked, ddof]) Estimate the covariance matrix.
ma.cumsum(self[, axis, dtype, out]) Return the cumulative sum of the array elements over the

given axis.
ma.cumprod(self[, axis, dtype, out]) Return the cumulative product of the array elements over

the given axis.
ma.mean(self[, axis, dtype, out, keepdims]) Returns the average of the array elements along given axis.
ma.median(a[, axis, out, overwrite_input, . . . ]) Compute the median along the specified axis.
ma.power(a, b[, third]) Returns element-wise base array raised to power from sec-

ond array.
ma.prod(self[, axis, dtype, out, keepdims]) Return the product of the array elements over the given

axis.
ma.std(self[, axis, dtype, out, ddof, keepdims]) Returns the standard deviation of the array elements along

given axis.
ma.sum(self[, axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.
ma.var(self[, axis, dtype, out, ddof, keepdims]) Compute the variance along the specified axis.
ma.MaskedArray.anom([axis, dtype]) Compute the anomalies (deviations from the arithmetic

mean) along the given axis.
ma.MaskedArray.cumprod([axis, dtype, out]) Return the cumulative product of the array elements over

the given axis.
ma.MaskedArray.cumsum([axis, dtype, out]) Return the cumulative sum of the array elements over the

given axis.
ma.MaskedArray.mean([axis, dtype, out, keepdims]) Returns the average of the array elements along given axis.
ma.MaskedArray.prod([axis, dtype, out, keepdims]) Return the product of the array elements over the given

axis.
ma.MaskedArray.std([axis, dtype, out, ddof, . . . ]) Returns the standard deviation of the array elements along

given axis.
ma.MaskedArray.sum([axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.
ma.MaskedArray.var([axis, dtype, out, ddof, . . . ]) Compute the variance along the specified axis.

1.7. Masked arrays 315



NumPy Reference, Release 1.15.1

numpy.ma.anom(self, axis=None, dtype=None) = <numpy.ma.core._frommethod object>
Compute the anomalies (deviations from the arithmetic mean) along the given axis.

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed
along the given axis.

Parameters

axis [int, optional] Axis over which the anomalies are taken. The default is to use the mean of
the flattened array as reference.

dtype [dtype, optional]

Type to use in computing the variance. For arrays of integer type the default is
float32; for arrays of float types it is the same as the array type.

See also:

mean Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data = [-1. 0. 1.],

mask = False,
fill_value = 1e+20)

numpy.ma.anomalies(self, axis=None, dtype=None) = <numpy.ma.core._frommethod
object>

Compute the anomalies (deviations from the arithmetic mean) along the given axis.

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed
along the given axis.

Parameters

axis [int, optional] Axis over which the anomalies are taken. The default is to use the mean of
the flattened array as reference.

dtype [dtype, optional]

Type to use in computing the variance. For arrays of integer type the default is
float32; for arrays of float types it is the same as the array type.

See also:

mean Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data = [-1. 0. 1.],

mask = False,
fill_value = 1e+20)

316 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

numpy.ma.average(a, axis=None, weights=None, returned=False)
Return the weighted average of array over the given axis.

Parameters

a [array_like] Data to be averaged. Masked entries are not taken into account in the computa-
tion.

axis [int, optional] Axis along which to average a. If None, averaging is done over the flattened
array.

weights [array_like, optional] The importance that each element has in the computation of the
average. The weights array can either be 1-D (in which case its length must be the size of
a along the given axis) or of the same shape as a. If weights=None, then all data in a
are assumed to have a weight equal to one. If weights is complex, the imaginary parts are
ignored.

returned [bool, optional] Flag indicating whether a tuple (result, sum of weights)
should be returned as output (True), or just the result (False). Default is False.

Returns

average, [sum_of_weights] [(tuple of) scalar or MaskedArray] The average along the specified
axis. When returned is True, return a tuple with the average as the first element and the sum
of the weights as the second element. The return type is np.float64 if a is of integer type and
floats smaller than float64, or the input data-type, otherwise. If returned, sum_of_weights is
always float64.

Examples

>>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True])
>>> np.ma.average(a, weights=[3, 1, 0, 0])
1.25

>>> x = np.ma.arange(6.).reshape(3, 2)
>>> print(x)
[[ 0. 1.]
[ 2. 3.]
[ 4. 5.]]
>>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3],
... returned=True)
>>> print(avg)
[2.66666666667 3.66666666667]

numpy.ma.conjugate(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj]) = <numpy.ma.core.
_MaskedUnaryOperation object>

Return the complex conjugate, element-wise.

The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

Parameters

x [array_like] Input value.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

1.7. Masked arrays 317



NumPy Reference, Release 1.15.1

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The complex conjugate of x, with same dtype as y. This is a scalar if x is a scalar.

Examples

>>> np.conjugate(1+2j)
(1-2j)

>>> x = np.eye(2) + 1j * np.eye(2)
>>> np.conjugate(x)
array([[ 1.-1.j, 0.-0.j],

[ 0.-0.j, 1.-1.j]])

numpy.ma.corrcoef(x, y=None, rowvar=True, bias=<no value>, allow_masked=True, ddof=<no
value>)

Return Pearson product-moment correlation coefficients.

Except for the handling of missing data this function does the same as numpy.corrcoef. For more details
and examples, see numpy.corrcoef.

Parameters

x [array_like] A 1-D or 2-D array containing multiple variables and observations. Each row of
x represents a variable, and each column a single observation of all those variables. Also see
rowvar below.

y [array_like, optional] An additional set of variables and observations. y has the same shape as
x.

rowvar [bool, optional] If rowvar is True (default), then each row represents a variable, with
observations in the columns. Otherwise, the relationship is transposed: each column repre-
sents a variable, while the rows contain observations.

bias [_NoValue, optional] Has no effect, do not use.

Deprecated since version 1.10.0.

allow_masked [bool, optional] If True, masked values are propagated pair-wise: if a value is
masked in x, the corresponding value is masked in y. If False, raises an exception. Because
bias is deprecated, this argument needs to be treated as keyword only to avoid a warning.

ddof [_NoValue, optional] Has no effect, do not use.

Deprecated since version 1.10.0.

See also:

numpy.corrcoef Equivalent function in top-level NumPy module.

cov Estimate the covariance matrix.

318 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Notes

This function accepts but discards arguments bias and ddof. This is for backwards compatibility with previous
versions of this function. These arguments had no effect on the return values of the function and can be safely
ignored in this and previous versions of numpy.

numpy.ma.cov(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None)
Estimate the covariance matrix.

Except for the handling of missing data this function does the same as numpy.cov . For more details and
examples, see numpy.cov .

By default, masked values are recognized as such. If x and y have the same shape, a common mask is allocated:
if x[i,j] is masked, then y[i,j] will also be masked. Setting allow_masked to False will raise an exception
if values are missing in either of the input arrays.

Parameters

x [array_like] A 1-D or 2-D array containing multiple variables and observations. Each row of
x represents a variable, and each column a single observation of all those variables. Also see
rowvar below.

y [array_like, optional] An additional set of variables and observations. y has the same form as
x.

rowvar [bool, optional] If rowvar is True (default), then each row represents a variable, with
observations in the columns. Otherwise, the relationship is transposed: each column repre-
sents a variable, while the rows contain observations.

bias [bool, optional] Default normalization (False) is by (N-1), where N is the number of
observations given (unbiased estimate). If bias is True, then normalization is by N. This
keyword can be overridden by the keyword ddof in numpy versions >= 1.5.

allow_masked [bool, optional] If True, masked values are propagated pair-wise: if a value is
masked in x, the corresponding value is masked in y. If False, raises a ValueError exception
when some values are missing.

ddof [{None, int}, optional] If not None normalization is by (N - ddof), where N is the
number of observations; this overrides the value implied by bias. The default value is
None.

New in version 1.5.

Raises

ValueError Raised if some values are missing and allow_masked is False.

See also:

numpy.cov

numpy.ma.cumsum(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod
object>

Return the cumulative sum of the array elements over the given axis.

Masked values are set to 0 internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Refer to numpy.cumsum for full documentation.

See also:

ndarray.cumsum corresponding function for ndarrays

1.7. Masked arrays 319



NumPy Reference, Release 1.15.1

numpy.cumsum equivalent function

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
>>> print(marr.cumsum())
[0 1 3 -- -- -- 9 16 24 33]

numpy.ma.cumprod(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod
object>

Return the cumulative product of the array elements over the given axis.

Masked values are set to 1 internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Refer to numpy.cumprod for full documentation.

See also:

ndarray.cumprod corresponding function for ndarrays

numpy.cumprod equivalent function

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

numpy.ma.mean(self, axis=None, dtype=None, out=None, keepdims=<no value>) = <numpy.ma.
core._frommethod object>

Returns the average of the array elements along given axis.

Masked entries are ignored, and result elements which are not finite will be masked.

Refer to numpy.mean for full documentation.

See also:

ndarray.mean corresponding function for ndarrays

numpy.mean Equivalent function

numpy.ma.average Weighted average.

Examples

320 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
masked_array(data = [1 2 --],

mask = [False False True],
fill_value = 999999)

>>> a.mean()
1.5

numpy.ma.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)
Compute the median along the specified axis.

Returns the median of the array elements.

Parameters

a [array_like] Input array or object that can be converted to an array.

axis [int, optional] Axis along which the medians are computed. The default (None) is to com-
pute the median along a flattened version of the array.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output but the type will be cast if necessary.

overwrite_input [bool, optional] If True, then allow use of memory of input array (a) for calcu-
lations. The input array will be modified by the call to median. This will save memory when
you do not need to preserve the contents of the input array. Treat the input as undefined, but
it will probably be fully or partially sorted. Default is False. Note that, if overwrite_input is
True, and the input is not already an ndarray, an error will be raised.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

New in version 1.10.0.

Returns

median [ndarray] A new array holding the result is returned unless out is specified, in which
case a reference to out is returned. Return data-type is float64 for integers and floats smaller
than float64, or the input data-type, otherwise.

See also:

mean

Notes

Given a vector V with N non masked values, the median of V is the middle value of a sorted copy of V (Vs) - i.e.
Vs[(N-1)/2], when N is odd, or {Vs[N/2 - 1] + Vs[N/2]}/2 when N is even.

Examples

>>> x = np.ma.array(np.arange(8), mask=[0]*4 + [1]*4)
>>> np.ma.median(x)
1.5

1.7. Masked arrays 321



NumPy Reference, Release 1.15.1

>>> x = np.ma.array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4)
>>> np.ma.median(x)
2.5
>>> np.ma.median(x, axis=-1, overwrite_input=True)
masked_array(data = [ 2. 5.],

mask = False,
fill_value = 1e+20)

numpy.ma.power(a, b, third=None)
Returns element-wise base array raised to power from second array.

This is the masked array version of numpy.power. For details see numpy.power.

See also:

numpy.power

Notes

The out argument to numpy.power is not supported, third has to be None.

numpy.ma.prod(self, axis=None, dtype=None, out=None, keepdims=<no value>) = <numpy.ma.
core._frommethod object>

Return the product of the array elements over the given axis.

Masked elements are set to 1 internally for computation.

Refer to numpy.prod for full documentation.

See also:

ndarray.prod corresponding function for ndarrays

numpy.prod equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

numpy.ma.std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>) = <numpy.
ma.core._frommethod object>

Returns the standard deviation of the array elements along given axis.

Masked entries are ignored.

Refer to numpy.std for full documentation.

See also:

ndarray.std corresponding function for ndarrays

numpy.std Equivalent function

numpy.ma.sum(self, axis=None, dtype=None, out=None, keepdims=<no value>) = <numpy.ma.
core._frommethod object>

Return the sum of the array elements over the given axis.

Masked elements are set to 0 internally.

Refer to numpy.sum for full documentation.

322 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

See also:

ndarray.sum corresponding function for ndarrays

numpy.sum equivalent function

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> print(x.sum())
25
>>> print(x.sum(axis=1))
[4 5 16]
>>> print(x.sum(axis=0))
[8 5 12]
>>> print(type(x.sum(axis=0, dtype=np.int64)[0]))
<type 'numpy.int64'>

numpy.ma.var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>) = <numpy.
ma.core._frommethod object>

Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed
for the flattened array by default, otherwise over the specified axis.

Parameters

a [array_like] Array containing numbers whose variance is desired. If a is not an array, a con-
version is attempted.

axis [None or int or tuple of ints, optional] Axis or axes along which the variance is computed.
The default is to compute the variance of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a variance is performed over multiple axes, instead of a single axis
or all the axes as before.

dtype [data-type, optional] Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

out [ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output, but the type is cast if necessary.

ddof [int, optional] “Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of elements. By default ddof is zero.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the var method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns

1.7. Masked arrays 323



NumPy Reference, Release 1.15.1

variance [ndarray, see dtype parameter above] If out=None, returns a new array containing
the variance; otherwise, a reference to the output array is returned.

See also:

std, mean, nanmean, nanstd, nanvar

numpy.doc.ufuncs Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean(abs(x - x.
mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x). If, however, ddof is specified, the
divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator
of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a
higher-accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([ 1., 1.])
>>> np.var(a, axis=1)
array([ 0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.var(a)
0.20250003

Computing the variance in float64 is more accurate:

>>> np.var(a, dtype=np.float64)
0.20249999932944759
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.2025

Minimum/maximum

324 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

ma.argmax(self[, axis, fill_value, out]) Returns array of indices of the maximum values along the
given axis.

ma.argmin(self[, axis, fill_value, out]) Return array of indices to the minimum values along the
given axis.

ma.max(obj[, axis, out, fill_value, keepdims]) Return the maximum along a given axis.
ma.min(obj[, axis, out, fill_value, keepdims]) Return the minimum along a given axis.
ma.ptp(obj[, axis, out, fill_value, keepdims]) Return (maximum - minimum) along the given dimension

(i.e.
ma.MaskedArray.argmax([axis, fill_value, out]) Returns array of indices of the maximum values along the

given axis.
ma.MaskedArray.argmin([axis, fill_value, out]) Return array of indices to the minimum values along the

given axis.
ma.MaskedArray.max([axis, out, fill_value, . . . ]) Return the maximum along a given axis.
ma.MaskedArray.min([axis, out, fill_value, . . . ]) Return the minimum along a given axis.
ma.MaskedArray.ptp([axis, out, fill_value, . . . ]) Return (maximum - minimum) along the given dimension

(i.e.

numpy.ma.argmax(self, axis=None, fill_value=None, out=None) = <numpy.ma.core.
_frommethod object>

Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had
the value fill_value.

Parameters

axis [{None, integer}] If None, the index is into the flattened array, otherwise along the specified
axis

fill_value [{var}, optional] Value used to fill in the masked values. If None, the output of
maximum_fill_value(self._data) is used instead.

out [{None, array}, optional] Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

Returns

index_array [{integer_array}]

Examples

>>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
array([1, 1, 1])
>>> a.argmax(1)
array([2, 2])

numpy.ma.argmin(self, axis=None, fill_value=None, out=None) = <numpy.ma.core.
_frommethod object>

Return array of indices to the minimum values along the given axis.

Parameters

axis [{None, integer}] If None, the index is into the flattened array, otherwise along the specified
axis

1.7. Masked arrays 325



NumPy Reference, Release 1.15.1

fill_value [{var}, optional] Value used to fill in the masked values. If None, the output of
minimum_fill_value(self._data) is used instead.

out [{None, array}, optional] Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

Returns

ndarray or scalar If multi-dimension input, returns a new ndarray of indices to the minimum
values along the given axis. Otherwise, returns a scalar of index to the minimum values
along the given axis.

Examples

>>> x = np.ma.array(arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
>>> print(x)
[[-- --]
[2 3]]
>>> print(x.argmin(axis=0, fill_value=-1))
[0 0]
>>> print(x.argmin(axis=0, fill_value=9))
[1 1]

numpy.ma.max(obj, axis=None, out=None, fill_value=None, keepdims=<no value>)
Return the maximum along a given axis.

Parameters

axis [{None, int}, optional] Axis along which to operate. By default, axis is None and the
flattened input is used.

out [array_like, optional] Alternative output array in which to place the result. Must be of the
same shape and buffer length as the expected output.

fill_value [{var}, optional] Value used to fill in the masked values. If None, use the output of
maximum_fill_value().

Returns

amax [array_like] New array holding the result. If out was specified, out is returned.

See also:

maximum_fill_value Returns the maximum filling value for a given datatype.

numpy.ma.min(obj, axis=None, out=None, fill_value=None, keepdims=<no value>)
Return the minimum along a given axis.

Parameters

axis [{None, int}, optional] Axis along which to operate. By default, axis is None and the
flattened input is used.

out [array_like, optional] Alternative output array in which to place the result. Must be of the
same shape and buffer length as the expected output.

fill_value [{var}, optional] Value used to fill in the masked values. If None, use the output of
minimum_fill_value.

Returns

326 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

amin [array_like] New array holding the result. If out was specified, out is returned.

See also:

minimum_fill_value Returns the minimum filling value for a given datatype.

numpy.ma.ptp(obj, axis=None, out=None, fill_value=None, keepdims=<no value>)
Return (maximum - minimum) along the given dimension (i.e. peak-to-peak value).

Parameters

axis [{None, int}, optional] Axis along which to find the peaks. If None (default) the flattened
array is used.

out [{None, array_like}, optional] Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output but the type will be cast if
necessary.

fill_value [{var}, optional] Value used to fill in the masked values.

Returns

ptp [ndarray.] A new array holding the result, unless out was specified, in which case a refer-
ence to out is returned.

Sorting

ma.argsort(a[, axis, kind, order, endwith, . . . ]) Return an ndarray of indices that sort the array along the
specified axis.

ma.sort(a[, axis, kind, order, endwith, . . . ]) Sort the array, in-place
ma.MaskedArray.argsort([axis, kind, order, . . . ]) Return an ndarray of indices that sort the array along the

specified axis.
ma.MaskedArray.sort([axis, kind, order, . . . ]) Sort the array, in-place

numpy.ma.argsort(a, axis=<no value>, kind=’quicksort’, order=None, endwith=True, fill_value=None)
Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to
fill_value.

Parameters

axis [int, optional] Axis along which to sort. If None, the default, the flattened array is used.

Changed in version 1.13.0: Previously, the default was documented to be -1, but that was in
error. At some future date, the default will change to -1, as originally intended. Until then,
the axis should be given explicitly when arr.ndim > 1, to avoid a FutureWarning.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm.

order [list, optional] When a is an array with fields defined, this argument specifies which fields
to compare first, second, etc. Not all fields need be specified.

endwith [{True, False}, optional] Whether missing values (if any) should be treated as the
largest values (True) or the smallest values (False) When the array contains unmasked values
at the same extremes of the datatype, the ordering of these values and the masked values is
undefined.

fill_value [{var}, optional] Value used internally for the masked values. If fill_value is
not None, it supersedes endwith.

1.7. Masked arrays 327



NumPy Reference, Release 1.15.1

Returns

index_array [ndarray, int] Array of indices that sort a along the specified axis. In other words,
a[index_array] yields a sorted a.

See also:

MaskedArray.sort Describes sorting algorithms used.

lexsort Indirect stable sort with multiple keys.

ndarray.sort Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array(data = [3 2 --],

mask = [False False True],
fill_value = 999999)

>>> a.argsort()
array([1, 0, 2])

numpy.ma.sort(a, axis=-1, kind=’quicksort’, order=None, endwith=True, fill_value=None)
Sort the array, in-place

Parameters

a [array_like] Array to be sorted.

axis [int, optional] Axis along which to sort. If None, the array is flattened before sorting. The
default is -1, which sorts along the last axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. Default is
‘quicksort’.

order [list, optional] When a is a structured array, this argument specifies which fields to com-
pare first, second, and so on. This list does not need to include all of the fields.

endwith [{True, False}, optional] Whether missing values (if any) should be treated as the
largest values (True) or the smallest values (False) When the array contains unmasked values
at the same extremes of the datatype, the ordering of these values and the masked values is
undefined.

fill_value [{var}, optional] Value used internally for the masked values. If fill_value is
not None, it supersedes endwith.

Returns

sorted_array [ndarray] Array of the same type and shape as a.

See also:

ndarray.sort Method to sort an array in-place.

argsort Indirect sort.

328 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

lexsort Indirect stable sort on multiple keys.

searchsorted Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Default
>>> a.sort()
>>> print(a)
[1 3 5 -- --]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Put missing values in the front
>>> a.sort(endwith=False)
>>> print(a)
[-- -- 1 3 5]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # fill_value takes over endwith
>>> a.sort(endwith=False, fill_value=3)
>>> print(a)
[1 -- -- 3 5]

Algebra

ma.diag(v[, k]) Extract a diagonal or construct a diagonal array.
ma.dot(a, b[, strict, out]) Return the dot product of two arrays.
ma.identity(n[, dtype]) Return the identity array.
ma.inner(a, b) Inner product of two arrays.
ma.innerproduct(a, b) Inner product of two arrays.
ma.outer(a, b) Compute the outer product of two vectors.
ma.outerproduct(a, b) Compute the outer product of two vectors.
ma.trace(self[, offset, axis1, axis2, . . . ]) Return the sum along diagonals of the array.
ma.transpose(a[, axes]) Permute the dimensions of an array.
ma.MaskedArray.trace([offset, axis1, axis2, . . . ]) Return the sum along diagonals of the array.
ma.MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.

numpy.ma.diag(v, k=0)
Extract a diagonal or construct a diagonal array.

This function is the equivalent of numpy.diag that takes masked values into account, see numpy.diag for
details.

See also:

numpy.diag Equivalent function for ndarrays.

1.7. Masked arrays 329



NumPy Reference, Release 1.15.1

numpy.ma.dot(a, b, strict=False, out=None)
Return the dot product of two arrays.

This function is the equivalent of numpy.dot that takes masked values into account. Note that strict and out
are in different position than in the method version. In order to maintain compatibility with the corresponding
method, it is recommended that the optional arguments be treated as keyword only. At some point that may be
mandatory.

Note: Works only with 2-D arrays at the moment.

Parameters

a, b [masked_array_like] Inputs arrays.

strict [bool, optional] Whether masked data are propagated (True) or set to 0 (False) for the
computation. Default is False. Propagating the mask means that if a masked value appears
in a row or column, the whole row or column is considered masked.

out [masked_array, optional] Output argument. This must have the exact kind that would be re-
turned if it was not used. In particular, it must have the right type, must be C-contiguous, and
its dtype must be the dtype that would be returned for dot(a,b). This is a performance fea-
ture. Therefore, if these conditions are not met, an exception is raised, instead of attempting
to be flexible.

New in version 1.10.2.

See also:

numpy.dot Equivalent function for ndarrays.

Examples

>>> a = ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]])
>>> b = ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]])
>>> np.ma.dot(a, b)
masked_array(data =
[[21 26]
[45 64]],

mask =
[[False False]
[False False]],

fill_value = 999999)
>>> np.ma.dot(a, b, strict=True)
masked_array(data =
[[-- --]
[-- 64]],

mask =
[[ True True]
[ True False]],

fill_value = 999999)

numpy.ma.identity(n, dtype=None) = <numpy.ma.core._convert2ma object>
Return the identity array.

The identity array is a square array with ones on the main diagonal.

330 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Parameters

n [int] Number of rows (and columns) in n x n output.

dtype [data-type, optional] Data-type of the output. Defaults to float.

Returns

out [ndarray] n x n array with its main diagonal set to one, and all other elements 0.

Examples

>>> np.identity(3)
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

numpy.ma.inner(a, b)
Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum
product over the last axes.

Parameters

a, b [array_like] If a and b are nonscalar, their last dimensions must match.

Returns

out [ndarray] out.shape = a.shape[:-1] + b.shape[:-1]

Raises

ValueError If the last dimension of a and b has different size.

See also:

tensordot Sum products over arbitrary axes.

dot Generalised matrix product, using second last dimension of b.

einsum Einstein summation convention.

Notes

Masked values are replaced by 0.

For vectors (1-D arrays) it computes the ordinary inner-product:

np.inner(a, b) = sum(a[:]*b[:])

More generally, if ndim(a) = r > 0 and ndim(b) = s > 0:

np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))

or explicitly:

np.inner(a, b)[i0,...,ir-1,j0,...,js-1]
= sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:])

1.7. Masked arrays 331



NumPy Reference, Release 1.15.1

In addition a or b may be scalars, in which case:

np.inner(a,b) = a*b

Examples

Ordinary inner product for vectors:

>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2

A multidimensional example:

>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> np.inner(a, b)
array([[ 14, 38, 62],

[ 86, 110, 134]])

An example where b is a scalar:

>>> np.inner(np.eye(2), 7)
array([[ 7., 0.],

[ 0., 7.]])

numpy.ma.innerproduct(a, b)
Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum
product over the last axes.

Parameters

a, b [array_like] If a and b are nonscalar, their last dimensions must match.

Returns

out [ndarray] out.shape = a.shape[:-1] + b.shape[:-1]

Raises

ValueError If the last dimension of a and b has different size.

See also:

tensordot Sum products over arbitrary axes.

dot Generalised matrix product, using second last dimension of b.

einsum Einstein summation convention.

Notes

Masked values are replaced by 0.

For vectors (1-D arrays) it computes the ordinary inner-product:

332 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

np.inner(a, b) = sum(a[:]*b[:])

More generally, if ndim(a) = r > 0 and ndim(b) = s > 0:

np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))

or explicitly:

np.inner(a, b)[i0,...,ir-1,j0,...,js-1]
= sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:])

In addition a or b may be scalars, in which case:

np.inner(a,b) = a*b

Examples

Ordinary inner product for vectors:

>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2

A multidimensional example:

>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> np.inner(a, b)
array([[ 14, 38, 62],

[ 86, 110, 134]])

An example where b is a scalar:

>>> np.inner(np.eye(2), 7)
array([[ 7., 0.],

[ 0., 7.]])

numpy.ma.outer(a, b)
Compute the outer product of two vectors.

Given two vectors, a = [a0, a1, ..., aM] and b = [b0, b1, ..., bN], the outer product [1]
is:

[[a0*b0 a0*b1 ... a0*bN ]
[a1*b0 .
[ ... .
[aM*b0 aM*bN ]]

Parameters

a [(M,) array_like] First input vector. Input is flattened if not already 1-dimensional.

b [(N,) array_like] Second input vector. Input is flattened if not already 1-dimensional.

1.7. Masked arrays 333



NumPy Reference, Release 1.15.1

out [(M, N) ndarray, optional] A location where the result is stored

New in version 1.9.0.

Returns

out [(M, N) ndarray] out[i, j] = a[i] * b[j]

See also:

inner

einsum einsum('i,j->ij', a.ravel(), b.ravel()) is the equivalent.

ufunc.outer A generalization to N dimensions and other operations. np.multiply.outer(a.
ravel(), b.ravel()) is the equivalent.

Notes

Masked values are replaced by 0.

References

[1]

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],

[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.]])

>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[ 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],

[ 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
[ 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])

>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],

[-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
[-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
[-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
[-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

334 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([[a, aa, aaa],

[b, bb, bbb],
[c, cc, ccc]], dtype=object)

numpy.ma.outerproduct(a, b)
Compute the outer product of two vectors.

Given two vectors, a = [a0, a1, ..., aM] and b = [b0, b1, ..., bN], the outer product [1]
is:

[[a0*b0 a0*b1 ... a0*bN ]
[a1*b0 .
[ ... .
[aM*b0 aM*bN ]]

Parameters

a [(M,) array_like] First input vector. Input is flattened if not already 1-dimensional.

b [(N,) array_like] Second input vector. Input is flattened if not already 1-dimensional.

out [(M, N) ndarray, optional] A location where the result is stored

New in version 1.9.0.

Returns

out [(M, N) ndarray] out[i, j] = a[i] * b[j]

See also:

inner

einsum einsum('i,j->ij', a.ravel(), b.ravel()) is the equivalent.

ufunc.outer A generalization to N dimensions and other operations. np.multiply.outer(a.
ravel(), b.ravel()) is the equivalent.

Notes

Masked values are replaced by 0.

References

[1]

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],

[-2., -1., 0., 1., 2.],
(continues on next page)

1.7. Masked arrays 335



NumPy Reference, Release 1.15.1

(continued from previous page)

[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.]])

>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[ 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],

[ 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
[ 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])

>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],

[-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
[-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
[-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
[-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([[a, aa, aaa],

[b, bb, bbb],
[c, cc, ccc]], dtype=object)

numpy.ma.trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None) a.trace(offset=0, axis1=0,
axis2=1, dtype=None, out=None) = <numpy.ma.core._frommethod
object>

Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also:

numpy.trace equivalent function

Polynomial fit

ma.vander(x[, n]) Generate a Vandermonde matrix.
ma.polyfit(x, y, deg[, rcond, full, w, cov]) Least squares polynomial fit.

numpy.ma.vander(x, n=None)
Generate a Vandermonde matrix.

The columns of the output matrix are powers of the input vector. The order of the powers is determined by the
increasing boolean argument. Specifically, when increasing is False, the i-th output column is the input vector
raised element-wise to the power of N - i - 1. Such a matrix with a geometric progression in each row is
named for Alexandre- Theophile Vandermonde.

Parameters

x [array_like] 1-D input array.

N [int, optional] Number of columns in the output. If N is not specified, a square array is

336 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

returned (N = len(x)).

increasing [bool, optional] Order of the powers of the columns. If True, the powers increase
from left to right, if False (the default) they are reversed.

New in version 1.9.0.

Returns

out [ndarray] Vandermonde matrix. If increasing is False, the first column is x^(N-1), the
second x^(N-2) and so forth. If increasing is True, the columns are x^0, x^1, ...,
x^(N-1).

See also:

polynomial.polynomial.polyvander

Notes

Masked values in the input array result in rows of zeros.

Examples

>>> x = np.array([1, 2, 3, 5])
>>> N = 3
>>> np.vander(x, N)
array([[ 1, 1, 1],

[ 4, 2, 1],
[ 9, 3, 1],
[25, 5, 1]])

>>> np.column_stack([x**(N-1-i) for i in range(N)])
array([[ 1, 1, 1],

[ 4, 2, 1],
[ 9, 3, 1],
[25, 5, 1]])

>>> x = np.array([1, 2, 3, 5])
>>> np.vander(x)
array([[ 1, 1, 1, 1],

[ 8, 4, 2, 1],
[ 27, 9, 3, 1],
[125, 25, 5, 1]])

>>> np.vander(x, increasing=True)
array([[ 1, 1, 1, 1],

[ 1, 2, 4, 8],
[ 1, 3, 9, 27],
[ 1, 5, 25, 125]])

The determinant of a square Vandermonde matrix is the product of the differences between the values of the
input vector:

>>> np.linalg.det(np.vander(x))
48.000000000000043
>>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
48

1.7. Masked arrays 337



NumPy Reference, Release 1.15.1

numpy.ma.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)
Least squares polynomial fit.

Fit a polynomial p(x) = p[0] * x**deg + ... + p[deg] of degree deg to points (x, y). Returns a
vector of coefficients p that minimises the squared error.

Parameters

x [array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y [array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg [int] Degree of the fitting polynomial

rcond [float, optional] Relative condition number of the fit. Singular values smaller than this
relative to the largest singular value will be ignored. The default value is len(x)*eps, where
eps is the relative precision of the float type, about 2e-16 in most cases.

full [bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w [array_like, shape (M,), optional] Weights to apply to the y-coordinates of the sample points.
For gaussian uncertainties, use 1/sigma (not 1/sigma**2).

cov [bool, optional] Return the estimate and the covariance matrix of the estimate If full is True,
then cov is not returned.

Returns

p [ndarray, shape (deg + 1,) or (deg + 1, K)] Polynomial coefficients, highest power first. If y
was 2-D, the coefficients for k-th data set are in p[:,k].

residuals, rank, singular_values, rcond Present only if full = True. Residuals of the least-
squares fit, the effective rank of the scaled Vandermonde coefficient matrix, its singular
values, and the specified value of rcond. For more details, see linalg.lstsq.

V [ndarray, shape (M,M) or (M,M,K)] Present only if full = False and cov‘=True. The covari-
ance matrix of the polynomial coefficient estimates. The diagonal of this matrix are the
variance estimates for each coefficient. If y is a 2-D array, then the covariance matrix for
the ‘k-th data set are in V[:,:,k]

Warns

RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warn-
ing is only raised if full = False.

The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', np.RankWarning)

See also:

polyval Compute polynomial values.

linalg.lstsq Computes a least-squares fit.

scipy.interpolate.UnivariateSpline Computes spline fits.

338 Chapter 1. Array objects

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline


NumPy Reference, Release 1.15.1

Notes

Any masked values in x is propagated in y, and vice-versa.

The solution minimizes the squared error

𝐸 =

𝑘∑︁
𝑗=0

|𝑝(𝑥𝑗) − 𝑦𝑗 |2

in the equations:

x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0]
x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1]
...
x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k]

The coefficient matrix of the coefficients p is a Vandermonde matrix.

polyfit issues a RankWarning when the least-squares fit is badly conditioned. This implies that the best fit
is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree or
by replacing x by x - x.mean(). The rcond parameter can also be set to a value smaller than its default, but the
resulting fit may be spurious: including contributions from the small singular values can add numerical noise to
the result.

Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is
large or the interval of sample points is badly centered. The quality of the fit should always be checked in these
cases. When polynomial fits are not satisfactory, splines may be a good alternative.

References

[1], [2]

Examples

>>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> z = np.polyfit(x, y, 3)
>>> z
array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254])

It is convenient to use poly1d objects for dealing with polynomials:

>>> p = np.poly1d(z)
>>> p(0.5)
0.6143849206349179
>>> p(3.5)
-0.34732142857143039
>>> p(10)
22.579365079365115

High-order polynomials may oscillate wildly:

1.7. Masked arrays 339



NumPy Reference, Release 1.15.1

>>> p30 = np.poly1d(np.polyfit(x, y, 30))
/... RankWarning: Polyfit may be poorly conditioned...
>>> p30(4)
-0.80000000000000204
>>> p30(5)
-0.99999999999999445
>>> p30(4.5)
-0.10547061179440398

Illustration:

>>> import matplotlib.pyplot as plt
>>> xp = np.linspace(-2, 6, 100)
>>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
>>> plt.ylim(-2,2)
(-2, 2)
>>> plt.show()

2 1 0 1 2 3 4 5 6
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Clipping and rounding

ma.around Round an array to the given number of decimals.
ma.clip(a, a_min, a_max[, out]) Clip (limit) the values in an array.
ma.round(a[, decimals, out]) Return a copy of a, rounded to ‘decimals’ places.
ma.MaskedArray.clip([min, max, out]) Return an array whose values are limited to [min, max].
ma.MaskedArray.round([decimals, out]) Return each element rounded to the given number of deci-

mals.

numpy.ma.around = <numpy.ma.core._MaskedUnaryOperation object>
Round an array to the given number of decimals.

Refer to around for full documentation.

See also:

340 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

around equivalent function

numpy.ma.clip(a, a_min, a_max, out=None)
Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of
[0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.

Parameters

a [array_like] Array containing elements to clip.

a_min [scalar or array_like or None] Minimum value. If None, clipping is not performed on
lower interval edge. Not more than one of a_min and a_max may be None.

a_max [scalar or array_like or None] Maximum value. If None, clipping is not performed on
upper interval edge. Not more than one of a_min and a_max may be None. If a_min or
a_max are array_like, then the three arrays will be broadcasted to match their shapes.

out [ndarray, optional] The results will be placed in this array. It may be the input array for
in-place clipping. out must be of the right shape to hold the output. Its type is preserved.

Returns

clipped_array [ndarray] An array with the elements of a, but where values < a_min are re-
placed with a_min, and those > a_max with a_max.

See also:

numpy.doc.ufuncs Section “Output arguments”

Examples

>>> a = np.arange(10)
>>> np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 3, 6, out=a)
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8)
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

numpy.ma.round(a, decimals=0, out=None)
Return a copy of a, rounded to ‘decimals’ places.

When ‘decimals’ is negative, it specifies the number of positions to the left of the decimal point. The real and
imaginary parts of complex numbers are rounded separately. Nothing is done if the array is not of float type and
‘decimals’ is greater than or equal to 0.

Parameters

decimals [int] Number of decimals to round to. May be negative.

out [array_like] Existing array to use for output. If not given, returns a default copy of a.

1.7. Masked arrays 341



NumPy Reference, Release 1.15.1

Notes

If out is given and does not have a mask attribute, the mask of a is lost!

Miscellanea

ma.allequal(a, b[, fill_value]) Return True if all entries of a and b are equal, using
fill_value as a truth value where either or both are masked.

ma.allclose(a, b[, masked_equal, rtol, atol]) Returns True if two arrays are element-wise equal within a
tolerance.

ma.apply_along_axis(func1d, axis, arr, . . . ) Apply a function to 1-D slices along the given axis.
ma.arange([start,] stop[, step,][, dtype]) Return evenly spaced values within a given interval.
ma.choose(indices, choices[, out, mode]) Use an index array to construct a new array from a set of

choices.
ma.ediff1d(arr[, to_end, to_begin]) Compute the differences between consecutive elements of

an array.
ma.indices(dimensions[, dtype]) Return an array representing the indices of a grid.
ma.where(condition[, x, y]) Return a masked array with elements from x or y, depend-

ing on condition.

numpy.ma.allequal(a, b, fill_value=True)
Return True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked.

Parameters

a, b [array_like] Input arrays to compare.

fill_value [bool, optional] Whether masked values in a or b are considered equal (True) or not
(False).

Returns

y [bool] Returns True if the two arrays are equal within the given tolerance, False otherwise. If
either array contains NaN, then False is returned.

See also:

all, any , numpy.ma.allclose

Examples

>>> a = ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
>>> a
masked_array(data = [10000000000.0 1e-07 --],

mask = [False False True],
fill_value=1e+20)

>>> b = array([1e10, 1e-7, -42.0])
>>> b
array([ 1.00000000e+10, 1.00000000e-07, -4.20000000e+01])
>>> ma.allequal(a, b, fill_value=False)
False
>>> ma.allequal(a, b)
True

342 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

numpy.ma.allclose(a, b, masked_equal=True, rtol=1e-05, atol=1e-08)
Returns True if two arrays are element-wise equal within a tolerance.

This function is equivalent to allclose except that masked values are treated as equal (default) or unequal,
depending on the masked_equal argument.

Parameters

a, b [array_like] Input arrays to compare.

masked_equal [bool, optional] Whether masked values in a and b are considered equal (True)
or not (False). They are considered equal by default.

rtol [float, optional] Relative tolerance. The relative difference is equal to rtol * b. Default
is 1e-5.

atol [float, optional] Absolute tolerance. The absolute difference is equal to atol. Default is
1e-8.

Returns

y [bool] Returns True if the two arrays are equal within the given tolerance, False otherwise. If
either array contains NaN, then False is returned.

See also:

all, any

numpy.allclose the non-masked allclose.

Notes

If the following equation is element-wise True, then allclose returns True:

absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))

Return True if all elements of a and b are equal subject to given tolerances.

Examples

>>> a = ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
>>> a
masked_array(data = [10000000000.0 1e-07 --],

mask = [False False True],
fill_value = 1e+20)

>>> b = ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1])
>>> ma.allclose(a, b)
False

>>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
>>> b = ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1])
>>> ma.allclose(a, b)
True
>>> ma.allclose(a, b, masked_equal=False)
False

Masked values are not compared directly.

1.7. Masked arrays 343



NumPy Reference, Release 1.15.1

>>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
>>> b = ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1])
>>> ma.allclose(a, b)
True
>>> ma.allclose(a, b, masked_equal=False)
False

numpy.ma.apply_along_axis(func1d, axis, arr, *args, **kwargs)
Apply a function to 1-D slices along the given axis.

Execute func1d(a, *args) where func1d operates on 1-D arrays and a is a 1-D slice of arr along axis.

This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of ii, jj, and kk to
a tuple of indices:

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):

for kk in ndindex(Nk):
f = func1d(arr[ii + s_[:,] + kk])
Nj = f.shape
for jj in ndindex(Nj):

out[ii + jj + kk] = f[jj]

Equivalently, eliminating the inner loop, this can be expressed as:

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):

for kk in ndindex(Nk):
out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk])

Parameters

func1d [function (M,) -> (Nj. . . )] This function should accept 1-D arrays. It is applied to 1-D
slices of arr along the specified axis.

axis [integer] Axis along which arr is sliced.

arr [ndarray (Ni. . . , M, Nk. . . )] Input array.

args [any] Additional arguments to func1d.

kwargs [any] Additional named arguments to func1d.

New in version 1.9.0.

Returns

out [ndarray (Ni. . . , Nj. . . , Nk. . . )] The output array. The shape of out is identical to the
shape of arr, except along the axis dimension. This axis is removed, and replaced with new
dimensions equal to the shape of the return value of func1d. So if func1d returns a scalar
out will have one fewer dimensions than arr.

See also:

apply_over_axes Apply a function repeatedly over multiple axes.

344 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Examples

>>> def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
array([ 4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
array([ 2., 5., 8.])

For a function that returns a 1D array, the number of dimensions in outarr is the same as arr.

>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
>>> np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],

[3, 4, 9],
[2, 5, 6]])

For a function that returns a higher dimensional array, those dimensions are inserted in place of the axis dimen-
sion.

>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(np.diag, -1, b)
array([[[1, 0, 0],

[0, 2, 0],
[0, 0, 3]],

[[4, 0, 0],
[0, 5, 0],
[0, 0, 6]],

[[7, 0, 0],
[0, 8, 0],
[0, 0, 9]]])

numpy.ma.arange([start ], stop[, step], dtype=None) = <numpy.ma.core._convert2ma
object>

Return evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop) (in other words, the interval including
start but excluding stop). For integer arguments the function is equivalent to the Python built-in range function,
but returns an ndarray rather than a list.

When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use linspace
for these cases.

Parameters

start [number, optional] Start of interval. The interval includes this value. The default start
value is 0.

stop [number] End of interval. The interval does not include this value, except in some cases
where step is not an integer and floating point round-off affects the length of out.

step [number, optional] Spacing between values. For any output out, this is the distance between
two adjacent values, out[i+1] - out[i]. The default step size is 1. If step is specified
as a position argument, start must also be given.

dtype [dtype] The type of the output array. If dtype is not given, infer the data type from the
other input arguments.

1.7. Masked arrays 345

http://docs.python.org/lib/built-in-funcs.html


NumPy Reference, Release 1.15.1

Returns

arange [ndarray] Array of evenly spaced values.

For floating point arguments, the length of the result is ceil((stop - start)/
step). Because of floating point overflow, this rule may result in the last element of out
being greater than stop.

See also:

linspace Evenly spaced numbers with careful handling of endpoints.

ogrid Arrays of evenly spaced numbers in N-dimensions.

mgrid Grid-shaped arrays of evenly spaced numbers in N-dimensions.

Examples

>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([ 0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])

numpy.ma.choose(indices, choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Given an array of integers and a set of n choice arrays, this method will create a new array that merges each of
the choice arrays. Where a value in a is i, the new array will have the value that choices[i] contains in the same
place.

Parameters

a [ndarray of ints] This array must contain integers in [0, n-1], where n is the number of
choices.

choices [sequence of arrays] Choice arrays. The index array and all of the choices should be
broadcastable to the same shape.

out [array, optional] If provided, the result will be inserted into this array. It should be of the
appropriate shape and dtype.

mode [{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices will behave.

• ‘raise’ : raise an error

• ‘wrap’ : wrap around

• ‘clip’ : clip to the range

Returns

merged_array [array]

See also:

choose equivalent function

346 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

Examples

>>> choice = np.array([[1,1,1], [2,2,2], [3,3,3]])
>>> a = np.array([2, 1, 0])
>>> np.ma.choose(a, choice)
masked_array(data = [3 2 1],

mask = False,
fill_value=999999)

numpy.ma.ediff1d(arr, to_end=None, to_begin=None)
Compute the differences between consecutive elements of an array.

This function is the equivalent of numpy.ediff1d that takes masked values into account, see numpy.
ediff1d for details.

See also:

numpy.ediff1d Equivalent function for ndarrays.

numpy.ma.indices(dimensions, dtype=<class ’int’>)
Return an array representing the indices of a grid.

Compute an array where the subarrays contain index values 0,1,. . . varying only along the corresponding axis.

Parameters

dimensions [sequence of ints] The shape of the grid.

dtype [dtype, optional] Data type of the result.

Returns

grid [ndarray] The array of grid indices, grid.shape = (len(dimensions),) +
tuple(dimensions).

See also:

mgrid, meshgrid

Notes

The output shape is obtained by prepending the number of dimensions in front of the tuple of dimensions, i.e. if
dimensions is a tuple (r0, ..., rN-1) of length N, the output shape is (N,r0,...,rN-1).

The subarrays grid[k] contains the N-D array of indices along the k-th axis. Explicitly:

grid[k,i0,i1,...,iN-1] = ik

Examples

>>> grid = np.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array([[0, 0, 0],

[1, 1, 1]])
>>> grid[1] # column indices

(continues on next page)

1.7. Masked arrays 347



NumPy Reference, Release 1.15.1

(continued from previous page)

array([[0, 1, 2],
[0, 1, 2]])

The indices can be used as an index into an array.

>>> x = np.arange(20).reshape(5, 4)
>>> row, col = np.indices((2, 3))
>>> x[row, col]
array([[0, 1, 2],

[4, 5, 6]])

Note that it would be more straightforward in the above example to extract the required elements directly with
x[:2, :3].

numpy.ma.where(condition, x=<no value>, y=<no value>)
Return a masked array with elements from x or y, depending on condition.

Returns a masked array, shaped like condition, where the elements are from x when condition is True, and from
y otherwise. If neither x nor y are given, the function returns a tuple of indices where condition is True (the
result of condition.nonzero()).

Parameters

condition [array_like, bool] The condition to meet. For each True element, yield the corre-
sponding element from x, otherwise from y.

x, y [array_like, optional] Values from which to choose. x, y and condition need to be broad-
castable to some shape.

Returns

out [MaskedArray or tuple of ndarrays] The resulting masked array if x and y were given,
otherwise the result of condition.nonzero().

See also:

numpy.where Equivalent function in the top-level NumPy module.

Examples

>>> x = np.ma.array(np.arange(9.).reshape(3, 3), mask=[[0, 1, 0],
... [1, 0, 1],
... [0, 1, 0]])
>>> print(x)
[[0.0 -- 2.0]
[-- 4.0 --]
[6.0 -- 8.0]]

>>> np.ma.where(x > 5) # return the indices where x > 5
(array([2, 2]), array([0, 2]))

>>> print(np.ma.where(x > 5, x, -3.1416))
[[-3.1416 -- -3.1416]
[-- -3.1416 --]
[6.0 -- 8.0]]

348 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

1.8 The Array Interface

Note: This page describes the numpy-specific API for accessing the contents of a numpy array from other C exten-
sions. PEP 3118 – The Revised Buffer Protocol introduces similar, standardized API to Python 2.6 and
3.0 for any extension module to use. Cython’s buffer array support uses the PEP 3118 API; see the Cython numpy
tutorial. Cython provides a way to write code that supports the buffer protocol with Python versions older than 2.6
because it has a backward-compatible implementation utilizing the array interface described here.

version 3

The array interface (sometimes called array protocol) was created in 2005 as a means for array-like Python objects to
re-use each other’s data buffers intelligently whenever possible. The homogeneous N-dimensional array interface is
a default mechanism for objects to share N-dimensional array memory and information. The interface consists of a
Python-side and a C-side using two attributes. Objects wishing to be considered an N-dimensional array in application
code should support at least one of these attributes. Objects wishing to support an N-dimensional array in application
code should look for at least one of these attributes and use the information provided appropriately.

This interface describes homogeneous arrays in the sense that each item of the array has the same “type”. This type
can be very simple or it can be a quite arbitrary and complicated C-like structure.

There are two ways to use the interface: A Python side and a C-side. Both are separate attributes.

1.8.1 Python side

This approach to the interface consists of the object having an __array_interface__ attribute.

__array_interface__
A dictionary of items (3 required and 5 optional). The optional keys in the dictionary have implied defaults if
they are not provided.

The keys are:

shape (required)

Tuple whose elements are the array size in each dimension. Each entry is an integer (a Python int or
long). Note that these integers could be larger than the platform “int” or “long” could hold (a Python
int is a C long). It is up to the code using this attribute to handle this appropriately; either by raising
an error when overflow is possible, or by using Py_LONG_LONG as the C type for the shapes.

typestr (required)

A string providing the basic type of the homogenous array The basic string format consists of 3 parts:
a character describing the byteorder of the data (<: little-endian, >: big-endian, |: not-relevant), a
character code giving the basic type of the array, and an integer providing the number of bytes the
type uses.

The basic type character codes are:

1.8. The Array Interface 349

https://www.python.org/dev/peps/pep-3118
https://docs.python.org/dev/c-api/buffer.html#c.PyObject_GetBuffer
http://cython.org/
https://www.python.org/dev/peps/pep-3118
http://wiki.cython.org/tutorials/numpy
http://wiki.cython.org/tutorials/numpy


NumPy Reference, Release 1.15.1

t Bit field (following integer gives the number of bits in the bit field).
b Boolean (integer type where all values are only True or False)
i Integer
u Unsigned integer
f Floating point
c Complex floating point
m Timedelta
M Datetime
O Object (i.e. the memory contains a pointer to PyObject)
S String (fixed-length sequence of char)
U Unicode (fixed-length sequence of Py_UNICODE)
V Other (void * – each item is a fixed-size chunk of memory)

descr (optional)

A list of tuples providing a more detailed description of the memory layout for each item in the
homogeneous array. Each tuple in the list has two or three elements. Normally, this attribute would
be used when typestr is V[0-9]+, but this is not a requirement. The only requirement is that the
number of bytes represented in the typestr key is the same as the total number of bytes represented
here. The idea is to support descriptions of C-like structs that make up array elements. The elements
of each tuple in the list are

1. A string providing a name associated with this portion of the datatype. This could also be a tuple
of ('full name', 'basic_name') where basic name would be a valid Python variable
name representing the full name of the field.

2. Either a basic-type description string as in typestr or another list (for nested structured types)

3. An optional shape tuple providing how many times this part of the structure should be repeated.
No repeats are assumed if this is not given. Very complicated structures can be described using
this generic interface. Notice, however, that each element of the array is still of the same data-
type. Some examples of using this interface are given below.

Default: [('', typestr)]

data (optional)

A 2-tuple whose first argument is an integer (a long integer if necessary) that points to the data-area
storing the array contents. This pointer must point to the first element of data (in other words any
offset is always ignored in this case). The second entry in the tuple is a read-only flag (true means
the data area is read-only).

This attribute can also be an object exposing the buffer interface which will be used to share
the data. If this key is not present (or returns None), then memory sharing will be done through the
buffer interface of the object itself. In this case, the offset key can be used to indicate the start of the
buffer. A reference to the object exposing the array interface must be stored by the new object if the
memory area is to be secured.

Default: None

strides (optional)

Either None to indicate a C-style contiguous array or a Tuple of strides which provides the number of
bytes needed to jump to the next array element in the corresponding dimension. Each entry must be
an integer (a Python int or long). As with shape, the values may be larger than can be represented
by a C “int” or “long”; the calling code should handle this appropriately, either by raising an error, or
by using Py_LONG_LONG in C. The default is None which implies a C-style contiguous memory
buffer. In this model, the last dimension of the array varies the fastest. For example, the default

350 Chapter 1. Array objects

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/unicode.html#c.Py_UNICODE
https://docs.python.org/dev/c-api/objbuffer.html#c.PyObject_AsCharBuffer


NumPy Reference, Release 1.15.1

strides tuple for an object whose array entries are 8 bytes long and whose shape is (10,20,30) would
be (4800, 240, 8)

Default: None (C-style contiguous)

mask (optional)

None or an object exposing the array interface. All elements of the mask array should be interpreted
only as true or not true indicating which elements of this array are valid. The shape of this object
should be “broadcastable” to the shape of the original array.

Default: None (All array values are valid)

offset (optional)

An integer offset into the array data region. This can only be used when data is None or returns a
buffer object.

Default: 0.

version (required)

An integer showing the version of the interface (i.e. 3 for this version). Be careful not to use this to
invalidate objects exposing future versions of the interface.

1.8.2 C-struct access

This approach to the array interface allows for faster access to an array using only one attribute lookup and a well-
defined C-structure.

__array_struct__
A :c:type: PyCObject whose voidptr member contains a pointer to a filled PyArrayInterface structure.
Memory for the structure is dynamically created and the PyCObject is also created with an appropriate de-
structor so the retriever of this attribute simply has to apply Py_DECREF to the object returned by this attribute
when it is finished. Also, either the data needs to be copied out, or a reference to the object exposing this at-
tribute must be held to ensure the data is not freed. Objects exposing the __array_struct__ interface must
also not reallocate their memory if other objects are referencing them.

The PyArrayInterface structure is defined in numpy/ndarrayobject.h as:

typedef struct {
int two; /* contains the integer 2 -- simple sanity check */
int nd; /* number of dimensions */
char typekind; /* kind in array --- character code of typestr */
int itemsize; /* size of each element */
int flags; /* flags indicating how the data should be interpreted */

/* must set ARR_HAS_DESCR bit to validate descr */
Py_intptr_t *shape; /* A length-nd array of shape information */
Py_intptr_t *strides; /* A length-nd array of stride information */
void *data; /* A pointer to the first element of the array */
PyObject *descr; /* NULL or data-description (same as descr key

of __array_interface__) -- must set ARR_HAS_DESCR
flag or this will be ignored. */

} PyArrayInterface;

The flags member may consist of 5 bits showing how the data should be interpreted and one bit showing how
the Interface should be interpreted. The data-bits are CONTIGUOUS (0x1), FORTRAN (0x2), ALIGNED (0x100),
NOTSWAPPED (0x200), and WRITEABLE (0x400). A final flag ARR_HAS_DESCR (0x800) indicates whether or not
this structure has the arrdescr field. The field should not be accessed unless this flag is present.

1.8. The Array Interface 351

https://docs.python.org/dev/c-api/refcounting.html#c.Py_DECREF


NumPy Reference, Release 1.15.1

New since June 16, 2006:

In the past most implementations used the “desc” member of the PyCObject itself (do not confuse this with the
“descr” member of the PyArrayInterface structure above — they are two separate things) to hold the pointer to
the object exposing the interface. This is now an explicit part of the interface. Be sure to own a reference to the object
when the PyCObject is created using PyCObject_FromVoidPtrAndDesc.

1.8.3 Type description examples

For clarity it is useful to provide some examples of the type description and corresponding __array_interface__
‘descr’ entries. Thanks to Scott Gilbert for these examples:

In every case, the ‘descr’ key is optional, but of course provides more information which may be important for various
applications:

* Float data
typestr == '>f4'
descr == [('','>f4')]

* Complex double
typestr == '>c8'
descr == [('real','>f4'), ('imag','>f4')]

* RGB Pixel data
typestr == '|V3'
descr == [('r','|u1'), ('g','|u1'), ('b','|u1')]

* Mixed endian (weird but could happen).
typestr == '|V8' (or '>u8')
descr == [('big','>i4'), ('little','<i4')]

* Nested structure
struct {

int ival;
struct {

unsigned short sval;
unsigned char bval;
unsigned char cval;

} sub;
}
typestr == '|V8' (or '<u8' if you want)
descr == [('ival','<i4'), ('sub', [('sval','<u2'), ('bval','|u1'), ('cval','|u1')

→˓]) ]

* Nested array
struct {

int ival;
double data[16*4];

}
typestr == '|V516'
descr == [('ival','>i4'), ('data','>f8',(16,4))]

* Padded structure
struct {

int ival;

(continues on next page)

352 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

double dval;
}
typestr == '|V16'
descr == [('ival','>i4'),('','|V4'),('dval','>f8')]

It should be clear that any structured type could be described using this interface.

1.8.4 Differences with Array interface (Version 2)

The version 2 interface was very similar. The differences were largely aesthetic. In particular:

1. The PyArrayInterface structure had no descr member at the end (and therefore no flag ARR_HAS_DESCR)

2. The desc member of the PyCObject returned from __array_struct__ was not specified. Usually, it was the object
exposing the array (so that a reference to it could be kept and destroyed when the C-object was destroyed). Now
it must be a tuple whose first element is a string with “PyArrayInterface Version #” and whose second element
is the object exposing the array.

3. The tuple returned from __array_interface__[‘data’] used to be a hex-string (now it is an integer or a long
integer).

4. There was no __array_interface__ attribute instead all of the keys (except for version) in the __array_interface__
dictionary were their own attribute: Thus to obtain the Python-side information you had to access separately the
attributes:

• __array_data__

• __array_shape__

• __array_strides__

• __array_typestr__

• __array_descr__

• __array_offset__

• __array_mask__

1.9 Datetimes and Timedeltas

New in version 1.7.0.

Starting in NumPy 1.7, there are core array data types which natively support datetime functionality. The data type is
called “datetime64”, so named because “datetime” is already taken by the datetime library included in Python.

Note: The datetime API is experimental in 1.7.0, and may undergo changes in future versions of NumPy.

1.9.1 Basic Datetimes

The most basic way to create datetimes is from strings in ISO 8601 date or datetime format. The unit for internal
storage is automatically selected from the form of the string, and can be either a date unit or a time unit. The date
units are years (‘Y’), months (‘M’), weeks (‘W’), and days (‘D’), while the time units are hours (‘h’), minutes (‘m’),
seconds (‘s’), milliseconds (‘ms’), and some additional SI-prefix seconds-based units.

1.9. Datetimes and Timedeltas 353



NumPy Reference, Release 1.15.1

Example

A simple ISO date:

>>> np.datetime64('2005-02-25')
numpy.datetime64('2005-02-25')

Using months for the unit:

>>> np.datetime64('2005-02')
numpy.datetime64('2005-02')

Specifying just the month, but forcing a ‘days’ unit:

>>> np.datetime64('2005-02', 'D')
numpy.datetime64('2005-02-01')

From a date and time:

>>> np.datetime64('2005-02-25T03:30')
numpy.datetime64('2005-02-25T03:30')

When creating an array of datetimes from a string, it is still possible to automatically select the unit from the inputs,
by using the datetime type with generic units.

Example

>>> np.array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64')
array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64[D]')

>>> np.array(['2001-01-01T12:00', '2002-02-03T13:56:03.172'], dtype='datetime64')
array(['2001-01-01T12:00:00.000-0600', '2002-02-03T13:56:03.172-0600'], dtype=
→˓'datetime64[ms]')

The datetime type works with many common NumPy functions, for example arange can be used to generate ranges
of dates.

Example

All the dates for one month:

>>> np.arange('2005-02', '2005-03', dtype='datetime64[D]')
array(['2005-02-01', '2005-02-02', '2005-02-03', '2005-02-04',

'2005-02-05', '2005-02-06', '2005-02-07', '2005-02-08',
'2005-02-09', '2005-02-10', '2005-02-11', '2005-02-12',
'2005-02-13', '2005-02-14', '2005-02-15', '2005-02-16',
'2005-02-17', '2005-02-18', '2005-02-19', '2005-02-20',
'2005-02-21', '2005-02-22', '2005-02-23', '2005-02-24',
'2005-02-25', '2005-02-26', '2005-02-27', '2005-02-28'],
dtype='datetime64[D]')

The datetime object represents a single moment in time. If two datetimes have different units, they may still be
representing the same moment of time, and converting from a bigger unit like months to a smaller unit like days is

354 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

considered a ‘safe’ cast because the moment of time is still being represented exactly.

Example

>>> np.datetime64('2005') == np.datetime64('2005-01-01')
True

>>> np.datetime64('2010-03-14T15Z') == np.datetime64('2010-03-14T15:00:00.00Z')
True

1.9.2 Datetime and Timedelta Arithmetic

NumPy allows the subtraction of two Datetime values, an operation which produces a number with a time unit.
Because NumPy doesn’t have a physical quantities system in its core, the timedelta64 data type was created to com-
plement datetime64.

Datetimes and Timedeltas work together to provide ways for simple datetime calculations.

Example

>>> np.datetime64('2009-01-01') - np.datetime64('2008-01-01')
numpy.timedelta64(366,'D')

>>> np.datetime64('2009') + np.timedelta64(20, 'D')
numpy.datetime64('2009-01-21')

>>> np.datetime64('2011-06-15T00:00') + np.timedelta64(12, 'h')
numpy.datetime64('2011-06-15T12:00-0500')

>>> np.timedelta64(1,'W') / np.timedelta64(1,'D')
7.0

There are two Timedelta units (‘Y’, years and ‘M’, months) which are treated specially, because how much time they
represent changes depending on when they are used. While a timedelta day unit is equivalent to 24 hours, there is no
way to convert a month unit into days, because different months have different numbers of days.

Example

>>> a = np.timedelta64(1, 'Y')

>>> np.timedelta64(a, 'M')
numpy.timedelta64(12,'M')

>>> np.timedelta64(a, 'D')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Cannot cast NumPy timedelta64 scalar from metadata [Y] to [D] according to
→˓the rule 'same_kind'

1.9. Datetimes and Timedeltas 355



NumPy Reference, Release 1.15.1

1.9.3 Datetime Units

The Datetime and Timedelta data types support a large number of time units, as well as generic units which can be
coerced into any of the other units based on input data.

Datetimes are always stored based on POSIX time (though having a TAI mode which allows for accounting of leap-
seconds is proposed), with an epoch of 1970-01-01T00:00Z. This means the supported dates are always a symmetric
interval around the epoch, called “time span” in the table below.

The length of the span is the range of a 64-bit integer times the length of the date or unit. For example, the time span
for ‘W’ (week) is exactly 7 times longer than the time span for ‘D’ (day), and the time span for ‘D’ (day) is exactly 24
times longer than the time span for ‘h’ (hour).

Here are the date units:

Code Meaning Time span (relative) Time span (absolute)
Y year +/- 9.2e18 years [9.2e18 BC, 9.2e18 AD]
M month +/- 7.6e17 years [7.6e17 BC, 7.6e17 AD]
W week +/- 1.7e17 years [1.7e17 BC, 1.7e17 AD]
D day +/- 2.5e16 years [2.5e16 BC, 2.5e16 AD]

And here are the time units:

Code Meaning Time span (relative) Time span (absolute)
h hour +/- 1.0e15 years [1.0e15 BC, 1.0e15 AD]
m minute +/- 1.7e13 years [1.7e13 BC, 1.7e13 AD]
s second +/- 2.9e11 years [2.9e11 BC, 2.9e11 AD]
ms millisecond +/- 2.9e8 years [ 2.9e8 BC, 2.9e8 AD]
us microsecond +/- 2.9e5 years [290301 BC, 294241 AD]
ns nanosecond +/- 292 years [ 1678 AD, 2262 AD]
ps picosecond +/- 106 days [ 1969 AD, 1970 AD]
fs femtosecond +/- 2.6 hours [ 1969 AD, 1970 AD]
as attosecond +/- 9.2 seconds [ 1969 AD, 1970 AD]

1.9.4 Business Day Functionality

To allow the datetime to be used in contexts where only certain days of the week are valid, NumPy includes a set of
“busday” (business day) functions.

The default for busday functions is that the only valid days are Monday through Friday (the usual business days). The
implementation is based on a “weekmask” containing 7 Boolean flags to indicate valid days; custom weekmasks are
possible that specify other sets of valid days.

The “busday” functions can additionally check a list of “holiday” dates, specific dates that are not valid days.

The function busday_offset allows you to apply offsets specified in business days to datetimes with a unit of ‘D’
(day).

Example

>>> np.busday_offset('2011-06-23', 1)
numpy.datetime64('2011-06-24')

356 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

>>> np.busday_offset('2011-06-23', 2)
numpy.datetime64('2011-06-27')

When an input date falls on the weekend or a holiday, busday_offset first applies a rule to roll the date to a valid
business day, then applies the offset. The default rule is ‘raise’, which simply raises an exception. The rules most
typically used are ‘forward’ and ‘backward’.

Example

>>> np.busday_offset('2011-06-25', 2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: Non-business day date in busday_offset

>>> np.busday_offset('2011-06-25', 0, roll='forward')
numpy.datetime64('2011-06-27')

>>> np.busday_offset('2011-06-25', 2, roll='forward')
numpy.datetime64('2011-06-29')

>>> np.busday_offset('2011-06-25', 0, roll='backward')
numpy.datetime64('2011-06-24')

>>> np.busday_offset('2011-06-25', 2, roll='backward')
numpy.datetime64('2011-06-28')

In some cases, an appropriate use of the roll and the offset is necessary to get a desired answer.

Example

The first business day on or after a date:

>>> np.busday_offset('2011-03-20', 0, roll='forward')
numpy.datetime64('2011-03-21','D')
>>> np.busday_offset('2011-03-22', 0, roll='forward')
numpy.datetime64('2011-03-22','D')

The first business day strictly after a date:

>>> np.busday_offset('2011-03-20', 1, roll='backward')
numpy.datetime64('2011-03-21','D')
>>> np.busday_offset('2011-03-22', 1, roll='backward')
numpy.datetime64('2011-03-23','D')

The function is also useful for computing some kinds of days like holidays. In Canada and the U.S., Mother’s day is
on the second Sunday in May, which can be computed with a custom weekmask.

Example

>>> np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
numpy.datetime64('2012-05-13','D')

1.9. Datetimes and Timedeltas 357



NumPy Reference, Release 1.15.1

When performance is important for manipulating many business dates with one particular choice of weekmask and
holidays, there is an object busdaycalendar which stores the data necessary in an optimized form.

np.is_busday():

To test a datetime64 value to see if it is a valid day, use is_busday .

Example

>>> np.is_busday(np.datetime64('2011-07-15')) # a Friday
True
>>> np.is_busday(np.datetime64('2011-07-16')) # a Saturday
False
>>> np.is_busday(np.datetime64('2011-07-16'), weekmask="Sat Sun")
True
>>> a = np.arange(np.datetime64('2011-07-11'), np.datetime64('2011-07-18'))
>>> np.is_busday(a)
array([ True, True, True, True, True, False, False], dtype='bool')

np.busday_count():

To find how many valid days there are in a specified range of datetime64 dates, use busday_count:

Example

>>> np.busday_count(np.datetime64('2011-07-11'), np.datetime64('2011-07-18'))
5
>>> np.busday_count(np.datetime64('2011-07-18'), np.datetime64('2011-07-11'))
-5

If you have an array of datetime64 day values, and you want a count of how many of them are valid dates, you can do
this:

Example

>>> a = np.arange(np.datetime64('2011-07-11'), np.datetime64('2011-07-18'))
>>> np.count_nonzero(np.is_busday(a))
5

Custom Weekmasks

Here are several examples of custom weekmask values. These examples specify the “busday” default of Monday
through Friday being valid days.

Some examples:

358 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

# Positional sequences; positions are Monday through Sunday.
# Length of the sequence must be exactly 7.
weekmask = [1, 1, 1, 1, 1, 0, 0]
# list or other sequence; 0 == invalid day, 1 == valid day
weekmask = "1111100"
# string '0' == invalid day, '1' == valid day

# string abbreviations from this list: Mon Tue Wed Thu Fri Sat Sun
weekmask = "Mon Tue Wed Thu Fri"
# any amount of whitespace is allowed; abbreviations are case-sensitive.
weekmask = "MonTue Wed Thu\tFri"

1.9.5 Changes with NumPy 1.11

In prior versions of NumPy, the datetime64 type always stored times in UTC. By default, creating a datetime64 object
from a string or printing it would convert from or to local time:

# old behavior
>>>> np.datetime64('2000-01-01T00:00:00')
numpy.datetime64('2000-01-01T00:00:00-0800') # note the timezone offset -08:00

A consensus of datetime64 users agreed that this behavior is undesirable and at odds with how datetime64 is usually
used (e.g., by pandas). For most use cases, a timezone naive datetime type is preferred, similar to the datetime.
datetime type in the Python standard library. Accordingly, datetime64 no longer assumes that input is in local time,
nor does it print local times:

>>>> np.datetime64('2000-01-01T00:00:00')
numpy.datetime64('2000-01-01T00:00:00')

For backwards compatibility, datetime64 still parses timezone offsets, which it handles by converting to UTC. How-
ever, the resulting datetime is timezone naive:

>>> np.datetime64('2000-01-01T00:00:00-08')
DeprecationWarning: parsing timezone aware datetimes is deprecated; this will raise
→˓an error in the future
numpy.datetime64('2000-01-01T08:00:00')

As a corollary to this change, we no longer prohibit casting between datetimes with date units and datetimes with
timeunits. With timezone naive datetimes, the rule for casting from dates to times is no longer ambiguous.

1.9.6 Differences Between 1.6 and 1.7 Datetimes

The NumPy 1.6 release includes a more primitive datetime data type than 1.7. This section documents many of the
changes that have taken place.

String Parsing

The datetime string parser in NumPy 1.6 is very liberal in what it accepts, and silently allows invalid input without
raising errors. The parser in NumPy 1.7 is quite strict about only accepting ISO 8601 dates, with a few convenience
extensions. 1.6 always creates microsecond (us) units by default, whereas 1.7 detects a unit based on the format of the
string. Here is a comparison.:

1.9. Datetimes and Timedeltas 359

http://pandas.pydata.org


NumPy Reference, Release 1.15.1

# NumPy 1.6.1
>>> np.datetime64('1979-03-22')
1979-03-22 00:00:00
# NumPy 1.7.0
>>> np.datetime64('1979-03-22')
numpy.datetime64('1979-03-22')

# NumPy 1.6.1, unit default microseconds
>>> np.datetime64('1979-03-22').dtype
dtype('datetime64[us]')
# NumPy 1.7.0, unit of days detected from string
>>> np.datetime64('1979-03-22').dtype
dtype('<M8[D]')

# NumPy 1.6.1, ignores invalid part of string
>>> np.datetime64('1979-03-2corruptedstring')
1979-03-02 00:00:00
# NumPy 1.7.0, raises error for invalid input
>>> np.datetime64('1979-03-2corruptedstring')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: Error parsing datetime string "1979-03-2corruptedstring" at position 8

# NumPy 1.6.1, 'nat' produces today's date
>>> np.datetime64('nat')
2012-04-30 00:00:00
# NumPy 1.7.0, 'nat' produces not-a-time
>>> np.datetime64('nat')
numpy.datetime64('NaT')

# NumPy 1.6.1, 'garbage' produces today's date
>>> np.datetime64('garbage')
2012-04-30 00:00:00
# NumPy 1.7.0, 'garbage' raises an exception
>>> np.datetime64('garbage')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: Error parsing datetime string "garbage" at position 0

# NumPy 1.6.1, can't specify unit in scalar constructor
>>> np.datetime64('1979-03-22T19:00', 'h')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: function takes at most 1 argument (2 given)
# NumPy 1.7.0, unit in scalar constructor
>>> np.datetime64('1979-03-22T19:00', 'h')
numpy.datetime64('1979-03-22T19:00-0500','h')

# NumPy 1.6.1, reads ISO 8601 strings w/o TZ as UTC
>>> np.array(['1979-03-22T19:00'], dtype='M8[h]')
array([1979-03-22 19:00:00], dtype=datetime64[h])
# NumPy 1.7.0, reads ISO 8601 strings w/o TZ as local (ISO specifies this)
>>> np.array(['1979-03-22T19:00'], dtype='M8[h]')
array(['1979-03-22T19-0500'], dtype='datetime64[h]')

# NumPy 1.6.1, doesn't parse all ISO 8601 strings correctly
>>> np.array(['1979-03-22T12'], dtype='M8[h]')

(continues on next page)

360 Chapter 1. Array objects



NumPy Reference, Release 1.15.1

(continued from previous page)

array([1979-03-22 00:00:00], dtype=datetime64[h])
>>> np.array(['1979-03-22T12:00'], dtype='M8[h]')
array([1979-03-22 12:00:00], dtype=datetime64[h])
# NumPy 1.7.0, handles this case correctly
>>> np.array(['1979-03-22T12'], dtype='M8[h]')
array(['1979-03-22T12-0500'], dtype='datetime64[h]')
>>> np.array(['1979-03-22T12:00'], dtype='M8[h]')
array(['1979-03-22T12-0500'], dtype='datetime64[h]')

Unit Conversion

The 1.6 implementation of datetime does not convert between units correctly.:

# NumPy 1.6.1, the representation value is untouched
>>> np.array(['1979-03-22'], dtype='M8[D]')
array([1979-03-22 00:00:00], dtype=datetime64[D])
>>> np.array(['1979-03-22'], dtype='M8[D]').astype('M8[M]')
array([2250-08-01 00:00:00], dtype=datetime64[M])
# NumPy 1.7.0, the representation is scaled accordingly
>>> np.array(['1979-03-22'], dtype='M8[D]')
array(['1979-03-22'], dtype='datetime64[D]')
>>> np.array(['1979-03-22'], dtype='M8[D]').astype('M8[M]')
array(['1979-03'], dtype='datetime64[M]')

Datetime Arithmetic

The 1.6 implementation of datetime only works correctly for a small subset of arithmetic operations. Here we show
some simple cases.:

# NumPy 1.6.1, produces invalid results if units are incompatible
>>> a = np.array(['1979-03-22T12'], dtype='M8[h]')
>>> b = np.array([3*60], dtype='m8[m]')
>>> a + b
array([1970-01-01 00:00:00.080988], dtype=datetime64[us])
# NumPy 1.7.0, promotes to higher-resolution unit
>>> a = np.array(['1979-03-22T12'], dtype='M8[h]')
>>> b = np.array([3*60], dtype='m8[m]')
>>> a + b
array(['1979-03-22T15:00-0500'], dtype='datetime64[m]')

# NumPy 1.6.1, arithmetic works if everything is microseconds
>>> a = np.array(['1979-03-22T12:00'], dtype='M8[us]')
>>> b = np.array([3*60*60*1000000], dtype='m8[us]')
>>> a + b
array([1979-03-22 15:00:00], dtype=datetime64[us])
# NumPy 1.7.0
>>> a = np.array(['1979-03-22T12:00'], dtype='M8[us]')
>>> b = np.array([3*60*60*1000000], dtype='m8[us]')
>>> a + b
array(['1979-03-22T15:00:00.000000-0500'], dtype='datetime64[us]')

1.9. Datetimes and Timedeltas 361



NumPy Reference, Release 1.15.1

362 Chapter 1. Array objects



CHAPTER

TWO

CONSTANTS

NumPy includes several constants:

numpy.Inf
IEEE 754 floating point representation of (positive) infinity.

Use inf because Inf, Infinity , PINF and infty are aliases for inf. For more details, see inf.

See Also

inf

numpy.Infinity
IEEE 754 floating point representation of (positive) infinity.

Use inf because Inf, Infinity , PINF and infty are aliases for inf. For more details, see inf.

See Also

inf

numpy.NAN
IEEE 754 floating point representation of Not a Number (NaN).

NaN and NAN are equivalent definitions of nan. Please use nan instead of NAN .

See Also

nan

numpy.NINF
IEEE 754 floating point representation of negative infinity.

Returns

y [float] A floating point representation of negative infinity.

363



NumPy Reference, Release 1.15.1

See Also

isinf : Shows which elements are positive or negative infinity

isposinf : Shows which elements are positive infinity

isneginf : Shows which elements are negative infinity

isnan : Shows which elements are Not a Number

isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity)

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity
is equivalent to positive infinity.

Examples

>>> np.NINF
-inf
>>> np.log(0)
-inf

numpy.NZERO
IEEE 754 floating point representation of negative zero.

Returns

y [float] A floating point representation of negative zero.

See Also

PZERO : Defines positive zero.

isinf : Shows which elements are positive or negative infinity.

isposinf : Shows which elements are positive infinity.

isneginf : Shows which elements are negative infinity.

isnan : Shows which elements are Not a Number.

isfinite [Shows which elements are finite - not one of] Not a Number, positive infinity and negative infinity.

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Negative zero is consid-
ered to be a finite number.

364 Chapter 2. Constants



NumPy Reference, Release 1.15.1

Examples

>>> np.NZERO
-0.0
>>> np.PZERO
0.0

>>> np.isfinite([np.NZERO])
array([ True])
>>> np.isnan([np.NZERO])
array([False])
>>> np.isinf([np.NZERO])
array([False])

numpy.NaN
IEEE 754 floating point representation of Not a Number (NaN).

NaN and NAN are equivalent definitions of nan. Please use nan instead of NaN .

See Also

nan

numpy.PINF
IEEE 754 floating point representation of (positive) infinity.

Use inf because Inf, Infinity , PINF and infty are aliases for inf. For more details, see inf.

See Also

inf

numpy.PZERO
IEEE 754 floating point representation of positive zero.

Returns

y [float] A floating point representation of positive zero.

See Also

NZERO : Defines negative zero.

isinf : Shows which elements are positive or negative infinity.

isposinf : Shows which elements are positive infinity.

isneginf : Shows which elements are negative infinity.

isnan : Shows which elements are Not a Number.

isfinite [Shows which elements are finite - not one of] Not a Number, positive infinity and negative infinity.

365



NumPy Reference, Release 1.15.1

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Positive zero is considered
to be a finite number.

Examples

>>> np.PZERO
0.0
>>> np.NZERO
-0.0

>>> np.isfinite([np.PZERO])
array([ True])
>>> np.isnan([np.PZERO])
array([False])
>>> np.isinf([np.PZERO])
array([False])

numpy.e
Euler’s constant, base of natural logarithms, Napier’s constant.

e = 2.71828182845904523536028747135266249775724709369995...

See Also

exp : Exponential function log : Natural logarithm

References

https://en.wikipedia.org/wiki/E_%28mathematical_constant%29

numpy.euler_gamma
𝛾 = 0.5772156649015328606065120900824024310421...

References

https://en.wikipedia.org/wiki/Euler-Mascheroni_constant

numpy.inf
IEEE 754 floating point representation of (positive) infinity.

Returns

y [float] A floating point representation of positive infinity.

366 Chapter 2. Constants

https://en.wikipedia.org/wiki/E_%28mathematical_constant%29
https://en.wikipedia.org/wiki/Euler-Mascheroni_constant


NumPy Reference, Release 1.15.1

See Also

isinf : Shows which elements are positive or negative infinity

isposinf : Shows which elements are positive infinity

isneginf : Shows which elements are negative infinity

isnan : Shows which elements are Not a Number

isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity)

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity
is equivalent to positive infinity.

Inf, Infinity , PINF and infty are aliases for inf.

Examples

>>> np.inf
inf
>>> np.array([1]) / 0.
array([ Inf])

numpy.infty
IEEE 754 floating point representation of (positive) infinity.

Use inf because Inf, Infinity , PINF and infty are aliases for inf. For more details, see inf.

See Also

inf

numpy.nan
IEEE 754 floating point representation of Not a Number (NaN).

Returns

y : A floating point representation of Not a Number.

See Also

isnan : Shows which elements are Not a Number.

isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity)

367



NumPy Reference, Release 1.15.1

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity.

NaN and NAN are aliases of nan.

Examples

>>> np.nan
nan
>>> np.log(-1)
nan
>>> np.log([-1, 1, 2])
array([ NaN, 0. , 0.69314718])

numpy.newaxis
A convenient alias for None, useful for indexing arrays.

See Also

numpy.doc.indexing

Examples

>>> newaxis is None
True
>>> x = np.arange(3)
>>> x
array([0, 1, 2])
>>> x[:, newaxis]
array([[0],
[1],
[2]])
>>> x[:, newaxis, newaxis]
array([[[0]],
[[1]],
[[2]]])
>>> x[:, newaxis] * x
array([[0, 0, 0],
[0, 1, 2],
[0, 2, 4]])

Outer product, same as outer(x, y):

>>> y = np.arange(3, 6)
>>> x[:, newaxis] * y
array([[ 0, 0, 0],
[ 3, 4, 5],
[ 6, 8, 10]])

x[newaxis, :] is equivalent to x[newaxis] and x[None]:

368 Chapter 2. Constants



NumPy Reference, Release 1.15.1

>>> x[newaxis, :].shape
(1, 3)
>>> x[newaxis].shape
(1, 3)
>>> x[None].shape
(1, 3)
>>> x[:, newaxis].shape
(3, 1)

numpy.pi
pi = 3.1415926535897932384626433...

References

https://en.wikipedia.org/wiki/Pi

369

https://en.wikipedia.org/wiki/Pi


NumPy Reference, Release 1.15.1

370 Chapter 2. Constants



CHAPTER

THREE

UNIVERSAL FUNCTIONS (UFUNC)

A universal function (or ufunc for short) is a function that operates on ndarrays in an element-by-element fashion,
supporting array broadcasting, type casting, and several other standard features. That is, a ufunc is a “vectorized”
wrapper for a function that takes a fixed number of specific inputs and produces a fixed number of specific outputs.

In NumPy, universal functions are instances of the numpy.ufunc class. Many of the built-in functions are imple-
mented in compiled C code. The basic ufuncs operate on scalars, but there is also a generalized kind for which the
basic elements are sub-arrays (vectors, matrices, etc.), and broadcasting is done over other dimensions. One can also
produce custom ufunc instances using the frompyfunc factory function.

3.1 Broadcasting

Each universal function takes array inputs and produces array outputs by performing the core function element-wise
on the inputs (where an element is generally a scalar, but can be a vector or higher-order sub-array for generalized
ufuncs). Standard broadcasting rules are applied so that inputs not sharing exactly the same shapes can still be usefully
operated on. Broadcasting can be understood by four rules:

1. All input arrays with ndim smaller than the input array of largest ndim, have 1’s prepended to their shapes.

2. The size in each dimension of the output shape is the maximum of all the input sizes in that dimension.

3. An input can be used in the calculation if its size in a particular dimension either matches the output size in that
dimension, or has value exactly 1.

4. If an input has a dimension size of 1 in its shape, the first data entry in that dimension will be used for all
calculations along that dimension. In other words, the stepping machinery of the ufunc will simply not step
along that dimension (the stride will be 0 for that dimension).

Broadcasting is used throughout NumPy to decide how to handle disparately shaped arrays; for example, all arithmetic
operations (+, -, *, . . . ) between ndarrays broadcast the arrays before operation.

A set of arrays is called “broadcastable” to the same shape if the above rules produce a valid result, i.e., one of the
following is true:

1. The arrays all have exactly the same shape.

2. The arrays all have the same number of dimensions and the length of each dimensions is either a common length
or 1.

3. The arrays that have too few dimensions can have their shapes prepended with a dimension of length 1 to satisfy
property 2.

Example

371



NumPy Reference, Release 1.15.1

If a.shape is (5,1), b.shape is (1,6), c.shape is (6,) and d.shape is () so that d is a scalar, then a, b, c, and d
are all broadcastable to dimension (5,6); and

• a acts like a (5,6) array where a[:,0] is broadcast to the other columns,

• b acts like a (5,6) array where b[0,:] is broadcast to the other rows,

• c acts like a (1,6) array and therefore like a (5,6) array where c[:] is broadcast to every row, and finally,

• d acts like a (5,6) array where the single value is repeated.

3.2 Output type determination

The output of the ufunc (and its methods) is not necessarily an ndarray , if all input arguments are not ndarrays.
Indeed, if any input defines an __array_ufunc__ method, control will be passed completely to that function, i.e.,
the ufunc is overridden.

If none of the inputs overrides the ufunc, then all output arrays will be passed to the __array_prepare__ and
__array_wrap__ methods of the input (besides ndarrays, and scalars) that defines it and has the highest
__array_priority__ of any other input to the universal function. The default __array_priority__ of the
ndarray is 0.0, and the default __array_priority__ of a subtype is 1.0. Matrices have __array_priority__
equal to 10.0.

All ufuncs can also take output arguments. If necessary, output will be cast to the data-type(s) of the provided output
array(s). If a class with an __array__ method is used for the output, results will be written to the object returned
by __array__. Then, if the class also has an __array_prepare__ method, it is called so metadata may be
determined based on the context of the ufunc (the context consisting of the ufunc itself, the arguments passed to
the ufunc, and the ufunc domain.) The array object returned by __array_prepare__ is passed to the ufunc for
computation. Finally, if the class also has an __array_wrap__ method, the returned ndarray result will be
passed to that method just before passing control back to the caller.

3.3 Use of internal buffers

Internally, buffers are used for misaligned data, swapped data, and data that has to be converted from one data type to
another. The size of internal buffers is settable on a per-thread basis. There can be up to 2(𝑛inputs + 𝑛outputs) buffers
of the specified size created to handle the data from all the inputs and outputs of a ufunc. The default size of a buffer is
10,000 elements. Whenever buffer-based calculation would be needed, but all input arrays are smaller than the buffer
size, those misbehaved or incorrectly-typed arrays will be copied before the calculation proceeds. Adjusting the size of
the buffer may therefore alter the speed at which ufunc calculations of various sorts are completed. A simple interface
for setting this variable is accessible using the function

setbufsize(size) Set the size of the buffer used in ufuncs.

numpy.setbufsize(size)
Set the size of the buffer used in ufuncs.

Parameters

size [int] Size of buffer.

372 Chapter 3. Universal functions (ufunc)

ufuncs.overrides


NumPy Reference, Release 1.15.1

3.4 Error handling

Universal functions can trip special floating-point status registers in your hardware (such as divide-by-zero). If avail-
able on your platform, these registers will be regularly checked during calculation. Error handling is controlled on a
per-thread basis, and can be configured using the functions

seterr([all, divide, over, under, invalid]) Set how floating-point errors are handled.
seterrcall(func) Set the floating-point error callback function or log object.

numpy.seterr(all=None, divide=None, over=None, under=None, invalid=None)
Set how floating-point errors are handled.

Note that operations on integer scalar types (such as int16) are handled like floating point, and are affected by
these settings.

Parameters

all [{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional] Set treatment for all types of
floating-point errors at once:

• ignore: Take no action when the exception occurs.

• warn: Print a RuntimeWarning (via the Python warnings module).

• raise: Raise a FloatingPointError.

• call: Call a function specified using the seterrcall function.

• print: Print a warning directly to stdout.

• log: Record error in a Log object specified by seterrcall.

The default is not to change the current behavior.

divide [{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional] Treatment for division by zero.

over [{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional] Treatment for floating-point
overflow.

under [{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional] Treatment for floating-point
underflow.

invalid [{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional] Treatment for invalid floating-
point operation.

Returns

old_settings [dict] Dictionary containing the old settings.

See also:

seterrcall Set a callback function for the ‘call’ mode.

geterr, geterrcall, errstate

Notes

The floating-point exceptions are defined in the IEEE 754 standard [1]:

• Division by zero: infinite result obtained from finite numbers.

3.4. Error handling 373

https://docs.python.org/dev/library/warnings.html#module-warnings


NumPy Reference, Release 1.15.1

• Overflow: result too large to be expressed.

• Underflow: result so close to zero that some precision was lost.

• Invalid operation: result is not an expressible number, typically indicates that a NaN was produced.

Examples

>>> old_settings = np.seterr(all='ignore') #seterr to known value
>>> np.seterr(over='raise')
{'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore',
'under': 'ignore'}
>>> np.seterr(**old_settings) # reset to default
{'over': 'raise', 'divide': 'ignore', 'invalid': 'ignore',
'under': 'ignore'}

>>> np.int16(32000) * np.int16(3)
30464
>>> old_settings = np.seterr(all='warn', over='raise')
>>> np.int16(32000) * np.int16(3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

FloatingPointError: overflow encountered in short_scalars

>>> old_settings = np.seterr(all='print')
>>> np.geterr()
{'over': 'print', 'divide': 'print', 'invalid': 'print', 'under': 'print'}
>>> np.int16(32000) * np.int16(3)
Warning: overflow encountered in short_scalars
30464

numpy.seterrcall(func)
Set the floating-point error callback function or log object.

There are two ways to capture floating-point error messages. The first is to set the error-handler to ‘call’, using
seterr. Then, set the function to call using this function.

The second is to set the error-handler to ‘log’, using seterr. Floating-point errors then trigger a call to the
‘write’ method of the provided object.

Parameters

func [callable f(err, flag) or object with write method] Function to call upon floating-point errors
(‘call’-mode) or object whose ‘write’ method is used to log such message (‘log’-mode).

The call function takes two arguments. The first is a string describing the type of error
(such as “divide by zero”, “overflow”, “underflow”, or “invalid value”), and the second is
the status flag. The flag is a byte, whose four least-significant bits indicate the type of error,
one of “divide”, “over”, “under”, “invalid”:

[0 0 0 0 divide over under invalid]

In other words, flags = divide + 2*over + 4*under + 8*invalid.

If an object is provided, its write method should take one argument, a string.

Returns

h [callable, log instance or None] The old error handler.

374 Chapter 3. Universal functions (ufunc)



NumPy Reference, Release 1.15.1

See also:

seterr, geterr, geterrcall

Examples

Callback upon error:

>>> def err_handler(type, flag):
... print("Floating point error (%s), with flag %s" % (type, flag))
...

>>> saved_handler = np.seterrcall(err_handler)
>>> save_err = np.seterr(all='call')

>>> np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
array([ Inf, Inf, Inf])

>>> np.seterrcall(saved_handler)
<function err_handler at 0x...>
>>> np.seterr(**save_err)
{'over': 'call', 'divide': 'call', 'invalid': 'call', 'under': 'call'}

Log error message:

>>> class Log(object):
... def write(self, msg):
... print("LOG: %s" % msg)
...

>>> log = Log()
>>> saved_handler = np.seterrcall(log)
>>> save_err = np.seterr(all='log')

>>> np.array([1, 2, 3]) / 0.0
LOG: Warning: divide by zero encountered in divide

array([ Inf, Inf, Inf])

>>> np.seterrcall(saved_handler)
<__main__.Log object at 0x...>
>>> np.seterr(**save_err)
{'over': 'log', 'divide': 'log', 'invalid': 'log', 'under': 'log'}

3.5 Casting Rules

Note: In NumPy 1.6.0, a type promotion API was created to encapsulate the mechanism for determining output types.
See the functions result_type, promote_types, and min_scalar_type for more details.

3.5. Casting Rules 375



NumPy Reference, Release 1.15.1

At the core of every ufunc is a one-dimensional strided loop that implements the actual function for a specific type
combination. When a ufunc is created, it is given a static list of inner loops and a corresponding list of type signatures
over which the ufunc operates. The ufunc machinery uses this list to determine which inner loop to use for a particular
case. You can inspect the .types attribute for a particular ufunc to see which type combinations have a defined inner
loop and which output type they produce (character codes are used in said output for brevity).

Casting must be done on one or more of the inputs whenever the ufunc does not have a core loop implementation for
the input types provided. If an implementation for the input types cannot be found, then the algorithm searches for an
implementation with a type signature to which all of the inputs can be cast “safely.” The first one it finds in its internal
list of loops is selected and performed, after all necessary type casting. Recall that internal copies during ufuncs (even
for casting) are limited to the size of an internal buffer (which is user settable).

Note: Universal functions in NumPy are flexible enough to have mixed type signatures. Thus, for example, a universal
function could be defined that works with floating-point and integer values. See ldexp for an example.

By the above description, the casting rules are essentially implemented by the question of when a data type can be
cast “safely” to another data type. The answer to this question can be determined in Python with a function call:
can_cast(fromtype, totype). The Figure below shows the results of this call for the 24 internally supported
types on the author’s 64-bit system. You can generate this table for your system with the code given in the Figure.

Figure

Code segment showing the “can cast safely” table for a 32-bit system.

>>> def print_table(ntypes):
... print 'X',
... for char in ntypes: print char,
... print
... for row in ntypes:
... print row,
... for col in ntypes:
... print int(np.can_cast(row, col)),
... print
>>> print_table(np.typecodes['All'])
X ? b h i l q p B H I L Q P e f d g F D G S U V O M m
? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
b 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
h 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0
i 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0
l 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0
q 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0
p 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0
B 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
H 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0
I 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0
L 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0
Q 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0
P 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0
e 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0
d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0
g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0
D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

(continues on next page)

376 Chapter 3. Universal functions (ufunc)



NumPy Reference, Release 1.15.1

(continued from previous page)

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

You should note that, while included in the table for completeness, the ‘S’, ‘U’, and ‘V’ types cannot be operated on
by ufuncs. Also, note that on a 32-bit system the integer types may have different sizes, resulting in a slightly altered
table.

Mixed scalar-array operations use a different set of casting rules that ensure that a scalar cannot “upcast” an array
unless the scalar is of a fundamentally different kind of data (i.e., under a different hierarchy in the data-type hierarchy)
than the array. This rule enables you to use scalar constants in your code (which, as Python types, are interpreted
accordingly in ufuncs) without worrying about whether the precision of the scalar constant will cause upcasting on
your large (small precision) array.

3.6 Overriding Ufunc behavior

Classes (including ndarray subclasses) can override how ufuncs act on them by defining certain special methods. For
details, see Standard array subclasses.

3.7 ufunc

3.7.1 Optional keyword arguments

All ufuncs take optional keyword arguments. Most of these represent advanced usage and will not typically be used.

out

New in version 1.6.

The first output can be provided as either a positional or a keyword parameter. Keyword ‘out’ arguments
are incompatible with positional ones.

New in version 1.10.

The ‘out’ keyword argument is expected to be a tuple with one entry per output (which can be None for
arrays to be allocated by the ufunc). For ufuncs with a single output, passing a single array (instead of a
tuple holding a single array) is also valid.

Passing a single array in the ‘out’ keyword argument to a ufunc with multiple outputs is deprecated, and
will raise a warning in numpy 1.10, and an error in a future release.

If ‘out’ is None (the default), a uninitialized return array is created. The output array is then filled with
the results of the ufunc in the places that the broadcast ‘where’ is True. If ‘where’ is the scalar True (the
default), then this corresponds to the entire output being filled. Note that outputs not explicitly filled are
left with their uninitialized values.

where

New in version 1.7.

3.6. Overriding Ufunc behavior 377



NumPy Reference, Release 1.15.1

Accepts a boolean array which is broadcast together with the operands. Values of True indicate to calculate
the ufunc at that position, values of False indicate to leave the value in the output alone. This argument
cannot be used for generalized ufuncs as those take non-scalar input.

Note that if an uninitialized return array is created, values of False will leave those values uninitialized.

axes

New in version 1.15.

A list of tuples with indices of axes a generalized ufunc should operate on. For instance, for a signature of
(i,j),(j,k)->(i,k) appropriate for matrix multiplication, the base elements are two-dimensional
matrices and these are taken to be stored in the two last axes of each argument. The corresponding axes
keyword would be [(-2, -1), (-2, -1), (-2, -1)]. For simplicity, for generalized ufuncs
that operate on 1-dimensional arrays (vectors), a single integer is accepted instead of a single-element
tuple, and for generalized ufuncs for which all outputs are scalars, the output tuples can be omitted.

axis

New in version 1.15.

A single axis over which a generalized ufunc should operate. This is a short-cut for ufuncs that operate
over a single, shared core dimension, equivalent to passing in axes with entries of (axis,) for each
single-core-dimension argument and () for all others. For instance, for a signature (i),(i)->(), it is
equivalent to passing in axes=[(axis,), (axis,), ()].

keepdims

New in version 1.15.

If this is set to True, axes which are reduced over will be left in the result as a dimension with size one,
so that the result will broadcast correctly against the inputs. This option can only be used for generalized
ufuncs that operate on inputs that all have the same number of core dimensions and with outputs that have
no core dimensions , i.e., with signatures like (i),(i)->() or (m,m)->(). If used, the location of
the dimensions in the output can be controlled with axes and axis.

casting

New in version 1.6.

May be ‘no’, ‘equiv’, ‘safe’, ‘same_kind’, or ‘unsafe’. See can_cast for explanations of the parameter
values.

Provides a policy for what kind of casting is permitted. For compatibility with previous versions of
NumPy, this defaults to ‘unsafe’ for numpy < 1.7. In numpy 1.7 a transition to ‘same_kind’ was begun
where ufuncs produce a DeprecationWarning for calls which are allowed under the ‘unsafe’ rules, but not
under the ‘same_kind’ rules. From numpy 1.10 and onwards, the default is ‘same_kind’.

order

New in version 1.6.

Specifies the calculation iteration order/memory layout of the output array. Defaults to ‘K’. ‘C’ means
the output should be C-contiguous, ‘F’ means F-contiguous, ‘A’ means F-contiguous if the inputs are F-
contiguous and not also not C-contiguous, C-contiguous otherwise, and ‘K’ means to match the element
ordering of the inputs as closely as possible.

dtype

New in version 1.6.

Overrides the dtype of the calculation and output arrays. Similar to signature.

subok

378 Chapter 3. Universal functions (ufunc)



NumPy Reference, Release 1.15.1

New in version 1.6.

Defaults to true. If set to false, the output will always be a strict array, not a subtype.

signature

Either a data-type, a tuple of data-types, or a special signature string indicating the input and output
types of a ufunc. This argument allows you to provide a specific signature for the 1-d loop to use in
the underlying calculation. If the loop specified does not exist for the ufunc, then a TypeError is raised.
Normally, a suitable loop is found automatically by comparing the input types with what is available and
searching for a loop with data-types to which all inputs can be cast safely. This keyword argument lets
you bypass that search and choose a particular loop. A list of available signatures is provided by the
types attribute of the ufunc object. For backwards compatibility this argument can also be provided as
sig, although the long form is preferred. Note that this should not be confused with the generalized ufunc
signature that is stored in the signature attribute of the of the ufunc object.

extobj

a list of length 1, 2, or 3 specifying the ufunc buffer-size, the error mode integer, and the error call-
back function. Normally, these values are looked up in a thread-specific dictionary. Passing them here
circumvents that look up and uses the low-level specification provided for the error mode. This may be
useful, for example, as an optimization for calculations requiring many ufunc calls on small arrays in a
loop.

3.7.2 Attributes

There are some informational attributes that universal functions possess. None of the attributes can be set.

__doc__A docstring for each ufunc. The first part of the docstring is dynamically generated from the number of
outputs, the name, and the number of inputs. The second part of the docstring is provided at creation time
and stored with the ufunc.

__name__The name of the ufunc.

ufunc.nin The number of inputs.
ufunc.nout The number of outputs.
ufunc.nargs The number of arguments.
ufunc.ntypes The number of types.
ufunc.types Returns a list with types grouped input->output.
ufunc.identity The identity value.
ufunc.signature Definition of the core elements a generalized ufunc oper-

ates on.

ufunc.nin
The number of inputs.

Data attribute containing the number of arguments the ufunc treats as input.

Examples

>>> np.add.nin
2
>>> np.multiply.nin
2

(continues on next page)

3.7. ufunc 379



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> np.power.nin
2
>>> np.exp.nin
1

ufunc.nout
The number of outputs.

Data attribute containing the number of arguments the ufunc treats as output.

Notes

Since all ufuncs can take output arguments, this will always be (at least) 1.

Examples

>>> np.add.nout
1
>>> np.multiply.nout
1
>>> np.power.nout
1
>>> np.exp.nout
1

ufunc.nargs
The number of arguments.

Data attribute containing the number of arguments the ufunc takes, including optional ones.

Notes

Typically this value will be one more than what you might expect because all ufuncs take the optional “out”
argument.

Examples

>>> np.add.nargs
3
>>> np.multiply.nargs
3
>>> np.power.nargs
3
>>> np.exp.nargs
2

ufunc.ntypes
The number of types.

The number of numerical NumPy types - of which there are 18 total - on which the ufunc can operate.

See also:

380 Chapter 3. Universal functions (ufunc)



NumPy Reference, Release 1.15.1

numpy.ufunc.types

Examples

>>> np.add.ntypes
18
>>> np.multiply.ntypes
18
>>> np.power.ntypes
17
>>> np.exp.ntypes
7
>>> np.remainder.ntypes
14

ufunc.types
Returns a list with types grouped input->output.

Data attribute listing the data-type “Domain-Range” groupings the ufunc can deliver. The data-types are given
using the character codes.

See also:

numpy.ufunc.ntypes

Examples

>>> np.add.types
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG->G', 'OO->O']

>>> np.multiply.types
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG->G', 'OO->O']

>>> np.power.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G',
'OO->O']

>>> np.exp.types
['f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O']

>>> np.remainder.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'OO->O']

ufunc.identity
The identity value.

Data attribute containing the identity element for the ufunc, if it has one. If it does not, the attribute value is
None.

3.7. ufunc 381



NumPy Reference, Release 1.15.1

Examples

>>> np.add.identity
0
>>> np.multiply.identity
1
>>> np.power.identity
1
>>> print(np.exp.identity)
None

ufunc.signature
Definition of the core elements a generalized ufunc operates on.

The signature determines how the dimensions of each input/output array are split into core and loop dimensions:

1. Each dimension in the signature is matched to a dimension of the corresponding passed-in array, starting
from the end of the shape tuple.

2. Core dimensions assigned to the same label in the signature must have exactly matching sizes, no broad-
casting is performed.

3. The core dimensions are removed from all inputs and the remaining dimensions are broadcast together,
defining the loop dimensions.

Notes

Generalized ufuncs are used internally in many linalg functions, and in the testing suite; the examples below are
taken from these. For ufuncs that operate on scalars, the signature is None, which is equivalent to ‘()’ for every
argument.

Examples

>>> np.core.umath_tests.matrix_multiply.signature
'(m,n),(n,p)->(m,p)'
>>> np.linalg._umath_linalg.det.signature
'(m,m)->()'
>>> np.add.signature is None
True # equivalent to '(),()->()'

3.7.3 Methods

All ufuncs have four methods. However, these methods only make sense on scalar ufuncs that take two input arguments
and return one output argument. Attempting to call these methods on other ufuncs will cause a ValueError. The
reduce-like methods all take an axis keyword, a dtype keyword, and an out keyword, and the arrays must all have
dimension >= 1. The axis keyword specifies the axis of the array over which the reduction will take place (with
negative values counting backwards). Generally, it is an integer, though for ufunc.reduce, it can also be a tuple of
int to reduce over several axes at once, or None, to reduce over all axes. The dtype keyword allows you to manage
a very common problem that arises when naively using ufunc.reduce. Sometimes you may have an array of a
certain data type and wish to add up all of its elements, but the result does not fit into the data type of the array. This
commonly happens if you have an array of single-byte integers. The dtype keyword allows you to alter the data type
over which the reduction takes place (and therefore the type of the output). Thus, you can ensure that the output
is a data type with precision large enough to handle your output. The responsibility of altering the reduce type is

382 Chapter 3. Universal functions (ufunc)

https://docs.python.org/dev/library/exceptions.html#ValueError
https://docs.python.org/dev/library/functions.html#int


NumPy Reference, Release 1.15.1

mostly up to you. There is one exception: if no dtype is given for a reduction on the “add” or “multiply” operations,
then if the input type is an integer (or Boolean) data-type and smaller than the size of the int_ data type, it will be
internally upcast to the int_ (or uint) data-type. Finally, the out keyword allows you to provide an output array (for
single-output ufuncs, which are currently the only ones supported; for future extension, however, a tuple with a single
argument can be passed in). If out is given, the dtype argument is ignored.

Ufuncs also have a fifth method that allows in place operations to be performed using fancy indexing. No buffering
is used on the dimensions where fancy indexing is used, so the fancy index can list an item more than once and the
operation will be performed on the result of the previous operation for that item.

ufunc.reduce(a[, axis, dtype, out, keepdims]) Reduces a’s dimension by one, by applying ufunc along
one axis.

ufunc.accumulate(array[, axis, dtype, out]) Accumulate the result of applying the operator to all ele-
ments.

ufunc.reduceat(a, indices[, axis, dtype, out]) Performs a (local) reduce with specified slices over a single
axis.

ufunc.outer(A, B, **kwargs) Apply the ufunc op to all pairs (a, b) with a in A and b in B.
ufunc.at(a, indices[, b]) Performs unbuffered in place operation on operand ‘a’ for

elements specified by ‘indices’.

ufunc.reduce(a, axis=0, dtype=None, out=None, keepdims=False, initial)
Reduces a’s dimension by one, by applying ufunc along one axis.

Let 𝑎.𝑠ℎ𝑎𝑝𝑒 = (𝑁0, ..., 𝑁𝑖, ..., 𝑁𝑀−1). Then 𝑢𝑓𝑢𝑛𝑐.𝑟𝑒𝑑𝑢𝑐𝑒(𝑎, 𝑎𝑥𝑖𝑠 = 𝑖)[𝑘0, .., 𝑘𝑖−1, 𝑘𝑖+1, .., 𝑘𝑀−1] = the
result of iterating j over 𝑟𝑎𝑛𝑔𝑒(𝑁𝑖), cumulatively applying ufunc to each 𝑎[𝑘0, .., 𝑘𝑖−1, 𝑗, 𝑘𝑖+1, .., 𝑘𝑀−1]. For a
one-dimensional array, reduce produces results equivalent to:

r = op.identity # op = ufunc
for i in range(len(A)):
r = op(r, A[i])

return r

For example, add.reduce() is equivalent to sum().

Parameters

a [array_like] The array to act on.

axis [None or int or tuple of ints, optional] Axis or axes along which a reduction is performed.
The default (axis = 0) is perform a reduction over the first dimension of the input array. axis
may be negative, in which case it counts from the last to the first axis.

New in version 1.7.0.

If this is None, a reduction is performed over all the axes. If this is a tuple of ints, a reduction
is performed on multiple axes, instead of a single axis or all the axes as before.

For operations which are either not commutative or not associative, doing a reduction over
multiple axes is not well-defined. The ufuncs do not currently raise an exception in this
case, but will likely do so in the future.

dtype [data-type code, optional] The type used to represent the intermediate results. Defaults
to the data-type of the output array if this is provided, or the data-type of the input array if
no output array is provided.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If not provided or None, a freshly-allocated array is returned. For consistency with
ufunc.__call__, if given as a keyword, this may be wrapped in a 1-element tuple.

3.7. ufunc 383



NumPy Reference, Release 1.15.1

Changed in version 1.13.0: Tuples are allowed for keyword argument.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original arr.

New in version 1.7.0.

initial [scalar, optional] The value with which to start the reduction. If the ufunc has no identity
or the dtype is object, this defaults to None - otherwise it defaults to ufunc.identity. If None
is given, the first element of the reduction is used, and an error is thrown if the reduction is
empty.

New in version 1.15.0.

Returns

r [ndarray] The reduced array. If out was supplied, r is a reference to it.

Examples

>>> np.multiply.reduce([2,3,5])
30

A multi-dimensional array example:

>>> X = np.arange(8).reshape((2,2,2))
>>> X
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> np.add.reduce(X, 0)
array([[ 4, 6],

[ 8, 10]])
>>> np.add.reduce(X) # confirm: default axis value is 0
array([[ 4, 6],

[ 8, 10]])
>>> np.add.reduce(X, 1)
array([[ 2, 4],

[10, 12]])
>>> np.add.reduce(X, 2)
array([[ 1, 5],

[ 9, 13]])

You can use the initial keyword argument to initialize the reduction with a different value.

>>> np.add.reduce([10], initial=5)
15
>>> np.add.reduce(np.ones((2, 2, 2)), axis=(0, 2), initializer=10)
array([14., 14.])

Allows reductions of empty arrays where they would normally fail, i.e. for ufuncs without an identity.

>>> np.minimum.reduce([], initial=np.inf)
inf
>>> np.minimum.reduce([])
Traceback (most recent call last):

(continues on next page)

384 Chapter 3. Universal functions (ufunc)



NumPy Reference, Release 1.15.1

(continued from previous page)

...
ValueError: zero-size array to reduction operation minimum which has no identity

ufunc.accumulate(array, axis=0, dtype=None, out=None)
Accumulate the result of applying the operator to all elements.

For a one-dimensional array, accumulate produces results equivalent to:

r = np.empty(len(A))
t = op.identity # op = the ufunc being applied to A's elements
for i in range(len(A)):

t = op(t, A[i])
r[i] = t

return r

For example, add.accumulate() is equivalent to np.cumsum().

For a multi-dimensional array, accumulate is applied along only one axis (axis zero by default; see Examples
below) so repeated use is necessary if one wants to accumulate over multiple axes.

Parameters

array [array_like] The array to act on.

axis [int, optional] The axis along which to apply the accumulation; default is zero.

dtype [data-type code, optional] The data-type used to represent the intermediate results. De-
faults to the data-type of the output array if such is provided, or the the data-type of the input
array if no output array is provided.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If not provided or None, a freshly-allocated array is returned. For consistency with
ufunc.__call__, if given as a keyword, this may be wrapped in a 1-element tuple.

Changed in version 1.13.0: Tuples are allowed for keyword argument.

Returns

r [ndarray] The accumulated values. If out was supplied, r is a reference to out.

Examples

1-D array examples:

>>> np.add.accumulate([2, 3, 5])
array([ 2, 5, 10])
>>> np.multiply.accumulate([2, 3, 5])
array([ 2, 6, 30])

2-D array examples:

>>> I = np.eye(2)
>>> I
array([[ 1., 0.],

[ 0., 1.]])

Accumulate along axis 0 (rows), down columns:

3.7. ufunc 385



NumPy Reference, Release 1.15.1

>>> np.add.accumulate(I, 0)
array([[ 1., 0.],

[ 1., 1.]])
>>> np.add.accumulate(I) # no axis specified = axis zero
array([[ 1., 0.],

[ 1., 1.]])

Accumulate along axis 1 (columns), through rows:

>>> np.add.accumulate(I, 1)
array([[ 1., 1.],

[ 0., 1.]])

ufunc.reduceat(a, indices, axis=0, dtype=None, out=None)
Performs a (local) reduce with specified slices over a single axis.

For i in range(len(indices)), reduceat computes ufunc.
reduce(a[indices[i]:indices[i+1]]), which becomes the i-th generalized “row” parallel to
axis in the final result (i.e., in a 2-D array, for example, if axis = 0, it becomes the i-th row, but if axis = 1, it
becomes the i-th column). There are three exceptions to this:

• when i = len(indices) - 1 (so for the last index), indices[i+1] = a.shape[axis].

• if indices[i] >= indices[i + 1], the i-th generalized “row” is simply a[indices[i]].

• if indices[i] >= len(a) or indices[i] < 0, an error is raised.

The shape of the output depends on the size of indices, and may be larger than a (this happens if
len(indices) > a.shape[axis]).

Parameters

a [array_like] The array to act on.

indices [array_like] Paired indices, comma separated (not colon), specifying slices to reduce.

axis [int, optional] The axis along which to apply the reduceat.

dtype [data-type code, optional] The type used to represent the intermediate results. Defaults
to the data type of the output array if this is provided, or the data type of the input array if
no output array is provided.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If not provided or None, a freshly-allocated array is returned. For consistency with
ufunc.__call__, if given as a keyword, this may be wrapped in a 1-element tuple.

Changed in version 1.13.0: Tuples are allowed for keyword argument.

Returns

r [ndarray] The reduced values. If out was supplied, r is a reference to out.

Notes

A descriptive example:

If a is 1-D, the function ufunc.accumulate(a) is the same as ufunc.reduceat(a, indices)[::2]
where indices is range(len(array) - 1) with a zero placed in every other element: indices =
zeros(2 * len(a) - 1), indices[1::2] = range(1, len(a)).

Don’t be fooled by this attribute’s name: reduceat(a) is not necessarily smaller than a.

386 Chapter 3. Universal functions (ufunc)



NumPy Reference, Release 1.15.1

Examples

To take the running sum of four successive values:

>>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2]
array([ 6, 10, 14, 18])

A 2-D example:

>>> x = np.linspace(0, 15, 16).reshape(4,4)
>>> x
array([[ 0., 1., 2., 3.],

[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[ 12., 13., 14., 15.]])

# reduce such that the result has the following five rows:
# [row1 + row2 + row3]
# [row4]
# [row2]
# [row3]
# [row1 + row2 + row3 + row4]

>>> np.add.reduceat(x, [0, 3, 1, 2, 0])
array([[ 12., 15., 18., 21.],

[ 12., 13., 14., 15.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[ 24., 28., 32., 36.]])

# reduce such that result has the following two columns:
# [col1 * col2 * col3, col4]

>>> np.multiply.reduceat(x, [0, 3], 1)
array([[ 0., 3.],

[ 120., 7.],
[ 720., 11.],
[ 2184., 15.]])

ufunc.outer(A, B, **kwargs)
Apply the ufunc op to all pairs (a, b) with a in A and b in B.

Let M = A.ndim, N = B.ndim. Then the result, C, of op.outer(A, B) is an array of dimension M + N
such that:

𝐶[𝑖0, ..., 𝑖𝑀−1, 𝑗0, ..., 𝑗𝑁−1] = 𝑜𝑝(𝐴[𝑖0, ..., 𝑖𝑀−1], 𝐵[𝑗0, ..., 𝑗𝑁−1])

For A and B one-dimensional, this is equivalent to:

r = empty(len(A),len(B))
for i in range(len(A)):

for j in range(len(B)):
r[i,j] = op(A[i], B[j]) # op = ufunc in question

Parameters

A [array_like] First array

3.7. ufunc 387



NumPy Reference, Release 1.15.1

B [array_like] Second array

kwargs [any] Arguments to pass on to the ufunc. Typically dtype or out.

Returns

r [ndarray] Output array

See also:

numpy.outer

Examples

>>> np.multiply.outer([1, 2, 3], [4, 5, 6])
array([[ 4, 5, 6],

[ 8, 10, 12],
[12, 15, 18]])

A multi-dimensional example:

>>> A = np.array([[1, 2, 3], [4, 5, 6]])
>>> A.shape
(2, 3)
>>> B = np.array([[1, 2, 3, 4]])
>>> B.shape
(1, 4)
>>> C = np.multiply.outer(A, B)
>>> C.shape; C
(2, 3, 1, 4)
array([[[[ 1, 2, 3, 4]],

[[ 2, 4, 6, 8]],
[[ 3, 6, 9, 12]]],

[[[ 4, 8, 12, 16]],
[[ 5, 10, 15, 20]],
[[ 6, 12, 18, 24]]]])

ufunc.at(a, indices, b=None)
Performs unbuffered in place operation on operand ‘a’ for elements specified by ‘indices’. For addition ufunc,
this method is equivalent to a[indices] += b, except that results are accumulated for elements that are
indexed more than once. For example, a[[0,0]] += 1 will only increment the first element once because
of buffering, whereas add.at(a, [0,0], 1) will increment the first element twice.

New in version 1.8.0.

Parameters

a [array_like] The array to perform in place operation on.

indices [array_like or tuple] Array like index object or slice object for indexing into first
operand. If first operand has multiple dimensions, indices can be a tuple of array like index
objects or slice objects.

b [array_like] Second operand for ufuncs requiring two operands. Operand must be broad-
castable over first operand after indexing or slicing.

388 Chapter 3. Universal functions (ufunc)



NumPy Reference, Release 1.15.1

Examples

Set items 0 and 1 to their negative values:

>>> a = np.array([1, 2, 3, 4])
>>> np.negative.at(a, [0, 1])
>>> print(a)
array([-1, -2, 3, 4])

Increment items 0 and 1, and increment item 2 twice:

>>> a = np.array([1, 2, 3, 4])
>>> np.add.at(a, [0, 1, 2, 2], 1)
>>> print(a)
array([2, 3, 5, 4])

Add items 0 and 1 in first array to second array, and store results in first array:

>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([1, 2])
>>> np.add.at(a, [0, 1], b)
>>> print(a)
array([2, 4, 3, 4])

Warning: A reduce-like operation on an array with a data-type that has a range “too small” to handle the result
will silently wrap. One should use dtype to increase the size of the data-type over which reduction takes place.

3.8 Available ufuncs

There are currently more than 60 universal functions defined in numpy on one or more types, covering a wide variety
of operations. Some of these ufuncs are called automatically on arrays when the relevant infix notation is used (e.g.,
add(a, b) is called internally when a + b is written and a or b is an ndarray). Nevertheless, you may still want
to use the ufunc call in order to use the optional output argument(s) to place the output(s) in an object (or objects) of
your choice.

Recall that each ufunc operates element-by-element. Therefore, each scalar ufunc will be described as if acting on a
set of scalar inputs to return a set of scalar outputs.

Note: The ufunc still returns its output(s) even if you use the optional output argument(s).

3.8.1 Math operations

add(x1, x2, /[, out, where, casting, order, . . . ]) Add arguments element-wise.
subtract(x1, x2, /[, out, where, casting, . . . ]) Subtract arguments, element-wise.
multiply(x1, x2, /[, out, where, casting, . . . ]) Multiply arguments element-wise.
divide(x1, x2, /[, out, where, casting, . . . ]) Returns a true division of the inputs, element-wise.
logaddexp(x1, x2, /[, out, where, casting, . . . ]) Logarithm of the sum of exponentiations of the inputs.

Continued on next page

3.8. Available ufuncs 389



NumPy Reference, Release 1.15.1

Table 5 – continued from previous page
logaddexp2(x1, x2, /[, out, where, casting, . . . ]) Logarithm of the sum of exponentiations of the inputs in

base-2.
true_divide(x1, x2, /[, out, where, . . . ]) Returns a true division of the inputs, element-wise.
floor_divide(x1, x2, /[, out, where, . . . ]) Return the largest integer smaller or equal to the division

of the inputs.
negative(x, /[, out, where, casting, order, . . . ]) Numerical negative, element-wise.
positive(x, /[, out, where, casting, order, . . . ]) Numerical positive, element-wise.
power(x1, x2, /[, out, where, casting, . . . ]) First array elements raised to powers from second array,

element-wise.
remainder(x1, x2, /[, out, where, casting, . . . ]) Return element-wise remainder of division.
mod(x1, x2, /[, out, where, casting, order, . . . ]) Return element-wise remainder of division.
fmod(x1, x2, /[, out, where, casting, . . . ]) Return the element-wise remainder of division.
divmod(x1, x2[, out1, out2], / [[, out, . . . ]) Return element-wise quotient and remainder simultane-

ously.
absolute(x, /[, out, where, casting, order, . . . ]) Calculate the absolute value element-wise.
fabs(x, /[, out, where, casting, order, . . . ]) Compute the absolute values element-wise.
rint(x, /[, out, where, casting, order, . . . ]) Round elements of the array to the nearest integer.
sign(x, /[, out, where, casting, order, . . . ]) Returns an element-wise indication of the sign of a number.
heaviside(x1, x2, /[, out, where, casting, . . . ]) Compute the Heaviside step function.
conj(x, /[, out, where, casting, order, . . . ]) Return the complex conjugate, element-wise.
exp(x, /[, out, where, casting, order, . . . ]) Calculate the exponential of all elements in the input array.
exp2(x, /[, out, where, casting, order, . . . ]) Calculate 2**p for all p in the input array.
log(x, /[, out, where, casting, order, . . . ]) Natural logarithm, element-wise.
log2(x, /[, out, where, casting, order, . . . ]) Base-2 logarithm of x.
log10(x, /[, out, where, casting, order, . . . ]) Return the base 10 logarithm of the input array, element-

wise.
expm1(x, /[, out, where, casting, order, . . . ]) Calculate exp(x) - 1 for all elements in the array.
log1p(x, /[, out, where, casting, order, . . . ]) Return the natural logarithm of one plus the input array,

element-wise.
sqrt(x, /[, out, where, casting, order, . . . ]) Return the non-negative square-root of an array, element-

wise.
square(x, /[, out, where, casting, order, . . . ]) Return the element-wise square of the input.
cbrt(x, /[, out, where, casting, order, . . . ]) Return the cube-root of an array, element-wise.
reciprocal(x, /[, out, where, casting, . . . ]) Return the reciprocal of the argument, element-wise.
gcd(x1, x2, /[, out, where, casting, order, . . . ]) Returns the greatest common divisor of |x1| and |x2|
lcm(x1, x2, /[, out, where, casting, order, . . . ]) Returns the lowest common multiple of |x1| and |x2|

Tip: The optional output arguments can be used to help you save memory for large calculations. If your arrays are
large, complicated expressions can take longer than absolutely necessary due to the creation and (later) destruction of
temporary calculation spaces. For example, the expression G = a * b + c is equivalent to t1 = A * B; G =
T1 + C; del t1. It will be more quickly executed as G = A * B; add(G, C, G) which is the same as G
= A * B; G += C.

3.8.2 Trigonometric functions

All trigonometric functions use radians when an angle is called for. The ratio of degrees to radians is 180∘/𝜋.

390 Chapter 3. Universal functions (ufunc)



NumPy Reference, Release 1.15.1

sin(x, /[, out, where, casting, order, . . . ]) Trigonometric sine, element-wise.
cos(x, /[, out, where, casting, order, . . . ]) Cosine element-wise.
tan(x, /[, out, where, casting, order, . . . ]) Compute tangent element-wise.
arcsin(x, /[, out, where, casting, order, . . . ]) Inverse sine, element-wise.
arccos(x, /[, out, where, casting, order, . . . ]) Trigonometric inverse cosine, element-wise.
arctan(x, /[, out, where, casting, order, . . . ]) Trigonometric inverse tangent, element-wise.
arctan2(x1, x2, /[, out, where, casting, . . . ]) Element-wise arc tangent of x1/x2 choosing the quadrant

correctly.
hypot(x1, x2, /[, out, where, casting, . . . ]) Given the “legs” of a right triangle, return its hypotenuse.
sinh(x, /[, out, where, casting, order, . . . ]) Hyperbolic sine, element-wise.
cosh(x, /[, out, where, casting, order, . . . ]) Hyperbolic cosine, element-wise.
tanh(x, /[, out, where, casting, order, . . . ]) Compute hyperbolic tangent element-wise.
arcsinh(x, /[, out, where, casting, order, . . . ]) Inverse hyperbolic sine element-wise.
arccosh(x, /[, out, where, casting, order, . . . ]) Inverse hyperbolic cosine, element-wise.
arctanh(x, /[, out, where, casting, order, . . . ]) Inverse hyperbolic tangent element-wise.
deg2rad(x, /[, out, where, casting, order, . . . ]) Convert angles from degrees to radians.
rad2deg(x, /[, out, where, casting, order, . . . ]) Convert angles from radians to degrees.

3.8.3 Bit-twiddling functions

These function all require integer arguments and they manipulate the bit-pattern of those arguments.

bitwise_and(x1, x2, /[, out, where, . . . ]) Compute the bit-wise AND of two arrays element-wise.
bitwise_or(x1, x2, /[, out, where, casting, . . . ]) Compute the bit-wise OR of two arrays element-wise.
bitwise_xor(x1, x2, /[, out, where, . . . ]) Compute the bit-wise XOR of two arrays element-wise.
invert(x, /[, out, where, casting, order, . . . ]) Compute bit-wise inversion, or bit-wise NOT, element-

wise.
left_shift(x1, x2, /[, out, where, casting, . . . ]) Shift the bits of an integer to the left.
right_shift(x1, x2, /[, out, where, . . . ]) Shift the bits of an integer to the right.

3.8.4 Comparison functions

greater(x1, x2, /[, out, where, casting, . . . ]) Return the truth value of (x1 > x2) element-wise.
greater_equal(x1, x2, /[, out, where, . . . ]) Return the truth value of (x1 >= x2) element-wise.
less(x1, x2, /[, out, where, casting, . . . ]) Return the truth value of (x1 < x2) element-wise.
less_equal(x1, x2, /[, out, where, casting, . . . ]) Return the truth value of (x1 =< x2) element-wise.
not_equal(x1, x2, /[, out, where, casting, . . . ]) Return (x1 != x2) element-wise.
equal(x1, x2, /[, out, where, casting, . . . ]) Return (x1 == x2) element-wise.

Warning: Do not use the Python keywords and and or to combine logical array expressions. These keywords
will test the truth value of the entire array (not element-by-element as you might expect). Use the bitwise operators
& and | instead.

logical_and(x1, x2, /[, out, where, . . . ]) Compute the truth value of x1 AND x2 element-wise.
logical_or(x1, x2, /[, out, where, casting, . . . ]) Compute the truth value of x1 OR x2 element-wise.

Continued on next page

3.8. Available ufuncs 391



NumPy Reference, Release 1.15.1

Table 9 – continued from previous page
logical_xor(x1, x2, /[, out, where, . . . ]) Compute the truth value of x1 XOR x2, element-wise.
logical_not(x, /[, out, where, casting, . . . ]) Compute the truth value of NOT x element-wise.

Warning: The bit-wise operators & and | are the proper way to perform element-by-element array comparisons.
Be sure you understand the operator precedence: (a > 2) & (a < 5) is the proper syntax because a > 2
& a < 5 will result in an error due to the fact that 2 & a is evaluated first.

maximum(x1, x2, /[, out, where, casting, . . . ]) Element-wise maximum of array elements.

Tip: The Python function max() will find the maximum over a one-dimensional array, but it will do so using a
slower sequence interface. The reduce method of the maximum ufunc is much faster. Also, the max() method will
not give answers you might expect for arrays with greater than one dimension. The reduce method of minimum also
allows you to compute a total minimum over an array.

minimum(x1, x2, /[, out, where, casting, . . . ]) Element-wise minimum of array elements.

Warning: the behavior of maximum(a, b) is different than that of max(a, b). As a ufunc, maximum(a,
b) performs an element-by-element comparison of a and b and chooses each element of the result according to
which element in the two arrays is larger. In contrast, max(a, b) treats the objects a and b as a whole, looks at
the (total) truth value of a > b and uses it to return either a or b (as a whole). A similar difference exists between
minimum(a, b) and min(a, b).

fmax(x1, x2, /[, out, where, casting, . . . ]) Element-wise maximum of array elements.
fmin(x1, x2, /[, out, where, casting, . . . ]) Element-wise minimum of array elements.

3.8.5 Floating functions

Recall that all of these functions work element-by-element over an array, returning an array output. The description
details only a single operation.

isfinite(x, /[, out, where, casting, order, . . . ]) Test element-wise for finiteness (not infinity or not Not a
Number).

isinf(x, /[, out, where, casting, order, . . . ]) Test element-wise for positive or negative infinity.
isnan(x, /[, out, where, casting, order, . . . ]) Test element-wise for NaN and return result as a boolean

array.
isnat(x, /[, out, where, casting, order, . . . ]) Test element-wise for NaT (not a time) and return result as

a boolean array.
fabs(x, /[, out, where, casting, order, . . . ]) Compute the absolute values element-wise.
signbit(x, /[, out, where, casting, order, . . . ]) Returns element-wise True where signbit is set (less than

zero).
copysign(x1, x2, /[, out, where, casting, . . . ]) Change the sign of x1 to that of x2, element-wise.

Continued on next page

392 Chapter 3. Universal functions (ufunc)



NumPy Reference, Release 1.15.1

Table 13 – continued from previous page
nextafter(x1, x2, /[, out, where, casting, . . . ]) Return the next floating-point value after x1 towards x2,

element-wise.
spacing(x, /[, out, where, casting, order, . . . ]) Return the distance between x and the nearest adjacent

number.
modf(x[, out1, out2], / [[, out, where, . . . ]) Return the fractional and integral parts of an array, element-

wise.
ldexp(x1, x2, /[, out, where, casting, . . . ]) Returns x1 * 2**x2, element-wise.
frexp(x[, out1, out2], / [[, out, where, . . . ]) Decompose the elements of x into mantissa and twos expo-

nent.
fmod(x1, x2, /[, out, where, casting, . . . ]) Return the element-wise remainder of division.
floor(x, /[, out, where, casting, order, . . . ]) Return the floor of the input, element-wise.
ceil(x, /[, out, where, casting, order, . . . ]) Return the ceiling of the input, element-wise.
trunc(x, /[, out, where, casting, order, . . . ]) Return the truncated value of the input, element-wise.

3.8. Available ufuncs 393



NumPy Reference, Release 1.15.1

394 Chapter 3. Universal functions (ufunc)



CHAPTER

FOUR

ROUTINES

In this chapter routine docstrings are presented, grouped by functionality. Many docstrings contain example code,
which demonstrates basic usage of the routine. The examples assume that NumPy is imported with:

>>> import numpy as np

A convenient way to execute examples is the %doctest_mode mode of IPython, which allows for pasting of multi-
line examples and preserves indentation.

4.1 Array creation routines

See also:

Array creation

4.1.1 Ones and zeros

empty(shape[, dtype, order]) Return a new array of given shape and type, without initial-
izing entries.

empty_like(prototype[, dtype, order, subok]) Return a new array with the same shape and type as a given
array.

eye(N[, M, k, dtype, order]) Return a 2-D array with ones on the diagonal and zeros
elsewhere.

identity(n[, dtype]) Return the identity array.
ones(shape[, dtype, order]) Return a new array of given shape and type, filled with

ones.
ones_like(a[, dtype, order, subok]) Return an array of ones with the same shape and type as a

given array.
zeros(shape[, dtype, order]) Return a new array of given shape and type, filled with ze-

ros.
zeros_like(a[, dtype, order, subok]) Return an array of zeros with the same shape and type as a

given array.
full(shape, fill_value[, dtype, order]) Return a new array of given shape and type, filled with

fill_value.
full_like(a, fill_value[, dtype, order, subok]) Return a full array with the same shape and type as a given

array.

numpy.empty(shape, dtype=float, order=’C’)
Return a new array of given shape and type, without initializing entries.

395



NumPy Reference, Release 1.15.1

Parameters

shape [int or tuple of int] Shape of the empty array, e.g., (2, 3) or 2.

dtype [data-type, optional] Desired output data-type for the array, e.g, numpy.int8. Default
is numpy.float64.

order [{‘C’, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

Returns

out [ndarray] Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Object
arrays will be initialized to None.

See also:

empty_like Return an empty array with shape and type of input.

ones Return a new array setting values to one.

zeros Return a new array setting values to zero.

full Return a new array of given shape filled with value.

Notes

empty , unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the
other hand, it requires the user to manually set all the values in the array, and should be used with caution.

Examples

>>> np.empty([2, 2])
array([[ -9.74499359e+001, 6.69583040e-309],

[ 2.13182611e-314, 3.06959433e-309]]) #random

>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],

[ 496041986, 19249760]]) #random

numpy.empty_like(prototype, dtype=None, order=’K’, subok=True)
Return a new array with the same shape and type as a given array.

Parameters

prototype [array_like] The shape and data-type of prototype define these same attributes of the
returned array.

dtype [data-type, optional] Overrides the data type of the result.

New in version 1.6.0.

order [{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-
order, ‘F’ means F-order, ‘A’ means ‘F’ if prototype is Fortran contiguous, ‘C’ otherwise.
‘K’ means match the layout of prototype as closely as possible.

New in version 1.6.0.

subok [bool, optional.] If True, then the newly created array will use the sub-class type of ‘a’,
otherwise it will be a base-class array. Defaults to True.

396 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns

out [ndarray] Array of uninitialized (arbitrary) data with the same shape and type as prototype.

See also:

ones_like Return an array of ones with shape and type of input.

zeros_like Return an array of zeros with shape and type of input.

full_like Return a new array with shape of input filled with value.

empty Return a new uninitialized array.

Notes

This function does not initialize the returned array; to do that use zeros_like or ones_like instead. It
may be marginally faster than the functions that do set the array values.

Examples

>>> a = ([1,2,3], [4,5,6]) # a is array-like
>>> np.empty_like(a)
array([[-1073741821, -1073741821, 3], #random

[ 0, 0, -1073741821]])
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
>>> np.empty_like(a)
array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random

[ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])

numpy.eye(N, M=None, k=0, dtype=<class ’float’>, order=’C’)
Return a 2-D array with ones on the diagonal and zeros elsewhere.

Parameters

N [int] Number of rows in the output.

M [int, optional] Number of columns in the output. If None, defaults to N.

k [int, optional] Index of the diagonal: 0 (the default) refers to the main diagonal, a positive
value refers to an upper diagonal, and a negative value to a lower diagonal.

dtype [data-type, optional] Data-type of the returned array.

order [{‘C’, ‘F’}, optional] Whether the output should be stored in row-major (C-style) or
column-major (Fortran-style) order in memory.

New in version 1.14.0.

Returns

I [ndarray of shape (N,M)] An array where all elements are equal to zero, except for the k-th
diagonal, whose values are equal to one.

See also:

identity (almost) equivalent function

diag diagonal 2-D array from a 1-D array specified by the user.

4.1. Array creation routines 397



NumPy Reference, Release 1.15.1

Examples

>>> np.eye(2, dtype=int)
array([[1, 0],

[0, 1]])
>>> np.eye(3, k=1)
array([[ 0., 1., 0.],

[ 0., 0., 1.],
[ 0., 0., 0.]])

numpy.identity(n, dtype=None)
Return the identity array.

The identity array is a square array with ones on the main diagonal.

Parameters

n [int] Number of rows (and columns) in n x n output.

dtype [data-type, optional] Data-type of the output. Defaults to float.

Returns

out [ndarray] n x n array with its main diagonal set to one, and all other elements 0.

Examples

>>> np.identity(3)
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

numpy.ones(shape, dtype=None, order=’C’)
Return a new array of given shape and type, filled with ones.

Parameters

shape [int or sequence of ints] Shape of the new array, e.g., (2, 3) or 2.

dtype [data-type, optional] The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order [{‘C’, ‘F’}, optional, default: C] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

Returns

out [ndarray] Array of ones with the given shape, dtype, and order.

See also:

ones_like Return an array of ones with shape and type of input.

empty Return a new uninitialized array.

zeros Return a new array setting values to zero.

full Return a new array of given shape filled with value.

398 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> np.ones(5)
array([ 1., 1., 1., 1., 1.])

>>> np.ones((5,), dtype=int)
array([1, 1, 1, 1, 1])

>>> np.ones((2, 1))
array([[ 1.],

[ 1.]])

>>> s = (2,2)
>>> np.ones(s)
array([[ 1., 1.],

[ 1., 1.]])

numpy.ones_like(a, dtype=None, order=’K’, subok=True)
Return an array of ones with the same shape and type as a given array.

Parameters

a [array_like] The shape and data-type of a define these same attributes of the returned array.

dtype [data-type, optional] Overrides the data type of the result.

New in version 1.6.0.

order [{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means
C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible.

New in version 1.6.0.

subok [bool, optional.] If True, then the newly created array will use the sub-class type of ‘a’,
otherwise it will be a base-class array. Defaults to True.

Returns

out [ndarray] Array of ones with the same shape and type as a.

See also:

empty_like Return an empty array with shape and type of input.

zeros_like Return an array of zeros with shape and type of input.

full_like Return a new array with shape of input filled with value.

ones Return a new array setting values to one.

Examples

>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],

[3, 4, 5]])

(continues on next page)

4.1. Array creation routines 399



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> np.ones_like(x)
array([[1, 1, 1],

[1, 1, 1]])

>>> y = np.arange(3, dtype=float)
>>> y
array([ 0., 1., 2.])
>>> np.ones_like(y)
array([ 1., 1., 1.])

numpy.zeros(shape, dtype=float, order=’C’)
Return a new array of given shape and type, filled with zeros.

Parameters

shape [int or tuple of ints] Shape of the new array, e.g., (2, 3) or 2.

dtype [data-type, optional] The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order [{‘C’, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

Returns

out [ndarray] Array of zeros with the given shape, dtype, and order.

See also:

zeros_like Return an array of zeros with shape and type of input.

empty Return a new uninitialized array.

ones Return a new array setting values to one.

full Return a new array of given shape filled with value.

Examples

>>> np.zeros(5)
array([ 0., 0., 0., 0., 0.])

>>> np.zeros((5,), dtype=int)
array([0, 0, 0, 0, 0])

>>> np.zeros((2, 1))
array([[ 0.],

[ 0.]])

>>> s = (2,2)
>>> np.zeros(s)
array([[ 0., 0.],

[ 0., 0.]])

>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
array([(0, 0), (0, 0)],

dtype=[('x', '<i4'), ('y', '<i4')])

400 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.zeros_like(a, dtype=None, order=’K’, subok=True)
Return an array of zeros with the same shape and type as a given array.

Parameters

a [array_like] The shape and data-type of a define these same attributes of the returned array.

dtype [data-type, optional] Overrides the data type of the result.

New in version 1.6.0.

order [{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means
C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible.

New in version 1.6.0.

subok [bool, optional.] If True, then the newly created array will use the sub-class type of ‘a’,
otherwise it will be a base-class array. Defaults to True.

Returns

out [ndarray] Array of zeros with the same shape and type as a.

See also:

empty_like Return an empty array with shape and type of input.

ones_like Return an array of ones with shape and type of input.

full_like Return a new array with shape of input filled with value.

zeros Return a new array setting values to zero.

Examples

>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],

[3, 4, 5]])
>>> np.zeros_like(x)
array([[0, 0, 0],

[0, 0, 0]])

>>> y = np.arange(3, dtype=float)
>>> y
array([ 0., 1., 2.])
>>> np.zeros_like(y)
array([ 0., 0., 0.])

numpy.full(shape, fill_value, dtype=None, order=’C’)
Return a new array of given shape and type, filled with fill_value.

Parameters

shape [int or sequence of ints] Shape of the new array, e.g., (2, 3) or 2.

fill_value [scalar] Fill value.

dtype [data-type, optional]

4.1. Array creation routines 401



NumPy Reference, Release 1.15.1

The desired data-type for the array The default, None, means
np.array(fill_value).dtype.

order [{‘C’, ‘F’}, optional] Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.

Returns

out [ndarray] Array of fill_value with the given shape, dtype, and order.

See also:

full_like Return a new array with shape of input filled with value.

empty Return a new uninitialized array.

ones Return a new array setting values to one.

zeros Return a new array setting values to zero.

Examples

>>> np.full((2, 2), np.inf)
array([[ inf, inf],

[ inf, inf]])
>>> np.full((2, 2), 10)
array([[10, 10],

[10, 10]])

numpy.full_like(a, fill_value, dtype=None, order=’K’, subok=True)
Return a full array with the same shape and type as a given array.

Parameters

a [array_like] The shape and data-type of a define these same attributes of the returned array.

fill_value [scalar] Fill value.

dtype [data-type, optional] Overrides the data type of the result.

order [{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means
C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible.

subok [bool, optional.] If True, then the newly created array will use the sub-class type of ‘a’,
otherwise it will be a base-class array. Defaults to True.

Returns

out [ndarray] Array of fill_value with the same shape and type as a.

See also:

empty_like Return an empty array with shape and type of input.

ones_like Return an array of ones with shape and type of input.

zeros_like Return an array of zeros with shape and type of input.

full Return a new array of given shape filled with value.

402 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> x = np.arange(6, dtype=int)
>>> np.full_like(x, 1)
array([1, 1, 1, 1, 1, 1])
>>> np.full_like(x, 0.1)
array([0, 0, 0, 0, 0, 0])
>>> np.full_like(x, 0.1, dtype=np.double)
array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
>>> np.full_like(x, np.nan, dtype=np.double)
array([ nan, nan, nan, nan, nan, nan])

>>> y = np.arange(6, dtype=np.double)
>>> np.full_like(y, 0.1)
array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])

4.1.2 From existing data

array(object[, dtype, copy, order, subok, ndmin]) Create an array.
asarray(a[, dtype, order]) Convert the input to an array.
asanyarray(a[, dtype, order]) Convert the input to an ndarray, but pass ndarray subclasses

through.
ascontiguousarray(a[, dtype]) Return a contiguous array in memory (C order).
asmatrix(data[, dtype]) Interpret the input as a matrix.
copy(a[, order]) Return an array copy of the given object.
frombuffer(buffer[, dtype, count, offset]) Interpret a buffer as a 1-dimensional array.
fromfile(file[, dtype, count, sep]) Construct an array from data in a text or binary file.
fromfunction(function, shape, **kwargs) Construct an array by executing a function over each coor-

dinate.
fromiter(iterable, dtype[, count]) Create a new 1-dimensional array from an iterable object.
fromstring(string[, dtype, count, sep]) A new 1-D array initialized from text data in a string.
loadtxt(fname[, dtype, comments, delimiter, . . . ]) Load data from a text file.

numpy.array(object, dtype=None, copy=True, order=’K’, subok=False, ndmin=0)
Create an array.

Parameters

object [array_like] An array, any object exposing the array interface, an object whose __array__
method returns an array, or any (nested) sequence.

dtype [data-type, optional] The desired data-type for the array. If not given, then the type will be
determined as the minimum type required to hold the objects in the sequence. This argument
can only be used to ‘upcast’ the array. For downcasting, use the .astype(t) method.

copy [bool, optional] If true (default), then the object is copied. Otherwise, a copy will only
be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to
satisfy any of the other requirements (dtype, order, etc.).

order [{‘K’, ‘A’, ‘C’, ‘F’}, optional] Specify the memory layout of the array. If object is not
an array, the newly created array will be in C order (row major) unless ‘F’ is specified, in
which case it will be in Fortran order (column major). If object is an array the following
holds.

4.1. Array creation routines 403



NumPy Reference, Release 1.15.1

order no copy copy=True
‘K’ unchanged F & C order preserved, otherwise most similar order
‘A’ unchanged F order if input is F and not C, otherwise C order
‘C’ C order C order
‘F’ F order F order

When copy=False and a copy is made for other reasons, the result is the same as if
copy=True, with some exceptions for A, see the Notes section. The default order is ‘K’.

subok [bool, optional] If True, then sub-classes will be passed-through, otherwise the returned
array will be forced to be a base-class array (default).

ndmin [int, optional] Specifies the minimum number of dimensions that the resulting array
should have. Ones will be pre-pended to the shape as needed to meet this requirement.

Returns

out [ndarray] An array object satisfying the specified requirements.

See also:

empty_like Return an empty array with shape and type of input.

ones_like Return an array of ones with shape and type of input.

zeros_like Return an array of zeros with shape and type of input.

full_like Return a new array with shape of input filled with value.

empty Return a new uninitialized array.

ones Return a new array setting values to one.

zeros Return a new array setting values to zero.

full Return a new array of given shape filled with value.

Notes

When order is ‘A’ and object is an array in neither ‘C’ nor ‘F’ order, and a copy is forced by a change in
dtype, then the order of the result is not necessarily ‘C’ as expected. This is likely a bug.

Examples

>>> np.array([1, 2, 3])
array([1, 2, 3])

Upcasting:

>>> np.array([1, 2, 3.0])
array([ 1., 2., 3.])

More than one dimension:

>>> np.array([[1, 2], [3, 4]])
array([[1, 2],

[3, 4]])

404 Chapter 4. Routines

https://docs.python.org/dev/library/functions.html#object


NumPy Reference, Release 1.15.1

Minimum dimensions 2:

>>> np.array([1, 2, 3], ndmin=2)
array([[1, 2, 3]])

Type provided:

>>> np.array([1, 2, 3], dtype=complex)
array([ 1.+0.j, 2.+0.j, 3.+0.j])

Data-type consisting of more than one element:

>>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])
>>> x['a']
array([1, 3])

Creating an array from sub-classes:

>>> np.array(np.mat('1 2; 3 4'))
array([[1, 2],

[3, 4]])

>>> np.array(np.mat('1 2; 3 4'), subok=True)
matrix([[1, 2],

[3, 4]])

numpy.asarray(a, dtype=None, order=None)
Convert the input to an array.

Parameters

a [array_like] Input data, in any form that can be converted to an array. This includes lists, lists
of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.

dtype [data-type, optional] By default, the data-type is inferred from the input data.

order [{‘C’, ‘F’}, optional] Whether to use row-major (C-style) or column-major (Fortran-
style) memory representation. Defaults to ‘C’.

Returns

out [ndarray] Array interpretation of a. No copy is performed if the input is already an ndarray
with matching dtype and order. If a is a subclass of ndarray, a base class ndarray is returned.

See also:

asanyarray Similar function which passes through subclasses.

ascontiguousarray Convert input to a contiguous array.

asfarray Convert input to a floating point ndarray.

asfortranarray Convert input to an ndarray with column-major memory order.

asarray_chkfinite Similar function which checks input for NaNs and Infs.

fromiter Create an array from an iterator.

fromfunction Construct an array by executing a function on grid positions.

4.1. Array creation routines 405



NumPy Reference, Release 1.15.1

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> np.asarray(a)
array([1, 2])

Existing arrays are not copied:

>>> a = np.array([1, 2])
>>> np.asarray(a) is a
True

If dtype is set, array is copied only if dtype does not match:

>>> a = np.array([1, 2], dtype=np.float32)
>>> np.asarray(a, dtype=np.float32) is a
True
>>> np.asarray(a, dtype=np.float64) is a
False

Contrary to asanyarray , ndarray subclasses are not passed through:

>>> issubclass(np.recarray, np.ndarray)
True
>>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray)
>>> np.asarray(a) is a
False
>>> np.asanyarray(a) is a
True

numpy.asanyarray(a, dtype=None, order=None)
Convert the input to an ndarray, but pass ndarray subclasses through.

Parameters

a [array_like] Input data, in any form that can be converted to an array. This includes scalars,
lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.

dtype [data-type, optional] By default, the data-type is inferred from the input data.

order [{‘C’, ‘F’}, optional] Whether to use row-major (C-style) or column-major (Fortran-
style) memory representation. Defaults to ‘C’.

Returns

out [ndarray or an ndarray subclass] Array interpretation of a. If a is an ndarray or a subclass
of ndarray, it is returned as-is and no copy is performed.

See also:

asarray Similar function which always returns ndarrays.

ascontiguousarray Convert input to a contiguous array.

asfarray Convert input to a floating point ndarray.

asfortranarray Convert input to an ndarray with column-major memory order.

asarray_chkfinite Similar function which checks input for NaNs and Infs.

406 Chapter 4. Routines



NumPy Reference, Release 1.15.1

fromiter Create an array from an iterator.

fromfunction Construct an array by executing a function on grid positions.

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> np.asanyarray(a)
array([1, 2])

Instances of ndarray subclasses are passed through as-is:

>>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray)
>>> np.asanyarray(a) is a
True

numpy.ascontiguousarray(a, dtype=None)
Return a contiguous array in memory (C order).

Parameters

a [array_like] Input array.

dtype [str or dtype object, optional] Data-type of returned array.

Returns

out [ndarray] Contiguous array of same shape and content as a, with type dtype if specified.

See also:

asfortranarray Convert input to an ndarray with column-major memory order.

require Return an ndarray that satisfies requirements.

ndarray.flags Information about the memory layout of the array.

Examples

>>> x = np.arange(6).reshape(2,3)
>>> np.ascontiguousarray(x, dtype=np.float32)
array([[ 0., 1., 2.],

[ 3., 4., 5.]], dtype=float32)
>>> x.flags['C_CONTIGUOUS']
True

numpy.copy(a, order=’K’)
Return an array copy of the given object.

Parameters

a [array_like] Input data.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-
order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means
match the layout of a as closely as possible. (Note that this function and ndarray.copy
are very similar, but have different default values for their order= arguments.)

4.1. Array creation routines 407



NumPy Reference, Release 1.15.1

Returns

arr [ndarray] Array interpretation of a.

Notes

This is equivalent to:

>>> np.array(a, copy=True)

Examples

Create an array x, with a reference y and a copy z:

>>> x = np.array([1, 2, 3])
>>> y = x
>>> z = np.copy(x)

Note that, when we modify x, y changes, but not z:

>>> x[0] = 10
>>> x[0] == y[0]
True
>>> x[0] == z[0]
False

numpy.frombuffer(buffer, dtype=float, count=-1, offset=0)
Interpret a buffer as a 1-dimensional array.

Parameters

buffer [buffer_like] An object that exposes the buffer interface.

dtype [data-type, optional] Data-type of the returned array; default: float.

count [int, optional] Number of items to read. -1 means all data in the buffer.

offset [int, optional] Start reading the buffer from this offset (in bytes); default: 0.

Notes

If the buffer has data that is not in machine byte-order, this should be specified as part of the data-type, e.g.:

>>> dt = np.dtype(int)
>>> dt = dt.newbyteorder('>')
>>> np.frombuffer(buf, dtype=dt)

The data of the resulting array will not be byteswapped, but will be interpreted correctly.

Examples

408 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> s = 'hello world'
>>> np.frombuffer(s, dtype='S1', count=5, offset=6)
array(['w', 'o', 'r', 'l', 'd'],

dtype='|S1')

>>> np.frombuffer(b'\x01\x02', dtype=np.uint8)
array([1, 2], dtype=uint8)
>>> np.frombuffer(b'\x01\x02\x03\x04\x05', dtype=np.uint8, count=3)
array([1, 2, 3], dtype=uint8)

numpy.fromfile(file, dtype=float, count=-1, sep=”)
Construct an array from data in a text or binary file.

A highly efficient way of reading binary data with a known data-type, as well as parsing simply formatted text
files. Data written using the tofile method can be read using this function.

Parameters

file [file or str] Open file object or filename.

dtype [data-type] Data type of the returned array. For binary files, it is used to determine the
size and byte-order of the items in the file.

count [int] Number of items to read. -1 means all items (i.e., the complete file).

sep [str] Separator between items if file is a text file. Empty (“”) separator means the file should
be treated as binary. Spaces (” “) in the separator match zero or more whitespace characters.
A separator consisting only of spaces must match at least one whitespace.

See also:

load, save, ndarray.tofile

loadtxt More flexible way of loading data from a text file.

Notes

Do not rely on the combination of tofile and fromfile for data storage, as the binary files generated are are
not platform independent. In particular, no byte-order or data-type information is saved. Data can be stored in
the platform independent .npy format using save and load instead.

Examples

Construct an ndarray:

>>> dt = np.dtype([('time', [('min', int), ('sec', int)]),
... ('temp', float)])
>>> x = np.zeros((1,), dtype=dt)
>>> x['time']['min'] = 10; x['temp'] = 98.25
>>> x
array([((10, 0), 98.25)],

dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])

Save the raw data to disk:

4.1. Array creation routines 409



NumPy Reference, Release 1.15.1

>>> import os
>>> fname = os.tmpnam()
>>> x.tofile(fname)

Read the raw data from disk:

>>> np.fromfile(fname, dtype=dt)
array([((10, 0), 98.25)],

dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])

The recommended way to store and load data:

>>> np.save(fname, x)
>>> np.load(fname + '.npy')
array([((10, 0), 98.25)],

dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])

numpy.fromfunction(function, shape, **kwargs)
Construct an array by executing a function over each coordinate.

The resulting array therefore has a value fn(x, y, z) at coordinate (x, y, z).

Parameters

function [callable] The function is called with N parameters, where N is the rank of shape.
Each parameter represents the coordinates of the array varying along a specific axis. For ex-
ample, if shape were (2, 2), then the parameters would be array([[0, 0], [1,
1]]) and array([[0, 1], [0, 1]])

shape [(N,) tuple of ints] Shape of the output array, which also determines the shape of the
coordinate arrays passed to function.

dtype [data-type, optional] Data-type of the coordinate arrays passed to function. By default,
dtype is float.

Returns

fromfunction [any] The result of the call to function is passed back directly. Therefore the
shape of fromfunction is completely determined by function. If function returns a scalar
value, the shape of fromfunction would match the shape parameter.

See also:

indices, meshgrid

Notes

Keywords other than dtype are passed to function.

Examples

>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array([[ True, False, False],

[False, True, False],
[False, False, True]])

410 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array([[0, 1, 2],

[1, 2, 3],
[2, 3, 4]])

numpy.fromiter(iterable, dtype, count=-1)
Create a new 1-dimensional array from an iterable object.

Parameters

iterable [iterable object] An iterable object providing data for the array.

dtype [data-type] The data-type of the returned array.

count [int, optional] The number of items to read from iterable. The default is -1, which means
all data is read.

Returns

out [ndarray] The output array.

Notes

Specify count to improve performance. It allows fromiter to pre-allocate the output array, instead of resizing
it on demand.

Examples

>>> iterable = (x*x for x in range(5))
>>> np.fromiter(iterable, float)
array([ 0., 1., 4., 9., 16.])

numpy.fromstring(string, dtype=float, count=-1, sep=”)
A new 1-D array initialized from text data in a string.

Parameters

string [str] A string containing the data.

dtype [data-type, optional] The data type of the array; default: float. For binary input data, the
data must be in exactly this format.

count [int, optional] Read this number of dtype elements from the data. If this is negative (the
default), the count will be determined from the length of the data.

sep [str, optional] The string separating numbers in the data; extra whitespace between elements
is also ignored.

Deprecated since version 1.14: If this argument is not provided, fromstring falls back on
the behaviour of frombuffer after encoding unicode string inputs as either utf-8 (python
3), or the default encoding (python 2).

Returns

arr [ndarray] The constructed array.

Raises

ValueError If the string is not the correct size to satisfy the requested dtype and count.

4.1. Array creation routines 411



NumPy Reference, Release 1.15.1

See also:

frombuffer, fromfile, fromiter

Examples

>>> np.fromstring('1 2', dtype=int, sep=' ')
array([1, 2])
>>> np.fromstring('1, 2', dtype=int, sep=',')
array([1, 2])

numpy.loadtxt(fname, dtype=<class ’float’>, comments=’#’, delimiter=None, converters=None,
skiprows=0, usecols=None, unpack=False, ndmin=0, encoding=’bytes’)

Load data from a text file.

Each row in the text file must have the same number of values.

Parameters

fname [file, str, or pathlib.Path] File, filename, or generator to read. If the filename extension is
.gz or .bz2, the file is first decompressed. Note that generators should return byte strings
for Python 3k.

dtype [data-type, optional] Data-type of the resulting array; default: float. If this is a structured
data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an
element of the array. In this case, the number of columns used must match the number of
fields in the data-type.

comments [str or sequence of str, optional] The characters or list of characters used to indicate
the start of a comment. None implies no comments. For backwards compatibility, byte
strings will be decoded as ‘latin1’. The default is ‘#’.

delimiter [str, optional] The string used to separate values. For backwards compatibility, byte
strings will be decoded as ‘latin1’. The default is whitespace.

converters [dict, optional] A dictionary mapping column number to a function that will parse
the column string into the desired value. E.g., if column 0 is a date string: converters =
{0: datestr2num}. Converters can also be used to provide a default value for missing
data (but see also genfromtxt): converters = {3: lambda s: float(s.
strip() or 0)}. Default: None.

skiprows [int, optional] Skip the first skiprows lines; default: 0.

usecols [int or sequence, optional] Which columns to read, with 0 being the first. For example,
usecols = (1,4,5) will extract the 2nd, 5th and 6th columns. The default, None,
results in all columns being read.

Changed in version 1.11.0: When a single column has to be read it is possible to use an
integer instead of a tuple. E.g usecols = 3 reads the fourth column the same way as
usecols = (3,) would.

unpack [bool, optional] If True, the returned array is transposed, so that arguments may be
unpacked using x, y, z = loadtxt(...). When used with a structured data-type,
arrays are returned for each field. Default is False.

ndmin [int, optional] The returned array will have at least ndmin dimensions. Otherwise mono-
dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2.

New in version 1.6.0.

412 Chapter 4. Routines



NumPy Reference, Release 1.15.1

encoding [str, optional] Encoding used to decode the inputfile. Does not apply to input streams.
The special value ‘bytes’ enables backward compatibility workarounds that ensures you
receive byte arrays as results if possible and passes ‘latin1’ encoded strings to converters.
Override this value to receive unicode arrays and pass strings as input to converters. If set
to None the system default is used. The default value is ‘bytes’.

New in version 1.14.0.

Returns

out [ndarray] Data read from the text file.

See also:

load, fromstring, fromregex

genfromtxt Load data with missing values handled as specified.

scipy.io.loadmat reads MATLAB data files

Notes

This function aims to be a fast reader for simply formatted files. The genfromtxt function provides more
sophisticated handling of, e.g., lines with missing values.

New in version 1.10.0.

The strings produced by the Python float.hex method can be used as input for floats.

Examples

>>> from io import StringIO # StringIO behaves like a file object
>>> c = StringIO(u"0 1\n2 3")
>>> np.loadtxt(c)
array([[ 0., 1.],

[ 2., 3.]])

>>> d = StringIO(u"M 21 72\nF 35 58")
>>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'),
... 'formats': ('S1', 'i4', 'f4')})
array([('M', 21, 72.0), ('F', 35, 58.0)],

dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')])

>>> c = StringIO(u"1,0,2\n3,0,4")
>>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True)
>>> x
array([ 1., 3.])
>>> y
array([ 2., 4.])

4.1.3 Creating record arrays (numpy.rec)

Note: numpy.rec is the preferred alias for numpy.core.records.

4.1. Array creation routines 413

https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.loadmat.html#scipy.io.loadmat


NumPy Reference, Release 1.15.1

core.records.array(obj[, dtype, shape, . . . ]) Construct a record array from a wide-variety of objects.
core.records.fromarrays(arrayList[, dtype, . . . ]) create a record array from a (flat) list of arrays
core.records.fromrecords(recList[, dtype, . . . ]) create a recarray from a list of records in text form
core.records.fromstring(datastring[, dtype, . . . ]) create a (read-only) record array from binary data con-

tained in a string
core.records.fromfile(fd[, dtype, shape, . . . ]) Create an array from binary file data

numpy.core.records.array(obj, dtype=None, shape=None, offset=0, strides=None, formats=None,
names=None, titles=None, aligned=False, byteorder=None, copy=True)

Construct a record array from a wide-variety of objects.

numpy.core.records.fromarrays(arrayList, dtype=None, shape=None, formats=None,
names=None, titles=None, aligned=False, byteorder=None)

create a record array from a (flat) list of arrays

>>> x1=np.array([1,2,3,4])
>>> x2=np.array(['a','dd','xyz','12'])
>>> x3=np.array([1.1,2,3,4])
>>> r = np.core.records.fromarrays([x1,x2,x3],names='a,b,c')
>>> print(r[1])
(2, 'dd', 2.0)
>>> x1[1]=34
>>> r.a
array([1, 2, 3, 4])

numpy.core.records.fromrecords(recList, dtype=None, shape=None, formats=None,
names=None, titles=None, aligned=False, byteorder=None)

create a recarray from a list of records in text form

The data in the same field can be heterogeneous, they will be promoted to the highest data type. This
method is intended for creating smaller record arrays. If used to create large array without formats
defined

r=fromrecords([(2,3.,’abc’)]*100000)

it can be slow.

If formats is None, then this will auto-detect formats. Use list of tuples rather than list of lists for
faster processing.

>>> r=np.core.records.fromrecords([(456,'dbe',1.2),(2,'de',1.3)],
... names='col1,col2,col3')
>>> print(r[0])
(456, 'dbe', 1.2)
>>> r.col1
array([456, 2])
>>> r.col2
array(['dbe', 'de'],

dtype='|S3')
>>> import pickle
>>> print(pickle.loads(pickle.dumps(r)))
[(456, 'dbe', 1.2) (2, 'de', 1.3)]

numpy.core.records.fromstring(datastring, dtype=None, shape=None, offset=0, formats=None,
names=None, titles=None, aligned=False, byteorder=None)

create a (read-only) record array from binary data contained in a string

414 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.core.records.fromfile(fd, dtype=None, shape=None, offset=0, formats=None,
names=None, titles=None, aligned=False, byteorder=None)

Create an array from binary file data

If file is a string then that file is opened, else it is assumed to be a file object. The file object must support random
access (i.e. it must have tell and seek methods).

>>> from tempfile import TemporaryFile
>>> a = np.empty(10,dtype='f8,i4,a5')
>>> a[5] = (0.5,10,'abcde')
>>>
>>> fd=TemporaryFile()
>>> a = a.newbyteorder('<')
>>> a.tofile(fd)
>>>
>>> fd.seek(0)
>>> r=np.core.records.fromfile(fd, formats='f8,i4,a5', shape=10,
... byteorder='<')
>>> print(r[5])
(0.5, 10, 'abcde')
>>> r.shape
(10,)

4.1.4 Creating character arrays (numpy.char)

Note: numpy.char is the preferred alias for numpy.core.defchararray.

core.defchararray.array(obj[, itemsize, . . . ]) Create a chararray .
core.defchararray.asarray(obj[, itemsize, . . . ]) Convert the input to a chararray , copying the data only

if necessary.

numpy.core.defchararray.asarray(obj, itemsize=None, unicode=None, order=None)
Convert the input to a chararray , copying the data only if necessary.

Versus a regular NumPy array of type str or unicode, this class adds the following functionality:

1. values automatically have whitespace removed from the end when indexed

2. comparison operators automatically remove whitespace from the end when comparing values

3. vectorized string operations are provided as methods (e.g. str.endswith) and infix operators (e.g. +,
*,‘‘%‘‘)

Parameters

obj [array of str or unicode-like]

itemsize [int, optional] itemsize is the number of characters per scalar in the resulting array. If
itemsize is None, and obj is an object array or a Python list, the itemsize will be automatically
determined. If itemsize is provided and obj is of type str or unicode, then the obj string will
be chunked into itemsize pieces.

unicode [bool, optional] When true, the resulting chararray can contain Unicode characters,
when false only 8-bit characters. If unicode is None and obj is one of the following:

• a chararray ,

4.1. Array creation routines 415



NumPy Reference, Release 1.15.1

• an ndarray of type str or ‘unicode‘

• a Python str or unicode object,

then the unicode setting of the output array will be automatically determined.

order [{‘C’, ‘F’}, optional] Specify the order of the array. If order is ‘C’ (default), then the
array will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the
returned array will be in Fortran-contiguous order (first-index varies the fastest).

4.1.5 Numerical ranges

arange([start,] stop[, step,][, dtype]) Return evenly spaced values within a given interval.
linspace(start, stop[, num, endpoint, . . . ]) Return evenly spaced numbers over a specified interval.
logspace(start, stop[, num, endpoint, base, . . . ]) Return numbers spaced evenly on a log scale.
geomspace(start, stop[, num, endpoint, dtype]) Return numbers spaced evenly on a log scale (a geometric

progression).
meshgrid(*xi, **kwargs) Return coordinate matrices from coordinate vectors.
mgrid nd_grid instance which returns a dense multi-dimensional

“meshgrid”.
ogrid nd_grid instance which returns an open multi-dimensional

“meshgrid”.

numpy.arange([start ], stop[, step], dtype=None)
Return evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop) (in other words, the interval including
start but excluding stop). For integer arguments the function is equivalent to the Python built-in range function,
but returns an ndarray rather than a list.

When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use linspace
for these cases.

Parameters

start [number, optional] Start of interval. The interval includes this value. The default start
value is 0.

stop [number] End of interval. The interval does not include this value, except in some cases
where step is not an integer and floating point round-off affects the length of out.

step [number, optional] Spacing between values. For any output out, this is the distance between
two adjacent values, out[i+1] - out[i]. The default step size is 1. If step is specified
as a position argument, start must also be given.

dtype [dtype] The type of the output array. If dtype is not given, infer the data type from the
other input arguments.

Returns

arange [ndarray] Array of evenly spaced values.

For floating point arguments, the length of the result is ceil((stop - start)/
step). Because of floating point overflow, this rule may result in the last element of out
being greater than stop.

See also:

linspace Evenly spaced numbers with careful handling of endpoints.

416 Chapter 4. Routines

http://docs.python.org/lib/built-in-funcs.html


NumPy Reference, Release 1.15.1

ogrid Arrays of evenly spaced numbers in N-dimensions.

mgrid Grid-shaped arrays of evenly spaced numbers in N-dimensions.

Examples

>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([ 0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
Return evenly spaced numbers over a specified interval.

Returns num evenly spaced samples, calculated over the interval [start, stop].

The endpoint of the interval can optionally be excluded.

Parameters

start [scalar] The starting value of the sequence.

stop [scalar] The end value of the sequence, unless endpoint is set to False. In that case, the
sequence consists of all but the last of num + 1 evenly spaced samples, so that stop is
excluded. Note that the step size changes when endpoint is False.

num [int, optional] Number of samples to generate. Default is 50. Must be non-negative.

endpoint [bool, optional] If True, stop is the last sample. Otherwise, it is not included. Default
is True.

retstep [bool, optional] If True, return (samples, step), where step is the spacing between sam-
ples.

dtype [dtype, optional] The type of the output array. If dtype is not given, infer the data type
from the other input arguments.

New in version 1.9.0.

Returns

samples [ndarray] There are num equally spaced samples in the closed interval [start,
stop] or the half-open interval [start, stop) (depending on whether endpoint is
True or False).

step [float, optional] Only returned if retstep is True

Size of spacing between samples.

See also:

arange Similar to linspace, but uses a step size (instead of the number of samples).

logspace Samples uniformly distributed in log space.

4.1. Array creation routines 417



NumPy Reference, Release 1.15.1

Examples

>>> np.linspace(2.0, 3.0, num=5)
array([ 2. , 2.25, 2.5 , 2.75, 3. ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([ 2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()

0 2 4 6 8 10

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

numpy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)
Return numbers spaced evenly on a log scale.

In linear space, the sequence starts at base ** start (base to the power of start) and ends with base **
stop (see endpoint below).

Parameters

start [float] base ** start is the starting value of the sequence.

stop [float] base ** stop is the final value of the sequence, unless endpoint is False. In that
case, num + 1 values are spaced over the interval in log-space, of which all but the last (a
sequence of length num) are returned.

418 Chapter 4. Routines



NumPy Reference, Release 1.15.1

num [integer, optional] Number of samples to generate. Default is 50.

endpoint [boolean, optional] If true, stop is the last sample. Otherwise, it is not included.
Default is True.

base [float, optional] The base of the log space. The step size between the elements in
ln(samples) / ln(base) (or log_base(samples)) is uniform. Default is 10.0.

dtype [dtype] The type of the output array. If dtype is not given, infer the data type from the
other input arguments.

Returns

samples [ndarray] num samples, equally spaced on a log scale.

See also:

arange Similar to linspace, with the step size specified instead of the number of samples. Note that, when
used with a float endpoint, the endpoint may or may not be included.

linspace Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space.

geomspace Similar to logspace, but with endpoints specified directly.

Notes

Logspace is equivalent to the code

>>> y = np.linspace(start, stop, num=num, endpoint=endpoint)
...
>>> power(base, y).astype(dtype)
...

Examples

>>> np.logspace(2.0, 3.0, num=4)
array([ 100. , 215.443469 , 464.15888336, 1000. ])
>>> np.logspace(2.0, 3.0, num=4, endpoint=False)
array([ 100. , 177.827941 , 316.22776602, 562.34132519])
>>> np.logspace(2.0, 3.0, num=4, base=2.0)
array([ 4. , 5.0396842 , 6.34960421, 8. ])

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 10
>>> x1 = np.logspace(0.1, 1, N, endpoint=True)
>>> x2 = np.logspace(0.1, 1, N, endpoint=False)
>>> y = np.zeros(N)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()

4.1. Array creation routines 419



NumPy Reference, Release 1.15.1

2 4 6 8 10

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

numpy.geomspace(start, stop, num=50, endpoint=True, dtype=None)
Return numbers spaced evenly on a log scale (a geometric progression).

This is similar to logspace, but with endpoints specified directly. Each output sample is a constant multiple
of the previous.

Parameters

start [scalar] The starting value of the sequence.

stop [scalar] The final value of the sequence, unless endpoint is False. In that case, num +
1 values are spaced over the interval in log-space, of which all but the last (a sequence of
length num) are returned.

num [integer, optional] Number of samples to generate. Default is 50.

endpoint [boolean, optional] If true, stop is the last sample. Otherwise, it is not included.
Default is True.

dtype [dtype] The type of the output array. If dtype is not given, infer the data type from the
other input arguments.

Returns

samples [ndarray] num samples, equally spaced on a log scale.

See also:

logspace Similar to geomspace, but with endpoints specified using log and base.

linspace Similar to geomspace, but with arithmetic instead of geometric progression.

arange Similar to linspace, with the step size specified instead of the number of samples.

Notes

If the inputs or dtype are complex, the output will follow a logarithmic spiral in the complex plane. (There are
an infinite number of spirals passing through two points; the output will follow the shortest such path.)

420 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> np.geomspace(1, 1000, num=4)
array([ 1., 10., 100., 1000.])
>>> np.geomspace(1, 1000, num=3, endpoint=False)
array([ 1., 10., 100.])
>>> np.geomspace(1, 1000, num=4, endpoint=False)
array([ 1. , 5.62341325, 31.6227766 , 177.827941 ])
>>> np.geomspace(1, 256, num=9)
array([ 1., 2., 4., 8., 16., 32., 64., 128., 256.])

Note that the above may not produce exact integers:

>>> np.geomspace(1, 256, num=9, dtype=int)
array([ 1, 2, 4, 7, 16, 32, 63, 127, 256])
>>> np.around(np.geomspace(1, 256, num=9)).astype(int)
array([ 1, 2, 4, 8, 16, 32, 64, 128, 256])

Negative, decreasing, and complex inputs are allowed:

>>> np.geomspace(1000, 1, num=4)
array([ 1000., 100., 10., 1.])
>>> np.geomspace(-1000, -1, num=4)
array([-1000., -100., -10., -1.])
>>> np.geomspace(1j, 1000j, num=4) # Straight line
array([ 0. +1.j, 0. +10.j, 0. +100.j, 0.+1000.j])
>>> np.geomspace(-1+0j, 1+0j, num=5) # Circle
array([-1.00000000+0.j , -0.70710678+0.70710678j,

0.00000000+1.j , 0.70710678+0.70710678j,
1.00000000+0.j ])

Graphical illustration of endpoint parameter:

>>> import matplotlib.pyplot as plt
>>> N = 10
>>> y = np.zeros(N)
>>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=True), y + 1, 'o')
>>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=False), y + 2, 'o')
>>> plt.axis([0.5, 2000, 0, 3])
>>> plt.grid(True, color='0.7', linestyle='-', which='both', axis='both')
>>> plt.show()

numpy.meshgrid(*xi, **kwargs)
Return coordinate matrices from coordinate vectors.

Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-
dimensional coordinate arrays x1, x2,. . . , xn.

Changed in version 1.9: 1-D and 0-D cases are allowed.

Parameters

x1, x2,. . . , xn [array_like] 1-D arrays representing the coordinates of a grid.

indexing [{‘xy’, ‘ij’}, optional] Cartesian (‘xy’, default) or matrix (‘ij’) indexing of output. See
Notes for more details.

New in version 1.7.0.

4.1. Array creation routines 421



NumPy Reference, Release 1.15.1

100 101 102 103
0.0

0.5

1.0

1.5

2.0

2.5

3.0

sparse [bool, optional] If True a sparse grid is returned in order to conserve memory. Default
is False.

New in version 1.7.0.

copy [bool, optional] If False, a view into the original arrays are returned in order to conserve
memory. Default is True. Please note that sparse=False, copy=False will likely
return non-contiguous arrays. Furthermore, more than one element of a broadcast array may
refer to a single memory location. If you need to write to the arrays, make copies first.

New in version 1.7.0.

Returns

X1, X2,. . . , XN [ndarray] For vectors x1, x2,. . . , ‘xn’ with lengths Ni=len(xi) , return (N1,
N2, N3,...Nn) shaped arrays if indexing=’ij’ or (N2, N1, N3,...Nn) shaped ar-
rays if indexing=’xy’ with the elements of xi repeated to fill the matrix along the first di-
mension for x1, the second for x2 and so on.

See also:

index_tricks.mgrid Construct a multi-dimensional “meshgrid” using indexing notation.

index_tricks.ogrid Construct an open multi-dimensional “meshgrid” using indexing notation.

Notes

This function supports both indexing conventions through the indexing keyword argument. Giving the string ‘ij’
returns a meshgrid with matrix indexing, while ‘xy’ returns a meshgrid with Cartesian indexing. In the 2-D case
with inputs of length M and N, the outputs are of shape (N, M) for ‘xy’ indexing and (M, N) for ‘ij’ indexing.
In the 3-D case with inputs of length M, N and P, outputs are of shape (N, M, P) for ‘xy’ indexing and (M, N, P)
for ‘ij’ indexing. The difference is illustrated by the following code snippet:

xv, yv = np.meshgrid(x, y, sparse=False, indexing='ij')
for i in range(nx):

for j in range(ny):

(continues on next page)

422 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

# treat xv[i,j], yv[i,j]

xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy')
for i in range(nx):

for j in range(ny):
# treat xv[j,i], yv[j,i]

In the 1-D and 0-D case, the indexing and sparse keywords have no effect.

Examples

>>> nx, ny = (3, 2)
>>> x = np.linspace(0, 1, nx)
>>> y = np.linspace(0, 1, ny)
>>> xv, yv = np.meshgrid(x, y)
>>> xv
array([[ 0. , 0.5, 1. ],

[ 0. , 0.5, 1. ]])
>>> yv
array([[ 0., 0., 0.],

[ 1., 1., 1.]])
>>> xv, yv = np.meshgrid(x, y, sparse=True) # make sparse output arrays
>>> xv
array([[ 0. , 0.5, 1. ]])
>>> yv
array([[ 0.],

[ 1.]])

meshgrid is very useful to evaluate functions on a grid.

>>> x = np.arange(-5, 5, 0.1)
>>> y = np.arange(-5, 5, 0.1)
>>> xx, yy = np.meshgrid(x, y, sparse=True)
>>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2)
>>> h = plt.contourf(x,y,z)

numpy.mgrid = <numpy.lib.index_tricks.nd_grid object>
nd_grid instance which returns a dense multi-dimensional “meshgrid”.

An instance of numpy.lib.index_tricks.nd_grid which returns an dense (or fleshed out) mesh-grid
when indexed, so that each returned argument has the same shape. The dimensions and number of the output
arrays are equal to the number of indexing dimensions. If the step length is not a complex number, then the stop
is not inclusive.

However, if the step length is a complex number (e.g. 5j), then the integer part of its magnitude is interpreted
as specifying the number of points to create between the start and stop values, where the stop value is inclusive.

Returns

mesh-grid ‘ndarrays‘ all of the same dimensions

See also:

numpy.lib.index_tricks.nd_grid class of ogrid and mgrid objects

ogrid like mgrid but returns open (not fleshed out) mesh grids

4.1. Array creation routines 423



NumPy Reference, Release 1.15.1

r_ array concatenator

Examples

>>> np.mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],

[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]],

[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]])

>>> np.mgrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1. ])

numpy.ogrid = <numpy.lib.index_tricks.nd_grid object>
nd_grid instance which returns an open multi-dimensional “meshgrid”.

An instance of numpy.lib.index_tricks.nd_grid which returns an open (i.e. not fleshed out) mesh-
grid when indexed, so that only one dimension of each returned array is greater than 1. The dimension and
number of the output arrays are equal to the number of indexing dimensions. If the step length is not a complex
number, then the stop is not inclusive.

However, if the step length is a complex number (e.g. 5j), then the integer part of its magnitude is interpreted
as specifying the number of points to create between the start and stop values, where the stop value is inclusive.

Returns

mesh-grid ‘ndarrays‘ with only one dimension :math:‘neq 1‘

See also:

np.lib.index_tricks.nd_grid class of ogrid and mgrid objects

mgrid like ogrid but returns dense (or fleshed out) mesh grids

r_ array concatenator

Examples

>>> from numpy import ogrid
>>> ogrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1. ])
>>> ogrid[0:5,0:5]
[array([[0],

[1],
[2],
[3],
[4]]), array([[0, 1, 2, 3, 4]])]

4.1.6 Building matrices

424 Chapter 4. Routines



NumPy Reference, Release 1.15.1

diag(v[, k]) Extract a diagonal or construct a diagonal array.
diagflat(v[, k]) Create a two-dimensional array with the flattened input as

a diagonal.
tri(N[, M, k, dtype]) An array with ones at and below the given diagonal and

zeros elsewhere.
tril(m[, k]) Lower triangle of an array.
triu(m[, k]) Upper triangle of an array.
vander(x[, N, increasing]) Generate a Vandermonde matrix.

numpy.diag(v, k=0)
Extract a diagonal or construct a diagonal array.

See the more detailed documentation for numpy.diagonal if you use this function to extract a diagonal and
wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you
are using.

Parameters

v [array_like] If v is a 2-D array, return a copy of its k-th diagonal. If v is a 1-D array, return a
2-D array with v on the k-th diagonal.

k [int, optional] Diagonal in question. The default is 0. Use k>0 for diagonals above the main
diagonal, and k<0 for diagonals below the main diagonal.

Returns

out [ndarray] The extracted diagonal or constructed diagonal array.

See also:

diagonal Return specified diagonals.

diagflat Create a 2-D array with the flattened input as a diagonal.

trace Sum along diagonals.

triu Upper triangle of an array.

tril Lower triangle of an array.

Examples

>>> x = np.arange(9).reshape((3,3))
>>> x
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> np.diag(x)
array([0, 4, 8])
>>> np.diag(x, k=1)
array([1, 5])
>>> np.diag(x, k=-1)
array([3, 7])

4.1. Array creation routines 425



NumPy Reference, Release 1.15.1

>>> np.diag(np.diag(x))
array([[0, 0, 0],

[0, 4, 0],
[0, 0, 8]])

numpy.diagflat(v, k=0)
Create a two-dimensional array with the flattened input as a diagonal.

Parameters

v [array_like] Input data, which is flattened and set as the k-th diagonal of the output.

k [int, optional] Diagonal to set; 0, the default, corresponds to the “main” diagonal, a positive
(negative) k giving the number of the diagonal above (below) the main.

Returns

out [ndarray] The 2-D output array.

See also:

diag MATLAB work-alike for 1-D and 2-D arrays.

diagonal Return specified diagonals.

trace Sum along diagonals.

Examples

>>> np.diagflat([[1,2], [3,4]])
array([[1, 0, 0, 0],

[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]])

>>> np.diagflat([1,2], 1)
array([[0, 1, 0],

[0, 0, 2],
[0, 0, 0]])

numpy.tri(N, M=None, k=0, dtype=<class ’float’>)
An array with ones at and below the given diagonal and zeros elsewhere.

Parameters

N [int] Number of rows in the array.

M [int, optional] Number of columns in the array. By default, M is taken equal to N.

k [int, optional] The sub-diagonal at and below which the array is filled. k = 0 is the main
diagonal, while k < 0 is below it, and k > 0 is above. The default is 0.

dtype [dtype, optional] Data type of the returned array. The default is float.

Returns

tri [ndarray of shape (N, M)] Array with its lower triangle filled with ones and zero elsewhere;
in other words T[i,j] == 1 for i <= j + k, 0 otherwise.

426 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> np.tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, 0],

[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1]])

>>> np.tri(3, 5, -1)
array([[ 0., 0., 0., 0., 0.],

[ 1., 0., 0., 0., 0.],
[ 1., 1., 0., 0., 0.]])

numpy.tril(m, k=0)
Lower triangle of an array.

Return a copy of an array with elements above the k-th diagonal zeroed.

Parameters

m [array_like, shape (M, N)] Input array.

k [int, optional] Diagonal above which to zero elements. k = 0 (the default) is the main diagonal,
k < 0 is below it and k > 0 is above.

Returns

tril [ndarray, shape (M, N)] Lower triangle of m, of same shape and data-type as m.

See also:

triu same thing, only for the upper triangle

Examples

>>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 0, 0, 0],

[ 4, 0, 0],
[ 7, 8, 0],
[10, 11, 12]])

numpy.triu(m, k=0)
Upper triangle of an array.

Return a copy of a matrix with the elements below the k-th diagonal zeroed.

Please refer to the documentation for tril for further details.

See also:

tril lower triangle of an array

Examples

>>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 1, 2, 3],

[ 4, 5, 6],

(continues on next page)

4.1. Array creation routines 427



NumPy Reference, Release 1.15.1

(continued from previous page)

[ 0, 8, 9],
[ 0, 0, 12]])

numpy.vander(x, N=None, increasing=False)
Generate a Vandermonde matrix.

The columns of the output matrix are powers of the input vector. The order of the powers is determined by the
increasing boolean argument. Specifically, when increasing is False, the i-th output column is the input vector
raised element-wise to the power of N - i - 1. Such a matrix with a geometric progression in each row is
named for Alexandre- Theophile Vandermonde.

Parameters

x [array_like] 1-D input array.

N [int, optional] Number of columns in the output. If N is not specified, a square array is
returned (N = len(x)).

increasing [bool, optional] Order of the powers of the columns. If True, the powers increase
from left to right, if False (the default) they are reversed.

New in version 1.9.0.

Returns

out [ndarray] Vandermonde matrix. If increasing is False, the first column is x^(N-1), the
second x^(N-2) and so forth. If increasing is True, the columns are x^0, x^1, ...,
x^(N-1).

See also:

polynomial.polynomial.polyvander

Examples

>>> x = np.array([1, 2, 3, 5])
>>> N = 3
>>> np.vander(x, N)
array([[ 1, 1, 1],

[ 4, 2, 1],
[ 9, 3, 1],
[25, 5, 1]])

>>> np.column_stack([x**(N-1-i) for i in range(N)])
array([[ 1, 1, 1],

[ 4, 2, 1],
[ 9, 3, 1],
[25, 5, 1]])

>>> x = np.array([1, 2, 3, 5])
>>> np.vander(x)
array([[ 1, 1, 1, 1],

[ 8, 4, 2, 1],
[ 27, 9, 3, 1],
[125, 25, 5, 1]])

>>> np.vander(x, increasing=True)
array([[ 1, 1, 1, 1],

(continues on next page)

428 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

[ 1, 2, 4, 8],
[ 1, 3, 9, 27],
[ 1, 5, 25, 125]])

The determinant of a square Vandermonde matrix is the product of the differences between the values of the
input vector:

>>> np.linalg.det(np.vander(x))
48.000000000000043
>>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
48

4.1.7 The Matrix class

mat(data[, dtype]) Interpret the input as a matrix.
bmat(obj[, ldict, gdict]) Build a matrix object from a string, nested sequence, or

array.

numpy.mat(data, dtype=None)
Interpret the input as a matrix.

Unlike matrix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to
matrix(data, copy=False).

Parameters

data [array_like] Input data.

dtype [data-type] Data-type of the output matrix.

Returns

mat [matrix] data interpreted as a matrix.

Examples

>>> x = np.array([[1, 2], [3, 4]])

>>> m = np.asmatrix(x)

>>> x[0,0] = 5

>>> m
matrix([[5, 2],

[3, 4]])

4.1. Array creation routines 429



NumPy Reference, Release 1.15.1

4.2 Array manipulation routines

4.2.1 Basic operations

copyto(dst, src[, casting, where]) Copies values from one array to another, broadcasting as
necessary.

numpy.copyto(dst, src, casting=’same_kind’, where=True)
Copies values from one array to another, broadcasting as necessary.

Raises a TypeError if the casting rule is violated, and if where is provided, it selects which elements to copy.

New in version 1.7.0.

Parameters

dst [ndarray] The array into which values are copied.

src [array_like] The array from which values are copied.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur when copying.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

where [array_like of bool, optional] A boolean array which is broadcasted to match the dimen-
sions of dst, and selects elements to copy from src to dst wherever it contains the value
True.

4.2.2 Changing array shape

reshape(a, newshape[, order]) Gives a new shape to an array without changing its data.
ravel(a[, order]) Return a contiguous flattened array.
ndarray.flat A 1-D iterator over the array.
ndarray.flatten([order]) Return a copy of the array collapsed into one dimension.

numpy.reshape(a, newshape, order=’C’)
Gives a new shape to an array without changing its data.

Parameters

a [array_like] Array to be reshaped.

newshape [int or tuple of ints] The new shape should be compatible with the original shape. If
an integer, then the result will be a 1-D array of that length. One shape dimension can be -1.
In this case, the value is inferred from the length of the array and remaining dimensions.

order [{‘C’, ‘F’, ‘A’}, optional] Read the elements of a using this index order, and place the
elements into the reshaped array using this index order. ‘C’ means to read / write the ele-

430 Chapter 4. Routines



NumPy Reference, Release 1.15.1

ments using C-like index order, with the last axis index changing fastest, back to the first
axis index changing slowest. ‘F’ means to read / write the elements using Fortran-like index
order, with the first index changing fastest, and the last index changing slowest. Note that
the ‘C’ and ‘F’ options take no account of the memory layout of the underlying array, and
only refer to the order of indexing. ‘A’ means to read / write the elements in Fortran-like
index order if a is Fortran contiguous in memory, C-like order otherwise.

Returns

reshaped_array [ndarray] This will be a new view object if possible; otherwise, it will be a
copy. Note there is no guarantee of the memory layout (C- or Fortran- contiguous) of the
returned array.

See also:

ndarray.reshape Equivalent method.

Notes

It is not always possible to change the shape of an array without copying the data. If you want an error to be
raised when the data is copied, you should assign the new shape to the shape attribute of the array:

>>> a = np.zeros((10, 2))
# A transpose makes the array non-contiguous
>>> b = a.T
# Taking a view makes it possible to modify the shape without modifying
# the initial object.
>>> c = b.view()
>>> c.shape = (20)
AttributeError: incompatible shape for a non-contiguous array

The order keyword gives the index ordering both for fetching the values from a, and then placing the values into
the output array. For example, let’s say you have an array:

>>> a = np.arange(6).reshape((3, 2))
>>> a
array([[0, 1],

[2, 3],
[4, 5]])

You can think of reshaping as first raveling the array (using the given index order), then inserting the elements
from the raveled array into the new array using the same kind of index ordering as was used for the raveling.

>>> np.reshape(a, (2, 3)) # C-like index ordering
array([[0, 1, 2],

[3, 4, 5]])
>>> np.reshape(np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape
array([[0, 1, 2],

[3, 4, 5]])
>>> np.reshape(a, (2, 3), order='F') # Fortran-like index ordering
array([[0, 4, 3],

[2, 1, 5]])
>>> np.reshape(np.ravel(a, order='F'), (2, 3), order='F')
array([[0, 4, 3],

[2, 1, 5]])

4.2. Array manipulation routines 431



NumPy Reference, Release 1.15.1

Examples

>>> a = np.array([[1,2,3], [4,5,6]])
>>> np.reshape(a, 6)
array([1, 2, 3, 4, 5, 6])
>>> np.reshape(a, 6, order='F')
array([1, 4, 2, 5, 3, 6])

>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
array([[1, 2],

[3, 4],
[5, 6]])

numpy.ravel(a, order=’C’)
Return a contiguous flattened array.

A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.

As of NumPy 1.10, the returned array will have the same type as the input array. (for example, a masked array
will be returned for a masked array input)

Parameters

a [array_like] Input array. The elements in a are read in the order specified by order, and packed
as a 1-D array.

order [{‘C’,’F’, ‘A’, ‘K’}, optional] The elements of a are read using this index order. ‘C’
means to index the elements in row-major, C-style order, with the last axis index changing
fastest, back to the first axis index changing slowest. ‘F’ means to index the elements in
column-major, Fortran-style order, with the first index changing fastest, and the last index
changing slowest. Note that the ‘C’ and ‘F’ options take no account of the memory layout
of the underlying array, and only refer to the order of axis indexing. ‘A’ means to read
the elements in Fortran-like index order if a is Fortran contiguous in memory, C-like order
otherwise. ‘K’ means to read the elements in the order they occur in memory, except for
reversing the data when strides are negative. By default, ‘C’ index order is used.

Returns

y [array_like] y is an array of the same subtype as a, with shape (a.size,). Note that
matrices are special cased for backward compatibility, if a is a matrix, then y is a 1-D
ndarray.

See also:

ndarray.flat 1-D iterator over an array.

ndarray.flatten 1-D array copy of the elements of an array in row-major order.

ndarray.reshape Change the shape of an array without changing its data.

Notes

In row-major, C-style order, in two dimensions, the row index varies the slowest, and the column index the
quickest. This can be generalized to multiple dimensions, where row-major order implies that the index along
the first axis varies slowest, and the index along the last quickest. The opposite holds for column-major, Fortran-
style index ordering.

When a view is desired in as many cases as possible, arr.reshape(-1) may be preferable.

432 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

It is equivalent to reshape(-1, order=order).

>>> x = np.array([[1, 2, 3], [4, 5, 6]])
>>> print(np.ravel(x))
[1 2 3 4 5 6]

>>> print(x.reshape(-1))
[1 2 3 4 5 6]

>>> print(np.ravel(x, order='F'))
[1 4 2 5 3 6]

When order is ‘A’, it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> print(np.ravel(x.T))
[1 4 2 5 3 6]
>>> print(np.ravel(x.T, order='A'))
[1 2 3 4 5 6]

When order is ‘K’, it will preserve orderings that are neither ‘C’ nor ‘F’, but won’t reverse axes:

>>> a = np.arange(3)[::-1]; a
array([2, 1, 0])
>>> a.ravel(order='C')
array([2, 1, 0])
>>> a.ravel(order='K')
array([2, 1, 0])

>>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a
array([[[ 0, 2, 4],

[ 1, 3, 5]],
[[ 6, 8, 10],
[ 7, 9, 11]]])

>>> a.ravel(order='C')
array([ 0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11])
>>> a.ravel(order='K')
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

4.2.3 Transpose-like operations

moveaxis(a, source, destination) Move axes of an array to new positions.
rollaxis(a, axis[, start]) Roll the specified axis backwards, until it lies in a given

position.
swapaxes(a, axis1, axis2) Interchange two axes of an array.
ndarray.T Same as self.transpose(), except that self is returned if

self.ndim < 2.
transpose(a[, axes]) Permute the dimensions of an array.

numpy.moveaxis(a, source, destination)
Move axes of an array to new positions.

4.2. Array manipulation routines 433



NumPy Reference, Release 1.15.1

Other axes remain in their original order.

New in version 1.11.0.

Parameters

a [np.ndarray] The array whose axes should be reordered.

source [int or sequence of int] Original positions of the axes to move. These must be unique.

destination [int or sequence of int] Destination positions for each of the original axes. These
must also be unique.

Returns

result [np.ndarray] Array with moved axes. This array is a view of the input array.

See also:

transpose Permute the dimensions of an array.

swapaxes Interchange two axes of an array.

Examples

>>> x = np.zeros((3, 4, 5))
>>> np.moveaxis(x, 0, -1).shape
(4, 5, 3)
>>> np.moveaxis(x, -1, 0).shape
(5, 3, 4)

These all achieve the same result:

>>> np.transpose(x).shape
(5, 4, 3)
>>> np.swapaxes(x, 0, -1).shape
(5, 4, 3)
>>> np.moveaxis(x, [0, 1], [-1, -2]).shape
(5, 4, 3)
>>> np.moveaxis(x, [0, 1, 2], [-1, -2, -3]).shape
(5, 4, 3)

numpy.rollaxis(a, axis, start=0)
Roll the specified axis backwards, until it lies in a given position.

This function continues to be supported for backward compatibility, but you should prefer moveaxis. The
moveaxis function was added in NumPy 1.11.

Parameters

a [ndarray] Input array.

axis [int] The axis to roll backwards. The positions of the other axes do not change relative to
one another.

start [int, optional] The axis is rolled until it lies before this position. The default, 0, results in
a “complete” roll.

Returns

434 Chapter 4. Routines



NumPy Reference, Release 1.15.1

res [ndarray] For NumPy >= 1.10.0 a view of a is always returned. For earlier NumPy versions
a view of a is returned only if the order of the axes is changed, otherwise the input array is
returned.

See also:

moveaxis Move array axes to new positions.

roll Roll the elements of an array by a number of positions along a given axis.

Examples

>>> a = np.ones((3,4,5,6))
>>> np.rollaxis(a, 3, 1).shape
(3, 6, 4, 5)
>>> np.rollaxis(a, 2).shape
(5, 3, 4, 6)
>>> np.rollaxis(a, 1, 4).shape
(3, 5, 6, 4)

numpy.swapaxes(a, axis1, axis2)
Interchange two axes of an array.

Parameters

a [array_like] Input array.

axis1 [int] First axis.

axis2 [int] Second axis.

Returns

a_swapped [ndarray] For NumPy >= 1.10.0, if a is an ndarray, then a view of a is returned;
otherwise a new array is created. For earlier NumPy versions a view of a is returned only if
the order of the axes is changed, otherwise the input array is returned.

Examples

>>> x = np.array([[1,2,3]])
>>> np.swapaxes(x,0,1)
array([[1],

[2],
[3]])

>>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]])
>>> x
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> np.swapaxes(x,0,2)
array([[[0, 4],

[2, 6]],

(continues on next page)

4.2. Array manipulation routines 435



NumPy Reference, Release 1.15.1

(continued from previous page)

[[1, 5],
[3, 7]]])

numpy.transpose(a, axes=None)
Permute the dimensions of an array.

Parameters

a [array_like] Input array.

axes [list of ints, optional] By default, reverse the dimensions, otherwise permute the axes ac-
cording to the values given.

Returns

p [ndarray] a with its axes permuted. A view is returned whenever possible.

See also:

moveaxis, argsort

Notes

Use transpose(a, argsort(axes)) to invert the transposition of tensors when using the axes keyword argument.

Transposing a 1-D array returns an unchanged view of the original array.

Examples

>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],

[2, 3]])

>>> np.transpose(x)
array([[0, 2],

[1, 3]])

>>> x = np.ones((1, 2, 3))
>>> np.transpose(x, (1, 0, 2)).shape
(2, 1, 3)

4.2.4 Changing number of dimensions

atleast_1d(*arys) Convert inputs to arrays with at least one dimension.
atleast_2d(*arys) View inputs as arrays with at least two dimensions.
atleast_3d(*arys) View inputs as arrays with at least three dimensions.
broadcast Produce an object that mimics broadcasting.
broadcast_to(array, shape[, subok]) Broadcast an array to a new shape.
broadcast_arrays(*args, **kwargs) Broadcast any number of arrays against each other.
expand_dims(a, axis) Expand the shape of an array.

Continued on next page

436 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Table 11 – continued from previous page
squeeze(a[, axis]) Remove single-dimensional entries from the shape of an

array.

numpy.atleast_1d(*arys)
Convert inputs to arrays with at least one dimension.

Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Parameters

arys1, arys2, . . . [array_like] One or more input arrays.

Returns

ret [ndarray] An array, or list of arrays, each with a.ndim >= 1. Copies are made only if
necessary.

See also:

atleast_2d, atleast_3d

Examples

>>> np.atleast_1d(1.0)
array([ 1.])

>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[ 0., 1., 2.],

[ 3., 4., 5.],
[ 6., 7., 8.]])

>>> np.atleast_1d(x) is x
True

>>> np.atleast_1d(1, [3, 4])
[array([1]), array([3, 4])]

numpy.atleast_2d(*arys)
View inputs as arrays with at least two dimensions.

Parameters

arys1, arys2, . . . [array_like] One or more array-like sequences. Non-array inputs are con-
verted to arrays. Arrays that already have two or more dimensions are preserved.

Returns

res, res2, . . . [ndarray] An array, or list of arrays, each with a.ndim >= 2. Copies are
avoided where possible, and views with two or more dimensions are returned.

See also:

atleast_1d, atleast_3d

4.2. Array manipulation routines 437



NumPy Reference, Release 1.15.1

Examples

>>> np.atleast_2d(3.0)
array([[ 3.]])

>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
array([[ 0., 1., 2.]])
>>> np.atleast_2d(x).base is x
True

>>> np.atleast_2d(1, [1, 2], [[1, 2]])
[array([[1]]), array([[1, 2]]), array([[1, 2]])]

numpy.atleast_3d(*arys)
View inputs as arrays with at least three dimensions.

Parameters

arys1, arys2, . . . [array_like] One or more array-like sequences. Non-array inputs are con-
verted to arrays. Arrays that already have three or more dimensions are preserved.

Returns

res1, res2, . . . [ndarray] An array, or list of arrays, each with a.ndim >= 3. Copies are
avoided where possible, and views with three or more dimensions are returned. For example,
a 1-D array of shape (N,) becomes a view of shape (1, N, 1), and a 2-D array of shape
(M, N) becomes a view of shape (M, N, 1).

See also:

atleast_1d, atleast_2d

Examples

>>> np.atleast_3d(3.0)
array([[[ 3.]]])

>>> x = np.arange(3.0)
>>> np.atleast_3d(x).shape
(1, 3, 1)

>>> x = np.arange(12.0).reshape(4,3)
>>> np.atleast_3d(x).shape
(4, 3, 1)
>>> np.atleast_3d(x).base is x.base # x is a reshape, so not base itself
True

>>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
... print(arr, arr.shape)
...
[[[1]
[2]]] (1, 2, 1)

[[[1]
[2]]] (1, 2, 1)

[[[1 2]]] (1, 1, 2)

438 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.broadcast_to(array, shape, subok=False)
Broadcast an array to a new shape.

Parameters

array [array_like] The array to broadcast.

shape [tuple] The shape of the desired array.

subok [bool, optional] If True, then sub-classes will be passed-through, otherwise the returned
array will be forced to be a base-class array (default).

Returns

broadcast [array] A readonly view on the original array with the given shape. It is typically
not contiguous. Furthermore, more than one element of a broadcasted array may refer to a
single memory location.

Raises

ValueError If the array is not compatible with the new shape according to NumPy’s broadcast-
ing rules.

Notes

New in version 1.10.0.

Examples

>>> x = np.array([1, 2, 3])
>>> np.broadcast_to(x, (3, 3))
array([[1, 2, 3],

[1, 2, 3],
[1, 2, 3]])

numpy.broadcast_arrays(*args, **kwargs)
Broadcast any number of arrays against each other.

Parameters

‘*args‘ [array_likes] The arrays to broadcast.

subok [bool, optional] If True, then sub-classes will be passed-through, otherwise the returned
arrays will be forced to be a base-class array (default).

Returns

broadcasted [list of arrays] These arrays are views on the original arrays. They are typically
not contiguous. Furthermore, more than one element of a broadcasted array may refer to a
single memory location. If you need to write to the arrays, make copies first.

Examples

>>> x = np.array([[1,2,3]])
>>> y = np.array([[1],[2],[3]])
>>> np.broadcast_arrays(x, y)
[array([[1, 2, 3],

(continues on next page)

4.2. Array manipulation routines 439



NumPy Reference, Release 1.15.1

(continued from previous page)

[1, 2, 3],
[1, 2, 3]]), array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])]

Here is a useful idiom for getting contiguous copies instead of non-contiguous views.

>>> [np.array(a) for a in np.broadcast_arrays(x, y)]
[array([[1, 2, 3],

[1, 2, 3],
[1, 2, 3]]), array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])]

numpy.expand_dims(a, axis)
Expand the shape of an array.

Insert a new axis that will appear at the axis position in the expanded array shape.

Note: Previous to NumPy 1.13.0, neither axis < -a.ndim - 1 nor axis > a.ndim raised errors or
put the new axis where documented. Those axis values are now deprecated and will raise an AxisError in the
future.

Parameters

a [array_like] Input array.

axis [int] Position in the expanded axes where the new axis is placed.

Returns

res [ndarray] Output array. The number of dimensions is one greater than that of the input array.

See also:

squeeze The inverse operation, removing singleton dimensions

reshape Insert, remove, and combine dimensions, and resize existing ones

doc.indexing, atleast_1d, atleast_2d, atleast_3d

Examples

>>> x = np.array([1,2])
>>> x.shape
(2,)

The following is equivalent to x[np.newaxis,:] or x[np.newaxis]:

>>> y = np.expand_dims(x, axis=0)
>>> y
array([[1, 2]])
>>> y.shape
(1, 2)

440 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> y = np.expand_dims(x, axis=1) # Equivalent to x[:,np.newaxis]
>>> y
array([[1],

[2]])
>>> y.shape
(2, 1)

Note that some examples may use None instead of np.newaxis. These are the same objects:

>>> np.newaxis is None
True

numpy.squeeze(a, axis=None)
Remove single-dimensional entries from the shape of an array.

Parameters

a [array_like] Input data.

axis [None or int or tuple of ints, optional] New in version 1.7.0.

Selects a subset of the single-dimensional entries in the shape. If an axis is selected with
shape entry greater than one, an error is raised.

Returns

squeezed [ndarray] The input array, but with all or a subset of the dimensions of length 1 re-
moved. This is always a itself or a view into a.

Raises

ValueError If axis is not None, and an axis being squeezed is not of length 1

See also:

expand_dims The inverse operation, adding singleton dimensions

reshape Insert, remove, and combine dimensions, and resize existing ones

Examples

>>> x = np.array([[[0], [1], [2]]])
>>> x.shape
(1, 3, 1)
>>> np.squeeze(x).shape
(3,)
>>> np.squeeze(x, axis=0).shape
(3, 1)
>>> np.squeeze(x, axis=1).shape
Traceback (most recent call last):
...
ValueError: cannot select an axis to squeeze out which has size not equal to one
>>> np.squeeze(x, axis=2).shape
(1, 3)

4.2.5 Changing kind of array

4.2. Array manipulation routines 441



NumPy Reference, Release 1.15.1

asarray(a[, dtype, order]) Convert the input to an array.
asanyarray(a[, dtype, order]) Convert the input to an ndarray, but pass ndarray subclasses

through.
asmatrix(data[, dtype]) Interpret the input as a matrix.
asfarray(a[, dtype]) Return an array converted to a float type.
asfortranarray(a[, dtype]) Return an array laid out in Fortran order in memory.
ascontiguousarray(a[, dtype]) Return a contiguous array in memory (C order).
asarray_chkfinite(a[, dtype, order]) Convert the input to an array, checking for NaNs or Infs.
asscalar(a) Convert an array of size 1 to its scalar equivalent.
require(a[, dtype, requirements]) Return an ndarray of the provided type that satisfies re-

quirements.

numpy.asfarray(a, dtype=<class ’numpy.float64’>)
Return an array converted to a float type.

Parameters

a [array_like] The input array.

dtype [str or dtype object, optional] Float type code to coerce input array a. If dtype is one of
the ‘int’ dtypes, it is replaced with float64.

Returns

out [ndarray] The input a as a float ndarray.

Examples

>>> np.asfarray([2, 3])
array([ 2., 3.])
>>> np.asfarray([2, 3], dtype='float')
array([ 2., 3.])
>>> np.asfarray([2, 3], dtype='int8')
array([ 2., 3.])

numpy.asfortranarray(a, dtype=None)
Return an array laid out in Fortran order in memory.

Parameters

a [array_like] Input array.

dtype [str or dtype object, optional] By default, the data-type is inferred from the input data.

Returns

out [ndarray] The input a in Fortran, or column-major, order.

See also:

ascontiguousarray Convert input to a contiguous (C order) array.

asanyarray Convert input to an ndarray with either row or column-major memory order.

require Return an ndarray that satisfies requirements.

ndarray.flags Information about the memory layout of the array.

442 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> x = np.arange(6).reshape(2,3)
>>> y = np.asfortranarray(x)
>>> x.flags['F_CONTIGUOUS']
False
>>> y.flags['F_CONTIGUOUS']
True

numpy.asarray_chkfinite(a, dtype=None, order=None)
Convert the input to an array, checking for NaNs or Infs.

Parameters

a [array_like] Input data, in any form that can be converted to an array. This includes lists, lists
of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or
Infs.

dtype [data-type, optional] By default, the data-type is inferred from the input data.

order [{‘C’, ‘F’}, optional] Whether to use row-major (C-style) or column-major (Fortran-
style) memory representation. Defaults to ‘C’.

Returns

out [ndarray] Array interpretation of a. No copy is performed if the input is already an ndarray.
If a is a subclass of ndarray, a base class ndarray is returned.

Raises

ValueError Raises ValueError if a contains NaN (Not a Number) or Inf (Infinity).

See also:

asarray Create and array.

asanyarray Similar function which passes through subclasses.

ascontiguousarray Convert input to a contiguous array.

asfarray Convert input to a floating point ndarray.

asfortranarray Convert input to an ndarray with column-major memory order.

fromiter Create an array from an iterator.

fromfunction Construct an array by executing a function on grid positions.

Examples

Convert a list into an array. If all elements are finite asarray_chkfinite is identical to asarray.

>>> a = [1, 2]
>>> np.asarray_chkfinite(a, dtype=float)
array([1., 2.])

Raises ValueError if array_like contains Nans or Infs.

4.2. Array manipulation routines 443



NumPy Reference, Release 1.15.1

>>> a = [1, 2, np.inf]
>>> try:
... np.asarray_chkfinite(a)
... except ValueError:
... print('ValueError')
...
ValueError

numpy.asscalar(a)
Convert an array of size 1 to its scalar equivalent.

Parameters

a [ndarray] Input array of size 1.

Returns

out [scalar] Scalar representation of a. The output data type is the same type returned by the
input’s item method.

Examples

>>> np.asscalar(np.array([24]))
24

numpy.require(a, dtype=None, requirements=None)
Return an ndarray of the provided type that satisfies requirements.

This function is useful to be sure that an array with the correct flags is returned for passing to compiled code
(perhaps through ctypes).

Parameters

a [array_like] The object to be converted to a type-and-requirement-satisfying array.

dtype [data-type] The required data-type. If None preserve the current dtype. If your applica-
tion requires the data to be in native byteorder, include a byteorder specification as a part of
the dtype specification.

requirements [str or list of str] The requirements list can be any of the following

• ‘F_CONTIGUOUS’ (‘F’) - ensure a Fortran-contiguous array

• ‘C_CONTIGUOUS’ (‘C’) - ensure a C-contiguous array

• ‘ALIGNED’ (‘A’) - ensure a data-type aligned array

• ‘WRITEABLE’ (‘W’) - ensure a writable array

• ‘OWNDATA’ (‘O’) - ensure an array that owns its own data

• ‘ENSUREARRAY’, (‘E’) - ensure a base array, instead of a subclass

See also:

asarray Convert input to an ndarray.

asanyarray Convert to an ndarray, but pass through ndarray subclasses.

ascontiguousarray Convert input to a contiguous array.

asfortranarray Convert input to an ndarray with column-major memory order.

444 Chapter 4. Routines



NumPy Reference, Release 1.15.1

ndarray.flags Information about the memory layout of the array.

Notes

The returned array will be guaranteed to have the listed requirements by making a copy if needed.

Examples

>>> x = np.arange(6).reshape(2,3)
>>> x.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : False
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

>>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
>>> y.flags
C_CONTIGUOUS : False
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

4.2.6 Joining arrays

concatenate((a1, a2, . . . )[, axis, out]) Join a sequence of arrays along an existing axis.
stack(arrays[, axis, out]) Join a sequence of arrays along a new axis.
column_stack(tup) Stack 1-D arrays as columns into a 2-D array.
dstack(tup) Stack arrays in sequence depth wise (along third axis).
hstack(tup) Stack arrays in sequence horizontally (column wise).
vstack(tup) Stack arrays in sequence vertically (row wise).
block(arrays) Assemble an nd-array from nested lists of blocks.

numpy.concatenate((a1, a2, ...), axis=0, out=None)
Join a sequence of arrays along an existing axis.

Parameters

a1, a2, . . . [sequence of array_like] The arrays must have the same shape, except in the dimen-
sion corresponding to axis (the first, by default).

axis [int, optional] The axis along which the arrays will be joined. If axis is None, arrays are
flattened before use. Default is 0.

out [ndarray, optional] If provided, the destination to place the result. The shape must be cor-
rect, matching that of what concatenate would have returned if no out argument were speci-
fied.

4.2. Array manipulation routines 445



NumPy Reference, Release 1.15.1

Returns

res [ndarray] The concatenated array.

See also:

ma.concatenate Concatenate function that preserves input masks.

array_split Split an array into multiple sub-arrays of equal or near-equal size.

split Split array into a list of multiple sub-arrays of equal size.

hsplit Split array into multiple sub-arrays horizontally (column wise)

vsplit Split array into multiple sub-arrays vertically (row wise)

dsplit Split array into multiple sub-arrays along the 3rd axis (depth).

stack Stack a sequence of arrays along a new axis.

hstack Stack arrays in sequence horizontally (column wise)

vstack Stack arrays in sequence vertically (row wise)

dstack Stack arrays in sequence depth wise (along third dimension)

Notes

When one or more of the arrays to be concatenated is a MaskedArray, this function will return a MaskedArray
object instead of an ndarray, but the input masks are not preserved. In cases where a MaskedArray is expected
as input, use the ma.concatenate function from the masked array module instead.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],

[3, 4],
[5, 6]])

>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],

[3, 4, 6]])
>>> np.concatenate((a, b), axis=None)
array([1, 2, 3, 4, 5, 6])

This function will not preserve masking of MaskedArray inputs.

>>> a = np.ma.arange(3)
>>> a[1] = np.ma.masked
>>> b = np.arange(2, 5)
>>> a
masked_array(data = [0 -- 2],

mask = [False True False],
fill_value = 999999)

>>> b
array([2, 3, 4])
>>> np.concatenate([a, b])

(continues on next page)

446 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

masked_array(data = [0 1 2 2 3 4],
mask = False,

fill_value = 999999)
>>> np.ma.concatenate([a, b])
masked_array(data = [0 -- 2 2 3 4],

mask = [False True False False False False],
fill_value = 999999)

numpy.stack(arrays, axis=0, out=None)
Join a sequence of arrays along a new axis.

The axis parameter specifies the index of the new axis in the dimensions of the result. For example, if axis=0
it will be the first dimension and if axis=-1 it will be the last dimension.

New in version 1.10.0.

Parameters

arrays [sequence of array_like] Each array must have the same shape.

axis [int, optional] The axis in the result array along which the input arrays are stacked.

out [ndarray, optional] If provided, the destination to place the result. The shape must be cor-
rect, matching that of what stack would have returned if no out argument were specified.

Returns

stacked [ndarray] The stacked array has one more dimension than the input arrays.

See also:

concatenate Join a sequence of arrays along an existing axis.

split Split array into a list of multiple sub-arrays of equal size.

block Assemble arrays from blocks.

Examples

>>> arrays = [np.random.randn(3, 4) for _ in range(10)]
>>> np.stack(arrays, axis=0).shape
(10, 3, 4)

>>> np.stack(arrays, axis=1).shape
(3, 10, 4)

>>> np.stack(arrays, axis=2).shape
(3, 4, 10)

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.stack((a, b))
array([[1, 2, 3],

[2, 3, 4]])

4.2. Array manipulation routines 447



NumPy Reference, Release 1.15.1

>>> np.stack((a, b), axis=-1)
array([[1, 2],

[2, 3],
[3, 4]])

numpy.column_stack(tup)
Stack 1-D arrays as columns into a 2-D array.

Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are stacked
as-is, just like with hstack. 1-D arrays are turned into 2-D columns first.

Parameters

tup [sequence of 1-D or 2-D arrays.] Arrays to stack. All of them must have the same first
dimension.

Returns

stacked [2-D array] The array formed by stacking the given arrays.

See also:

stack, hstack, vstack, concatenate

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack((a,b))
array([[1, 2],

[2, 3],
[3, 4]])

numpy.dstack(tup)
Stack arrays in sequence depth wise (along third axis).

This is equivalent to concatenation along the third axis after 2-D arrays of shape (M,N) have been reshaped to
(M,N,1) and 1-D arrays of shape (N,) have been reshaped to (1,N,1). Rebuilds arrays divided by dsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height
(first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and
block provide more general stacking and concatenation operations.

Parameters

tup [sequence of arrays] The arrays must have the same shape along all but the third axis. 1-D
or 2-D arrays must have the same shape.

Returns

stacked [ndarray] The array formed by stacking the given arrays, will be at least 3-D.

See also:

stack Join a sequence of arrays along a new axis.

vstack Stack along first axis.

hstack Stack along second axis.

concatenate Join a sequence of arrays along an existing axis.

448 Chapter 4. Routines



NumPy Reference, Release 1.15.1

dsplit Split array along third axis.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],

[2, 3],
[3, 4]]])

>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],

[[2, 3]],
[[3, 4]]])

numpy.hstack(tup)
Stack arrays in sequence horizontally (column wise).

This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates along the
first axis. Rebuilds arrays divided by hsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height
(first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and
block provide more general stacking and concatenation operations.

Parameters

tup [sequence of ndarrays] The arrays must have the same shape along all but the second axis,
except 1-D arrays which can be any length.

Returns

stacked [ndarray] The array formed by stacking the given arrays.

See also:

stack Join a sequence of arrays along a new axis.

vstack Stack arrays in sequence vertically (row wise).

dstack Stack arrays in sequence depth wise (along third axis).

concatenate Join a sequence of arrays along an existing axis.

hsplit Split array along second axis.

block Assemble arrays from blocks.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])

(continues on next page)

4.2. Array manipulation routines 449



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],

[2, 3],
[3, 4]])

numpy.vstack(tup)
Stack arrays in sequence vertically (row wise).

This is equivalent to concatenation along the first axis after 1-D arrays of shape (N,) have been reshaped to (1,N).
Rebuilds arrays divided by vsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height
(first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and
block provide more general stacking and concatenation operations.

Parameters

tup [sequence of ndarrays] The arrays must have the same shape along all but the first axis. 1-D
arrays must have the same length.

Returns

stacked [ndarray] The array formed by stacking the given arrays, will be at least 2-D.

See also:

stack Join a sequence of arrays along a new axis.

hstack Stack arrays in sequence horizontally (column wise).

dstack Stack arrays in sequence depth wise (along third dimension).

concatenate Join a sequence of arrays along an existing axis.

vsplit Split array into a list of multiple sub-arrays vertically.

block Assemble arrays from blocks.

Examples

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],

[2, 3, 4]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],

[2],
[3],
[2],
[3],
[4]])

numpy.block(arrays)
Assemble an nd-array from nested lists of blocks.

450 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Blocks in the innermost lists are concatenated (see concatenate) along the last dimension (-1), then these
are concatenated along the second-last dimension (-2), and so on until the outermost list is reached.

Blocks can be of any dimension, but will not be broadcasted using the normal rules. Instead, leading axes of
size 1 are inserted, to make block.ndim the same for all blocks. This is primarily useful for working with
scalars, and means that code like np.block([v, 1]) is valid, where v.ndim == 1.

When the nested list is two levels deep, this allows block matrices to be constructed from their components.

New in version 1.13.0.

Parameters

arrays [nested list of array_like or scalars (but not tuples)] If passed a single ndarray or scalar
(a nested list of depth 0), this is returned unmodified (and not copied).

Elements shapes must match along the appropriate axes (without broadcasting), but leading
1s will be prepended to the shape as necessary to make the dimensions match.

Returns

block_array [ndarray] The array assembled from the given blocks.

The dimensionality of the output is equal to the greatest of: * the dimensionality of all the
inputs * the depth to which the input list is nested

Raises

ValueError

• If list depths are mismatched - for instance, [[a, b], c] is illegal, and should be spelt
[[a, b], [c]]

• If lists are empty - for instance, [[a, b], []]

See also:

concatenate Join a sequence of arrays together.

stack Stack arrays in sequence along a new dimension.

hstack Stack arrays in sequence horizontally (column wise).

vstack Stack arrays in sequence vertically (row wise).

dstack Stack arrays in sequence depth wise (along third dimension).

vsplit Split array into a list of multiple sub-arrays vertically.

Notes

When called with only scalars, np.block is equivalent to an ndarray call. So np.block([[1, 2], [3,
4]]) is equivalent to np.array([[1, 2], [3, 4]]).

This function does not enforce that the blocks lie on a fixed grid. np.block([[a, b], [c, d]]) is not
restricted to arrays of the form:

AAAbb
AAAbb
cccDD

But is also allowed to produce, for some a, b, c, d:

4.2. Array manipulation routines 451



NumPy Reference, Release 1.15.1

AAAbb
AAAbb
cDDDD

Since concatenation happens along the last axis first, block is _not_ capable of producing the following di-
rectly:

AAAbb
cccbb
cccDD

Matlab’s “square bracket stacking”, [A, B, ...; p, q, ...], is equivalent to np.block([[A, B,
...], [p, q, ...]]).

Examples

The most common use of this function is to build a block matrix

>>> A = np.eye(2) * 2
>>> B = np.eye(3) * 3
>>> np.block([
... [A, np.zeros((2, 3))],
... [np.ones((3, 2)), B ]
... ])
array([[ 2., 0., 0., 0., 0.],

[ 0., 2., 0., 0., 0.],
[ 1., 1., 3., 0., 0.],
[ 1., 1., 0., 3., 0.],
[ 1., 1., 0., 0., 3.]])

With a list of depth 1, block can be used as hstack

>>> np.block([1, 2, 3]) # hstack([1, 2, 3])
array([1, 2, 3])

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.block([a, b, 10]) # hstack([a, b, 10])
array([1, 2, 3, 2, 3, 4, 10])

>>> A = np.ones((2, 2), int)
>>> B = 2 * A
>>> np.block([A, B]) # hstack([A, B])
array([[1, 1, 2, 2],

[1, 1, 2, 2]])

With a list of depth 2, block can be used in place of vstack:

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.block([[a], [b]]) # vstack([a, b])
array([[1, 2, 3],

[2, 3, 4]])

452 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> A = np.ones((2, 2), int)
>>> B = 2 * A
>>> np.block([[A], [B]]) # vstack([A, B])
array([[1, 1],

[1, 1],
[2, 2],
[2, 2]])

It can also be used in places of atleast_1d and atleast_2d

>>> a = np.array(0)
>>> b = np.array([1])
>>> np.block([a]) # atleast_1d(a)
array([0])
>>> np.block([b]) # atleast_1d(b)
array([1])

>>> np.block([[a]]) # atleast_2d(a)
array([[0]])
>>> np.block([[b]]) # atleast_2d(b)
array([[1]])

4.2.7 Splitting arrays

split(ary, indices_or_sections[, axis]) Split an array into multiple sub-arrays.
array_split(ary, indices_or_sections[, axis]) Split an array into multiple sub-arrays.
dsplit(ary, indices_or_sections) Split array into multiple sub-arrays along the 3rd axis

(depth).
hsplit(ary, indices_or_sections) Split an array into multiple sub-arrays horizontally

(column-wise).
vsplit(ary, indices_or_sections) Split an array into multiple sub-arrays vertically (row-

wise).

numpy.split(ary, indices_or_sections, axis=0)
Split an array into multiple sub-arrays.

Parameters

ary [ndarray] Array to be divided into sub-arrays.

indices_or_sections [int or 1-D array] If indices_or_sections is an integer, N, the array will be
divided into N equal arrays along axis. If such a split is not possible, an error is raised.

If indices_or_sections is a 1-D array of sorted integers, the entries indicate where along axis
the array is split. For example, [2, 3] would, for axis=0, result in

• ary[:2]

• ary[2:3]

• ary[3:]

If an index exceeds the dimension of the array along axis, an empty sub-array is returned
correspondingly.

axis [int, optional] The axis along which to split, default is 0.

4.2. Array manipulation routines 453



NumPy Reference, Release 1.15.1

Returns

sub-arrays [list of ndarrays] A list of sub-arrays.

Raises

ValueError If indices_or_sections is given as an integer, but a split does not result in equal
division.

See also:

array_split Split an array into multiple sub-arrays of equal or near-equal size. Does not raise an exception
if an equal division cannot be made.

hsplit Split array into multiple sub-arrays horizontally (column-wise).

vsplit Split array into multiple sub-arrays vertically (row wise).

dsplit Split array into multiple sub-arrays along the 3rd axis (depth).

concatenate Join a sequence of arrays along an existing axis.

stack Join a sequence of arrays along a new axis.

hstack Stack arrays in sequence horizontally (column wise).

vstack Stack arrays in sequence vertically (row wise).

dstack Stack arrays in sequence depth wise (along third dimension).

Examples

>>> x = np.arange(9.0)
>>> np.split(x, 3)
[array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7., 8.])]

>>> x = np.arange(8.0)
>>> np.split(x, [3, 5, 6, 10])
[array([ 0., 1., 2.]),
array([ 3., 4.]),
array([ 5.]),
array([ 6., 7.]),
array([], dtype=float64)]

numpy.array_split(ary, indices_or_sections, axis=0)
Split an array into multiple sub-arrays.

Please refer to the split documentation. The only difference between these functions is that array_split
allows indices_or_sections to be an integer that does not equally divide the axis. For an array of length l that
should be split into n sections, it returns l % n sub-arrays of size l//n + 1 and the rest of size l//n.

See also:

split Split array into multiple sub-arrays of equal size.

Examples

454 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> x = np.arange(8.0)
>>> np.array_split(x, 3)

[array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7.])]

>>> x = np.arange(7.0)
>>> np.array_split(x, 3)

[array([ 0., 1., 2.]), array([ 3., 4.]), array([ 5., 6.])]

numpy.dsplit(ary, indices_or_sections)
Split array into multiple sub-arrays along the 3rd axis (depth).

Please refer to the split documentation. dsplit is equivalent to split with axis=2, the array is always
split along the third axis provided the array dimension is greater than or equal to 3.

See also:

split Split an array into multiple sub-arrays of equal size.

Examples

>>> x = np.arange(16.0).reshape(2, 2, 4)
>>> x
array([[[ 0., 1., 2., 3.],

[ 4., 5., 6., 7.]],
[[ 8., 9., 10., 11.],
[ 12., 13., 14., 15.]]])

>>> np.dsplit(x, 2)
[array([[[ 0., 1.],

[ 4., 5.]],
[[ 8., 9.],
[ 12., 13.]]]),

array([[[ 2., 3.],
[ 6., 7.]],

[[ 10., 11.],
[ 14., 15.]]])]

>>> np.dsplit(x, np.array([3, 6]))
[array([[[ 0., 1., 2.],

[ 4., 5., 6.]],
[[ 8., 9., 10.],
[ 12., 13., 14.]]]),

array([[[ 3.],
[ 7.]],

[[ 11.],
[ 15.]]]),

array([], dtype=float64)]

numpy.hsplit(ary, indices_or_sections)
Split an array into multiple sub-arrays horizontally (column-wise).

Please refer to the split documentation. hsplit is equivalent to split with axis=1, the array is always
split along the second axis regardless of the array dimension.

See also:

split Split an array into multiple sub-arrays of equal size.

4.2. Array manipulation routines 455



NumPy Reference, Release 1.15.1

Examples

>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[ 0., 1., 2., 3.],

[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[ 12., 13., 14., 15.]])

>>> np.hsplit(x, 2)
[array([[ 0., 1.],

[ 4., 5.],
[ 8., 9.],
[ 12., 13.]]),

array([[ 2., 3.],
[ 6., 7.],
[ 10., 11.],
[ 14., 15.]])]

>>> np.hsplit(x, np.array([3, 6]))
[array([[ 0., 1., 2.],

[ 4., 5., 6.],
[ 8., 9., 10.],
[ 12., 13., 14.]]),

array([[ 3.],
[ 7.],
[ 11.],
[ 15.]]),

array([], dtype=float64)]

With a higher dimensional array the split is still along the second axis.

>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[ 0., 1.],

[ 2., 3.]],
[[ 4., 5.],
[ 6., 7.]]])

>>> np.hsplit(x, 2)
[array([[[ 0., 1.]],

[[ 4., 5.]]]),
array([[[ 2., 3.]],

[[ 6., 7.]]])]

numpy.vsplit(ary, indices_or_sections)
Split an array into multiple sub-arrays vertically (row-wise).

Please refer to the split documentation. vsplit is equivalent to split with axis=0 (default), the array is
always split along the first axis regardless of the array dimension.

See also:

split Split an array into multiple sub-arrays of equal size.

Examples

>>> x = np.arange(16.0).reshape(4, 4)
>>> x

(continues on next page)

456 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[ 12., 13., 14., 15.]])

>>> np.vsplit(x, 2)
[array([[ 0., 1., 2., 3.],

[ 4., 5., 6., 7.]]),
array([[ 8., 9., 10., 11.],

[ 12., 13., 14., 15.]])]
>>> np.vsplit(x, np.array([3, 6]))
[array([[ 0., 1., 2., 3.],

[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]]),

array([[ 12., 13., 14., 15.]]),
array([], dtype=float64)]

With a higher dimensional array the split is still along the first axis.

>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[ 0., 1.],

[ 2., 3.]],
[[ 4., 5.],
[ 6., 7.]]])

>>> np.vsplit(x, 2)
[array([[[ 0., 1.],

[ 2., 3.]]]),
array([[[ 4., 5.],

[ 6., 7.]]])]

4.2.8 Tiling arrays

tile(A, reps) Construct an array by repeating A the number of times
given by reps.

repeat(a, repeats[, axis]) Repeat elements of an array.

numpy.tile(A, reps)
Construct an array by repeating A the number of times given by reps.

If reps has length d, the result will have dimension of max(d, A.ndim).

If A.ndim < d, A is promoted to be d-dimensional by prepending new axes. So a shape (3,) array is promoted
to (1, 3) for 2-D replication, or shape (1, 1, 3) for 3-D replication. If this is not the desired behavior, promote A
to d-dimensions manually before calling this function.

If A.ndim > d, reps is promoted to A.ndim by pre-pending 1’s to it. Thus for an A of shape (2, 3, 4, 5), a reps
of (2, 2) is treated as (1, 1, 2, 2).

Note : Although tile may be used for broadcasting, it is strongly recommended to use numpy’s broadcasting
operations and functions.

Parameters

A [array_like] The input array.

reps [array_like] The number of repetitions of A along each axis.

4.2. Array manipulation routines 457



NumPy Reference, Release 1.15.1

Returns

c [ndarray] The tiled output array.

See also:

repeat Repeat elements of an array.

broadcast_to Broadcast an array to a new shape

Examples

>>> a = np.array([0, 1, 2])
>>> np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],

[0, 1, 2, 0, 1, 2]])
>>> np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],

[[0, 1, 2, 0, 1, 2]]])

>>> b = np.array([[1, 2], [3, 4]])
>>> np.tile(b, 2)
array([[1, 2, 1, 2],

[3, 4, 3, 4]])
>>> np.tile(b, (2, 1))
array([[1, 2],

[3, 4],
[1, 2],
[3, 4]])

>>> c = np.array([1,2,3,4])
>>> np.tile(c,(4,1))
array([[1, 2, 3, 4],

[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])

numpy.repeat(a, repeats, axis=None)
Repeat elements of an array.

Parameters

a [array_like] Input array.

repeats [int or array of ints] The number of repetitions for each element. repeats is broadcasted
to fit the shape of the given axis.

axis [int, optional] The axis along which to repeat values. By default, use the flattened input
array, and return a flat output array.

Returns

repeated_array [ndarray] Output array which has the same shape as a, except along the given
axis.

See also:

458 Chapter 4. Routines



NumPy Reference, Release 1.15.1

tile Tile an array.

Examples

>>> np.repeat(3, 4)
array([3, 3, 3, 3])
>>> x = np.array([[1,2],[3,4]])
>>> np.repeat(x, 2)
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> np.repeat(x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],

[3, 3, 3, 4, 4, 4]])
>>> np.repeat(x, [1, 2], axis=0)
array([[1, 2],

[3, 4],
[3, 4]])

4.2.9 Adding and removing elements

delete(arr, obj[, axis]) Return a new array with sub-arrays along an axis deleted.
insert(arr, obj, values[, axis]) Insert values along the given axis before the given indices.
append(arr, values[, axis]) Append values to the end of an array.
resize(a, new_shape) Return a new array with the specified shape.
trim_zeros(filt[, trim]) Trim the leading and/or trailing zeros from a 1-D array or

sequence.
unique(ar[, return_index, return_inverse, . . . ]) Find the unique elements of an array.

numpy.delete(arr, obj, axis=None)
Return a new array with sub-arrays along an axis deleted. For a one dimensional array, this returns those entries
not returned by arr[obj].

Parameters

arr [array_like] Input array.

obj [slice, int or array of ints] Indicate which sub-arrays to remove.

axis [int, optional] The axis along which to delete the subarray defined by obj. If axis is None,
obj is applied to the flattened array.

Returns

out [ndarray] A copy of arr with the elements specified by obj removed. Note that delete
does not occur in-place. If axis is None, out is a flattened array.

See also:

insert Insert elements into an array.

append Append elements at the end of an array.

Notes

Often it is preferable to use a boolean mask. For example:

4.2. Array manipulation routines 459



NumPy Reference, Release 1.15.1

>>> mask = np.ones(len(arr), dtype=bool)
>>> mask[[0,2,4]] = False
>>> result = arr[mask,...]

Is equivalent to np.delete(arr, [0,2,4], axis=0), but allows further use of mask.

Examples

>>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
>>> arr
array([[ 1, 2, 3, 4],

[ 5, 6, 7, 8],
[ 9, 10, 11, 12]])

>>> np.delete(arr, 1, 0)
array([[ 1, 2, 3, 4],

[ 9, 10, 11, 12]])

>>> np.delete(arr, np.s_[::2], 1)
array([[ 2, 4],

[ 6, 8],
[10, 12]])

>>> np.delete(arr, [1,3,5], None)
array([ 1, 3, 5, 7, 8, 9, 10, 11, 12])

numpy.insert(arr, obj, values, axis=None)
Insert values along the given axis before the given indices.

Parameters

arr [array_like] Input array.

obj [int, slice or sequence of ints] Object that defines the index or indices before which values
is inserted.

New in version 1.8.0.

Support for multiple insertions when obj is a single scalar or a sequence with one element
(similar to calling insert multiple times).

values [array_like] Values to insert into arr. If the type of values is different from that of arr,
values is converted to the type of arr. values should be shaped so that arr[...,obj,..
.] = values is legal.

axis [int, optional] Axis along which to insert values. If axis is None then arr is flattened first.

Returns

out [ndarray] A copy of arr with values inserted. Note that insert does not occur in-place: a
new array is returned. If axis is None, out is a flattened array.

See also:

append Append elements at the end of an array.

concatenate Join a sequence of arrays along an existing axis.

delete Delete elements from an array.

460 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

Note that for higher dimensional inserts obj=0 behaves very different from obj=[0] just like arr[:,0,:] = values
is different from arr[:,[0],:] = values.

Examples

>>> a = np.array([[1, 1], [2, 2], [3, 3]])
>>> a
array([[1, 1],

[2, 2],
[3, 3]])

>>> np.insert(a, 1, 5)
array([1, 5, 1, 2, 2, 3, 3])
>>> np.insert(a, 1, 5, axis=1)
array([[1, 5, 1],

[2, 5, 2],
[3, 5, 3]])

Difference between sequence and scalars:

>>> np.insert(a, [1], [[1],[2],[3]], axis=1)
array([[1, 1, 1],

[2, 2, 2],
[3, 3, 3]])

>>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1),
... np.insert(a, [1], [[1],[2],[3]], axis=1))
True

>>> b = a.flatten()
>>> b
array([1, 1, 2, 2, 3, 3])
>>> np.insert(b, [2, 2], [5, 6])
array([1, 1, 5, 6, 2, 2, 3, 3])

>>> np.insert(b, slice(2, 4), [5, 6])
array([1, 1, 5, 2, 6, 2, 3, 3])

>>> np.insert(b, [2, 2], [7.13, False]) # type casting
array([1, 1, 7, 0, 2, 2, 3, 3])

>>> x = np.arange(8).reshape(2, 4)
>>> idx = (1, 3)
>>> np.insert(x, idx, 999, axis=1)
array([[ 0, 999, 1, 2, 999, 3],

[ 4, 999, 5, 6, 999, 7]])

numpy.append(arr, values, axis=None)
Append values to the end of an array.

Parameters

arr [array_like] Values are appended to a copy of this array.

4.2. Array manipulation routines 461



NumPy Reference, Release 1.15.1

values [array_like] These values are appended to a copy of arr. It must be of the correct shape
(the same shape as arr, excluding axis). If axis is not specified, values can be any shape and
will be flattened before use.

axis [int, optional] The axis along which values are appended. If axis is not given, both arr and
values are flattened before use.

Returns

append [ndarray] A copy of arr with values appended to axis. Note that append does not
occur in-place: a new array is allocated and filled. If axis is None, out is a flattened array.

See also:

insert Insert elements into an array.

delete Delete elements from an array.

Examples

>>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]])
array([1, 2, 3, 4, 5, 6, 7, 8, 9])

When axis is specified, values must have the correct shape.

>>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0)
array([[1, 2, 3],

[4, 5, 6],
[7, 8, 9]])

>>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0)
Traceback (most recent call last):
...
ValueError: arrays must have same number of dimensions

numpy.resize(a, new_shape)
Return a new array with the specified shape.

If the new array is larger than the original array, then the new array is filled with repeated copies of a. Note that
this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of a.

Parameters

a [array_like] Array to be resized.

new_shape [int or tuple of int] Shape of resized array.

Returns

reshaped_array [ndarray] The new array is formed from the data in the old array, repeated if
necessary to fill out the required number of elements. The data are repeated in the order that
they are stored in memory.

See also:

ndarray.resize resize an array in-place.

462 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> a=np.array([[0,1],[2,3]])
>>> np.resize(a,(2,3))
array([[0, 1, 2],

[3, 0, 1]])
>>> np.resize(a,(1,4))
array([[0, 1, 2, 3]])
>>> np.resize(a,(2,4))
array([[0, 1, 2, 3],

[0, 1, 2, 3]])

numpy.trim_zeros(filt, trim=’fb’)
Trim the leading and/or trailing zeros from a 1-D array or sequence.

Parameters

filt [1-D array or sequence] Input array.

trim [str, optional] A string with ‘f’ representing trim from front and ‘b’ to trim from back.
Default is ‘fb’, trim zeros from both front and back of the array.

Returns

trimmed [1-D array or sequence] The result of trimming the input. The input data type is
preserved.

Examples

>>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0))
>>> np.trim_zeros(a)
array([1, 2, 3, 0, 2, 1])

>>> np.trim_zeros(a, 'b')
array([0, 0, 0, 1, 2, 3, 0, 2, 1])

The input data type is preserved, list/tuple in means list/tuple out.

>>> np.trim_zeros([0, 1, 2, 0])
[1, 2]

numpy.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None)
Find the unique elements of an array.

Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique
elements:

• the indices of the input array that give the unique values

• the indices of the unique array that reconstruct the input array

• the number of times each unique value comes up in the input array

Parameters

ar [array_like] Input array. Unless axis is specified, this will be flattened if it is not already 1-D.

return_index [bool, optional] If True, also return the indices of ar (along the specified axis, if
provided, or in the flattened array) that result in the unique array.

4.2. Array manipulation routines 463



NumPy Reference, Release 1.15.1

return_inverse [bool, optional] If True, also return the indices of the unique array (for the
specified axis, if provided) that can be used to reconstruct ar.

return_counts [bool, optional] If True, also return the number of times each unique item ap-
pears in ar.

New in version 1.9.0.

axis [int or None, optional] The axis to operate on. If None, ar will be flattened. If an integer,
the subarrays indexed by the given axis will be flattened and treated as the elements of a 1-D
array with the dimension of the given axis, see the notes for more details. Object arrays or
structured arrays that contain objects are not supported if the axis kwarg is used. The default
is None.

New in version 1.13.0.

Returns

unique [ndarray] The sorted unique values.

unique_indices [ndarray, optional] The indices of the first occurrences of the unique values in
the original array. Only provided if return_index is True.

unique_inverse [ndarray, optional] The indices to reconstruct the original array from the unique
array. Only provided if return_inverse is True.

unique_counts [ndarray, optional] The number of times each of the unique values comes up in
the original array. Only provided if return_counts is True.

New in version 1.9.0.

See also:

numpy.lib.arraysetops Module with a number of other functions for performing set operations on ar-
rays.

Notes

When an axis is specified the subarrays indexed by the axis are sorted. This is done by making the specified
axis the first dimension of the array and then flattening the subarrays in C order. The flattened subarrays are
then viewed as a structured type with each element given a label, with the effect that we end up with a 1-D array
of structured types that can be treated in the same way as any other 1-D array. The result is that the flattened
subarrays are sorted in lexicographic order starting with the first element.

Examples

>>> np.unique([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique(a)
array([1, 2, 3])

Return the unique rows of a 2D array

>>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
>>> np.unique(a, axis=0)
array([[1, 0, 0], [2, 3, 4]])

464 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Return the indices of the original array that give the unique values:

>>> a = np.array(['a', 'b', 'b', 'c', 'a'])
>>> u, indices = np.unique(a, return_index=True)
>>> u
array(['a', 'b', 'c'],

dtype='|S1')
>>> indices
array([0, 1, 3])
>>> a[indices]
array(['a', 'b', 'c'],

dtype='|S1')

Reconstruct the input array from the unique values:

>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> u, indices = np.unique(a, return_inverse=True)
>>> u
array([1, 2, 3, 4, 6])
>>> indices
array([0, 1, 4, 3, 1, 2, 1])
>>> u[indices]
array([1, 2, 6, 4, 2, 3, 2])

4.2.10 Rearranging elements

flip(m[, axis]) Reverse the order of elements in an array along the given
axis.

fliplr(m) Flip array in the left/right direction.
flipud(m) Flip array in the up/down direction.
reshape(a, newshape[, order]) Gives a new shape to an array without changing its data.
roll(a, shift[, axis]) Roll array elements along a given axis.
rot90(m[, k, axes]) Rotate an array by 90 degrees in the plane specified by axes.

numpy.flip(m, axis=None)
Reverse the order of elements in an array along the given axis.

The shape of the array is preserved, but the elements are reordered.

New in version 1.12.0.

Parameters

m [array_like] Input array.

axis [None or int or tuple of ints, optional] Axis or axes along which to flip over. The default,
axis=None, will flip over all of the axes of the input array. If axis is negative it counts from
the last to the first axis.

If axis is a tuple of ints, flipping is performed on all of the axes specified in the tuple.

Changed in version 1.15.0: None and tuples of axes are supported

Returns

out [array_like] A view of m with the entries of axis reversed. Since a view is returned, this
operation is done in constant time.

4.2. Array manipulation routines 465



NumPy Reference, Release 1.15.1

See also:

flipud Flip an array vertically (axis=0).

fliplr Flip an array horizontally (axis=1).

Notes

flip(m, 0) is equivalent to flipud(m).

flip(m, 1) is equivalent to fliplr(m).

flip(m, n) corresponds to m[...,::-1,...] with ::-1 at position n.

flip(m) corresponds to m[::-1,::-1,...,::-1] with ::-1 at all positions.

flip(m, (0, 1)) corresponds to m[::-1,::-1,...] with ::-1 at position 0 and position 1.

Examples

>>> A = np.arange(8).reshape((2,2,2))
>>> A
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> flip(A, 0)
array([[[4, 5],

[6, 7]],
[[0, 1],
[2, 3]]])

>>> flip(A, 1)
array([[[2, 3],

[0, 1]],
[[6, 7],
[4, 5]]])

>>> np.flip(A)
array([[[7, 6],

[5, 4]],
[[3, 2],
[1, 0]]])

>>> np.flip(A, (0, 2))
array([[[5, 4],

[7, 6]],
[[1, 0],
[3, 2]]])

>>> A = np.random.randn(3,4,5)
>>> np.all(flip(A,2) == A[:,:,::-1,...])
True

numpy.fliplr(m)
Flip array in the left/right direction.

Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order
than before.

Parameters

466 Chapter 4. Routines



NumPy Reference, Release 1.15.1

m [array_like] Input array, must be at least 2-D.

Returns

f [ndarray] A view of m with the columns reversed. Since a view is returned, this operation is
𝒪(1).

See also:

flipud Flip array in the up/down direction.

rot90 Rotate array counterclockwise.

Notes

Equivalent to m[:,::-1]. Requires the array to be at least 2-D.

Examples

>>> A = np.diag([1.,2.,3.])
>>> A
array([[ 1., 0., 0.],

[ 0., 2., 0.],
[ 0., 0., 3.]])

>>> np.fliplr(A)
array([[ 0., 0., 1.],

[ 0., 2., 0.],
[ 3., 0., 0.]])

>>> A = np.random.randn(2,3,5)
>>> np.all(np.fliplr(A) == A[:,::-1,...])
True

numpy.flipud(m)
Flip array in the up/down direction.

Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order
than before.

Parameters

m [array_like] Input array.

Returns

out [array_like] A view of m with the rows reversed. Since a view is returned, this operation is
𝒪(1).

See also:

fliplr Flip array in the left/right direction.

rot90 Rotate array counterclockwise.

Notes

Equivalent to m[::-1,...]. Does not require the array to be two-dimensional.

4.2. Array manipulation routines 467



NumPy Reference, Release 1.15.1

Examples

>>> A = np.diag([1.0, 2, 3])
>>> A
array([[ 1., 0., 0.],

[ 0., 2., 0.],
[ 0., 0., 3.]])

>>> np.flipud(A)
array([[ 0., 0., 3.],

[ 0., 2., 0.],
[ 1., 0., 0.]])

>>> A = np.random.randn(2,3,5)
>>> np.all(np.flipud(A) == A[::-1,...])
True

>>> np.flipud([1,2])
array([2, 1])

numpy.roll(a, shift, axis=None)
Roll array elements along a given axis.

Elements that roll beyond the last position are re-introduced at the first.

Parameters

a [array_like] Input array.

shift [int or tuple of ints] The number of places by which elements are shifted. If a tuple,
then axis must be a tuple of the same size, and each of the given axes is shifted by the
corresponding number. If an int while axis is a tuple of ints, then the same value is used for
all given axes.

axis [int or tuple of ints, optional] Axis or axes along which elements are shifted. By default,
the array is flattened before shifting, after which the original shape is restored.

Returns

res [ndarray] Output array, with the same shape as a.

See also:

rollaxis Roll the specified axis backwards, until it lies in a given position.

Notes

New in version 1.12.0.

Supports rolling over multiple dimensions simultaneously.

Examples

>>> x = np.arange(10)
>>> np.roll(x, 2)
array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])

468 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> x2 = np.reshape(x, (2,5))
>>> x2
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])
>>> np.roll(x2, 1)
array([[9, 0, 1, 2, 3],

[4, 5, 6, 7, 8]])
>>> np.roll(x2, 1, axis=0)
array([[5, 6, 7, 8, 9],

[0, 1, 2, 3, 4]])
>>> np.roll(x2, 1, axis=1)
array([[4, 0, 1, 2, 3],

[9, 5, 6, 7, 8]])

numpy.rot90(m, k=1, axes=(0, 1))
Rotate an array by 90 degrees in the plane specified by axes.

Rotation direction is from the first towards the second axis.

Parameters

m [array_like] Array of two or more dimensions.

k [integer] Number of times the array is rotated by 90 degrees.

axes: (2,) array_like The array is rotated in the plane defined by the axes. Axes must be differ-
ent.

New in version 1.12.0.

Returns

y [ndarray] A rotated view of m.

See also:

flip Reverse the order of elements in an array along the given axis.

fliplr Flip an array horizontally.

flipud Flip an array vertically.

Notes

rot90(m, k=1, axes=(1,0)) is the reverse of rot90(m, k=1, axes=(0,1)) rot90(m, k=1, axes=(1,0)) is equivalent to
rot90(m, k=-1, axes=(0,1))

Examples

>>> m = np.array([[1,2],[3,4]], int)
>>> m
array([[1, 2],

[3, 4]])
>>> np.rot90(m)
array([[2, 4],

[1, 3]])
>>> np.rot90(m, 2)
array([[4, 3],

(continues on next page)

4.2. Array manipulation routines 469



NumPy Reference, Release 1.15.1

(continued from previous page)

[2, 1]])
>>> m = np.arange(8).reshape((2,2,2))
>>> np.rot90(m, 1, (1,2))
array([[[1, 3],

[0, 2]],
[[5, 7],
[4, 6]]])

4.3 Binary operations

4.3.1 Elementwise bit operations

bitwise_and(x1, x2, /[, out, where, . . . ]) Compute the bit-wise AND of two arrays element-wise.
bitwise_or(x1, x2, /[, out, where, casting, . . . ]) Compute the bit-wise OR of two arrays element-wise.
bitwise_xor(x1, x2, /[, out, where, . . . ]) Compute the bit-wise XOR of two arrays element-wise.
invert(x, /[, out, where, casting, order, . . . ]) Compute bit-wise inversion, or bit-wise NOT, element-

wise.
left_shift(x1, x2, /[, out, where, casting, . . . ]) Shift the bits of an integer to the left.
right_shift(x1, x2, /[, out, where, . . . ]) Shift the bits of an integer to the right.

numpy.bitwise_and(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'bitwise_and'>

Compute the bit-wise AND of two arrays element-wise.

Computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. This
ufunc implements the C/Python operator &.

Parameters

x1, x2 [array_like] Only integer and boolean types are handled.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Result. This is a scalar if both x1 and x2 are scalars.

See also:

logical_and, bitwise_or, bitwise_xor

binary_repr Return the binary representation of the input number as a string.

470 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

The number 13 is represented by 00001101. Likewise, 17 is represented by 00010001. The bit-wise AND
of 13 and 17 is therefore 000000001, or 1:

>>> np.bitwise_and(13, 17)
1

>>> np.bitwise_and(14, 13)
12
>>> np.binary_repr(12)
'1100'
>>> np.bitwise_and([14,3], 13)
array([12, 1])

>>> np.bitwise_and([11,7], [4,25])
array([0, 1])
>>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16]))
array([ 2, 4, 16])
>>> np.bitwise_and([True, True], [False, True])
array([False, True])

numpy.bitwise_or(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'bitwise_or'>

Compute the bit-wise OR of two arrays element-wise.

Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc
implements the C/Python operator |.

Parameters

x1, x2 [array_like] Only integer and boolean types are handled.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Result. This is a scalar if both x1 and x2 are scalars.

See also:

logical_or, bitwise_and, bitwise_xor

binary_repr Return the binary representation of the input number as a string.

Examples

The number 13 has the binaray representation 00001101. Likewise, 16 is represented by 00010000. The
bit-wise OR of 13 and 16 is then 000111011, or 29:

4.3. Binary operations 471



NumPy Reference, Release 1.15.1

>>> np.bitwise_or(13, 16)
29
>>> np.binary_repr(29)
'11101'

>>> np.bitwise_or(32, 2)
34
>>> np.bitwise_or([33, 4], 1)
array([33, 5])
>>> np.bitwise_or([33, 4], [1, 2])
array([33, 6])

>>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4]))
array([ 6, 5, 255])
>>> np.array([2, 5, 255]) | np.array([4, 4, 4])
array([ 6, 5, 255])
>>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32),
... np.array([4, 4, 4, 2147483647L], dtype=np.int32))
array([ 6, 5, 255, 2147483647])
>>> np.bitwise_or([True, True], [False, True])
array([ True, True])

numpy.bitwise_xor(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'bitwise_xor'>

Compute the bit-wise XOR of two arrays element-wise.

Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This
ufunc implements the C/Python operator ^.

Parameters

x1, x2 [array_like] Only integer and boolean types are handled.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Result. This is a scalar if both x1 and x2 are scalars.

See also:

logical_xor, bitwise_and, bitwise_or

binary_repr Return the binary representation of the input number as a string.

Examples

The number 13 is represented by 00001101. Likewise, 17 is represented by 00010001. The bit-wise XOR
of 13 and 17 is therefore 00011100, or 28:

472 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> np.bitwise_xor(13, 17)
28
>>> np.binary_repr(28)
'11100'

>>> np.bitwise_xor(31, 5)
26
>>> np.bitwise_xor([31,3], 5)
array([26, 6])

>>> np.bitwise_xor([31,3], [5,6])
array([26, 5])
>>> np.bitwise_xor([True, True], [False, True])
array([ True, False])

numpy.invert(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'invert'>

Compute bit-wise inversion, or bit-wise NOT, element-wise.

Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This
ufunc implements the C/Python operator ~.

For signed integer inputs, the two’s complement is returned. In a two’s-complement system negative numbers
are represented by the two’s complement of the absolute value. This is the most common method of representing
signed integers on computers [1]. A N-bit two’s-complement system can represent every integer in the range
−2𝑁−1 to +2𝑁−1 − 1.

Parameters

x [array_like] Only integer and boolean types are handled.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Result. This is a scalar if x is a scalar.

See also:

bitwise_and, bitwise_or, bitwise_xor, logical_not

binary_repr Return the binary representation of the input number as a string.

Notes

bitwise_not is an alias for invert:

>>> np.bitwise_not is np.invert
True

4.3. Binary operations 473



NumPy Reference, Release 1.15.1

References

[1]

Examples

We’ve seen that 13 is represented by 00001101. The invert or bit-wise NOT of 13 is then:

>>> np.invert(np.array([13], dtype=uint8))
array([242], dtype=uint8)
>>> np.binary_repr(x, width=8)
'00001101'
>>> np.binary_repr(242, width=8)
'11110010'

The result depends on the bit-width:

>>> np.invert(np.array([13], dtype=uint16))
array([65522], dtype=uint16)
>>> np.binary_repr(x, width=16)
'0000000000001101'
>>> np.binary_repr(65522, width=16)
'1111111111110010'

When using signed integer types the result is the two’s complement of the result for the unsigned type:

>>> np.invert(np.array([13], dtype=int8))
array([-14], dtype=int8)
>>> np.binary_repr(-14, width=8)
'11110010'

Booleans are accepted as well:

>>> np.invert(array([True, False]))
array([False, True])

numpy.left_shift(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'left_shift'>

Shift the bits of an integer to the left.

Bits are shifted to the left by appending x2 0s at the right of x1. Since the internal representation of numbers is
in binary format, this operation is equivalent to multiplying x1 by 2**x2.

Parameters

x1 [array_like of integer type] Input values.

x2 [array_like of integer type] Number of zeros to append to x1. Has to be non-negative.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

474 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns

out [array of integer type] Return x1 with bits shifted x2 times to the left. This is a scalar if both
x1 and x2 are scalars.

See also:

right_shift Shift the bits of an integer to the right.

binary_repr Return the binary representation of the input number as a string.

Examples

>>> np.binary_repr(5)
'101'
>>> np.left_shift(5, 2)
20
>>> np.binary_repr(20)
'10100'

>>> np.left_shift(5, [1,2,3])
array([10, 20, 40])

numpy.right_shift(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'right_shift'>

Shift the bits of an integer to the right.

Bits are shifted to the right x2. Because the internal representation of numbers is in binary format, this operation
is equivalent to dividing x1 by 2**x2.

Parameters

x1 [array_like, int] Input values.

x2 [array_like, int] Number of bits to remove at the right of x1.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray, int] Return x1 with bits shifted x2 times to the right. This is a scalar if both x1 and
x2 are scalars.

See also:

left_shift Shift the bits of an integer to the left.

binary_repr Return the binary representation of the input number as a string.

4.3. Binary operations 475



NumPy Reference, Release 1.15.1

Examples

>>> np.binary_repr(10)
'1010'
>>> np.right_shift(10, 1)
5
>>> np.binary_repr(5)
'101'

>>> np.right_shift(10, [1,2,3])
array([5, 2, 1])

4.3.2 Bit packing

packbits(myarray[, axis]) Packs the elements of a binary-valued array into bits in a
uint8 array.

unpackbits(myarray[, axis]) Unpacks elements of a uint8 array into a binary-valued out-
put array.

numpy.packbits(myarray, axis=None)
Packs the elements of a binary-valued array into bits in a uint8 array.

The result is padded to full bytes by inserting zero bits at the end.

Parameters

myarray [array_like] An array of integers or booleans whose elements should be packed to
bits.

axis [int, optional] The dimension over which bit-packing is done. None implies packing the
flattened array.

Returns

packed [ndarray] Array of type uint8 whose elements represent bits corresponding to the logical
(0 or nonzero) value of the input elements. The shape of packed has the same number of
dimensions as the input (unless axis is None, in which case the output is 1-D).

See also:

unpackbits Unpacks elements of a uint8 array into a binary-valued output array.

Examples

>>> a = np.array([[[1,0,1],
... [0,1,0]],
... [[1,1,0],
... [0,0,1]]])
>>> b = np.packbits(a, axis=-1)
>>> b
array([[[160],[64]],[[192],[32]]], dtype=uint8)

Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000, and 32 = 0010 0000.

476 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.unpackbits(myarray, axis=None)
Unpacks elements of a uint8 array into a binary-valued output array.

Each element of myarray represents a bit-field that should be unpacked into a binary-valued output array. The
shape of the output array is either 1-D (if axis is None) or the same shape as the input array with unpacking done
along the axis specified.

Parameters

myarray [ndarray, uint8 type] Input array.

axis [int, optional] The dimension over which bit-unpacking is done. None implies unpacking
the flattened array.

Returns

unpacked [ndarray, uint8 type] The elements are binary-valued (0 or 1).

See also:

packbits Packs the elements of a binary-valued array into bits in a uint8 array.

Examples

>>> a = np.array([[2], [7], [23]], dtype=np.uint8)
>>> a
array([[ 2],

[ 7],
[23]], dtype=uint8)

>>> b = np.unpackbits(a, axis=1)
>>> b
array([[0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)

4.3.3 Output formatting

binary_repr(num[, width]) Return the binary representation of the input number as a
string.

numpy.binary_repr(num, width=None)
Return the binary representation of the input number as a string.

For negative numbers, if width is not given, a minus sign is added to the front. If width is given, the two’s
complement of the number is returned, with respect to that width.

In a two’s-complement system negative numbers are represented by the two’s complement of the absolute value.
This is the most common method of representing signed integers on computers [1]. A N-bit two’s-complement
system can represent every integer in the range −2𝑁−1 to +2𝑁−1 − 1.

Parameters

num [int] Only an integer decimal number can be used.

width [int, optional] The length of the returned string if num is positive, or the length of the
two’s complement if num is negative, provided that width is at least a sufficient number of
bits for num to be represented in the designated form.

4.3. Binary operations 477



NumPy Reference, Release 1.15.1

If the width value is insufficient, it will be ignored, and num will be returned in binary (num
> 0) or two’s complement (num < 0) form with its width equal to the minimum number of
bits needed to represent the number in the designated form. This behavior is deprecated and
will later raise an error.

Deprecated since version 1.12.0.

Returns

bin [str] Binary representation of num or two’s complement of num.

See also:

base_repr Return a string representation of a number in the given base system.

bin Python’s built-in binary representation generator of an integer.

Notes

binary_repr is equivalent to using base_repr with base 2, but about 25x faster.

References

[1]

Examples

>>> np.binary_repr(3)
'11'
>>> np.binary_repr(-3)
'-11'
>>> np.binary_repr(3, width=4)
'0011'

The two’s complement is returned when the input number is negative and width is specified:

>>> np.binary_repr(-3, width=3)
'101'
>>> np.binary_repr(-3, width=5)
'11101'

4.4 String operations

This module provides a set of vectorized string operations for arrays of type numpy.string_ or numpy.
unicode_. All of them are based on the string methods in the Python standard library.

4.4.1 String operations

478 Chapter 4. Routines

https://docs.python.org/dev/library/functions.html#bin


NumPy Reference, Release 1.15.1

add(x1, x2) Return element-wise string concatenation for two arrays of
str or unicode.

multiply(a, i) Return (a * i), that is string multiple concatenation,
element-wise.

mod(a, values) Return (a % i), that is pre-Python 2.6 string formatting (iter-
polation), element-wise for a pair of array_likes of str or
unicode.

capitalize(a) Return a copy of a with only the first character of each
element capitalized.

center(a, width[, fillchar]) Return a copy of a with its elements centered in a string of
length width.

decode(a[, encoding, errors]) Calls str.decode element-wise.
encode(a[, encoding, errors]) Calls str.encode element-wise.
join(sep, seq) Return a string which is the concatenation of the strings in

the sequence seq.
ljust(a, width[, fillchar]) Return an array with the elements of a left-justified in a

string of length width.
lower(a) Return an array with the elements converted to lowercase.
lstrip(a[, chars]) For each element in a, return a copy with the leading char-

acters removed.
partition(a, sep) Partition each element in a around sep.
replace(a, old, new[, count]) For each element in a, return a copy of the string with all

occurrences of substring old replaced by new.
rjust(a, width[, fillchar]) Return an array with the elements of a right-justified in a

string of length width.
rpartition(a, sep) Partition (split) each element around the right-most separa-

tor.
rsplit(a[, sep, maxsplit]) For each element in a, return a list of the words in the string,

using sep as the delimiter string.
rstrip(a[, chars]) For each element in a, return a copy with the trailing char-

acters removed.
split(a[, sep, maxsplit]) For each element in a, return a list of the words in the string,

using sep as the delimiter string.
splitlines(a[, keepends]) For each element in a, return a list of the lines in the ele-

ment, breaking at line boundaries.
strip(a[, chars]) For each element in a, return a copy with the leading and

trailing characters removed.
swapcase(a) Return element-wise a copy of the string with uppercase

characters converted to lowercase and vice versa.
title(a) Return element-wise title cased version of string or uni-

code.
translate(a, table[, deletechars]) For each element in a, return a copy of the string where all

characters occurring in the optional argument deletechars
are removed, and the remaining characters have been
mapped through the given translation table.

upper(a) Return an array with the elements converted to uppercase.
zfill(a, width) Return the numeric string left-filled with zeros

numpy.core.defchararray.add(x1, x2)
Return element-wise string concatenation for two arrays of str or unicode.

Arrays x1 and x2 must have the same shape.

4.4. String operations 479



NumPy Reference, Release 1.15.1

Parameters

x1 [array_like of str or unicode] Input array.

x2 [array_like of str or unicode] Input array.

Returns

add [ndarray] Output array of string_ or unicode_, depending on input types of the same
shape as x1 and x2.

numpy.core.defchararray.multiply(a, i)
Return (a * i), that is string multiple concatenation, element-wise.

Values in i of less than 0 are treated as 0 (which yields an empty string).

Parameters

a [array_like of str or unicode]

i [array_like of ints]

Returns

out [ndarray] Output array of str or unicode, depending on input types

numpy.core.defchararray.mod(a, values)
Return (a % i), that is pre-Python 2.6 string formatting (iterpolation), element-wise for a pair of array_likes of
str or unicode.

Parameters

a [array_like of str or unicode]

values [array_like of values] These values will be element-wise interpolated into the string.

Returns

out [ndarray] Output array of str or unicode, depending on input types

See also:

str.__mod__

numpy.core.defchararray.capitalize(a)
Return a copy of a with only the first character of each element capitalized.

Calls str.capitalize element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters

a [array_like of str or unicode] Input array of strings to capitalize.

Returns

out [ndarray] Output array of str or unicode, depending on input types

See also:

str.capitalize

480 Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.capitalize


NumPy Reference, Release 1.15.1

Examples

>>> c = np.array(['a1b2','1b2a','b2a1','2a1b'],'S4'); c
array(['a1b2', '1b2a', 'b2a1', '2a1b'],

dtype='|S4')
>>> np.char.capitalize(c)
array(['A1b2', '1b2a', 'B2a1', '2a1b'],

dtype='|S4')

numpy.core.defchararray.center(a, width, fillchar=’ ’)
Return a copy of a with its elements centered in a string of length width.

Calls str.center element-wise.

Parameters

a [array_like of str or unicode]

width [int] The length of the resulting strings

fillchar [str or unicode, optional] The padding character to use (default is space).

Returns

out [ndarray] Output array of str or unicode, depending on input types

See also:

str.center

numpy.core.defchararray.decode(a, encoding=None, errors=None)
Calls str.decode element-wise.

The set of available codecs comes from the Python standard library, and may be extended at runtime. For more
information, see the codecs module.

Parameters

a [array_like of str or unicode]

encoding [str, optional] The name of an encoding

errors [str, optional] Specifies how to handle encoding errors

Returns

out [ndarray]

See also:

str.decode

Notes

The type of the result will depend on the encoding specified.

Examples

4.4. String operations 481

https://docs.python.org/dev/library/stdtypes.html#str.center
https://docs.python.org/dev/library/codecs.html#module-codecs


NumPy Reference, Release 1.15.1

>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'],

dtype='|S7')
>>> np.char.encode(c, encoding='cp037')
array(['\x81\xc1\x81\xc1\x81\xc1', '@@\x81\xc1@@',

'\x81\x82\xc2\xc1\xc2\x82\x81'],
dtype='|S7')

numpy.core.defchararray.encode(a, encoding=None, errors=None)
Calls str.encode element-wise.

The set of available codecs comes from the Python standard library, and may be extended at runtime. For more
information, see the codecs module.

Parameters

a [array_like of str or unicode]

encoding [str, optional] The name of an encoding

errors [str, optional] Specifies how to handle encoding errors

Returns

out [ndarray]

See also:

str.encode

Notes

The type of the result will depend on the encoding specified.

numpy.core.defchararray.join(sep, seq)
Return a string which is the concatenation of the strings in the sequence seq.

Calls str.join element-wise.

Parameters

sep [array_like of str or unicode]

seq [array_like of str or unicode]

Returns

out [ndarray] Output array of str or unicode, depending on input types

See also:

str.join

numpy.core.defchararray.ljust(a, width, fillchar=’ ’)
Return an array with the elements of a left-justified in a string of length width.

Calls str.ljust element-wise.

Parameters

a [array_like of str or unicode]

width [int] The length of the resulting strings

482 Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.encode
https://docs.python.org/dev/library/stdtypes.html#str.join


NumPy Reference, Release 1.15.1

fillchar [str or unicode, optional] The character to use for padding

Returns

out [ndarray] Output array of str or unicode, depending on input type

See also:

str.ljust

numpy.core.defchararray.lower(a)
Return an array with the elements converted to lowercase.

Call str.lower element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters

a [array_like, {str, unicode}] Input array.

Returns

out [ndarray, {str, unicode}] Output array of str or unicode, depending on input type

See also:

str.lower

Examples

>>> c = np.array(['A1B C', '1BCA', 'BCA1']); c
array(['A1B C', '1BCA', 'BCA1'],

dtype='|S5')
>>> np.char.lower(c)
array(['a1b c', '1bca', 'bca1'],

dtype='|S5')

numpy.core.defchararray.lstrip(a, chars=None)
For each element in a, return a copy with the leading characters removed.

Calls str.lstrip element-wise.

Parameters

a [array-like, {str, unicode}] Input array.

chars [{str, unicode}, optional] The chars argument is a string specifying the set of characters
to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix; rather, all combinations of its values are stripped.

Returns

out [ndarray, {str, unicode}] Output array of str or unicode, depending on input type

See also:

str.lstrip

4.4. String operations 483

https://docs.python.org/dev/library/stdtypes.html#str.ljust
https://docs.python.org/dev/library/stdtypes.html#str.lower
https://docs.python.org/dev/library/stdtypes.html#str.lstrip


NumPy Reference, Release 1.15.1

Examples

>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'],

dtype='|S7')

The ‘a’ variable is unstripped from c[1] because whitespace leading.

>>> np.char.lstrip(c, 'a')
array(['AaAaA', ' aA ', 'bBABba'],

dtype='|S7')

>>> np.char.lstrip(c, 'A') # leaves c unchanged
array(['aAaAaA', ' aA ', 'abBABba'],

dtype='|S7')
>>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, '')).all()
... # XXX: is this a regression? this line now returns False
... # np.char.lstrip(c,'') does not modify c at all.
True
>>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, None)).all()
True

numpy.core.defchararray.partition(a, sep)
Partition each element in a around sep.

Calls str.partition element-wise.

For each element in a, split the element as the first occurrence of sep, and return 3 strings containing the part
before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3
strings containing the string itself, followed by two empty strings.

Parameters

a [array_like, {str, unicode}] Input array

sep [{str, unicode}] Separator to split each string element in a.

Returns

out [ndarray, {str, unicode}] Output array of str or unicode, depending on input type. The
output array will have an extra dimension with 3 elements per input element.

See also:

str.partition

numpy.core.defchararray.replace(a, old, new, count=None)
For each element in a, return a copy of the string with all occurrences of substring old replaced by new.

Calls str.replace element-wise.

Parameters

a [array-like of str or unicode]

old, new [str or unicode]

count [int, optional] If the optional argument count is given, only the first count occurrences
are replaced.

Returns

484 Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.partition


NumPy Reference, Release 1.15.1

out [ndarray] Output array of str or unicode, depending on input type

See also:

str.replace

numpy.core.defchararray.rjust(a, width, fillchar=’ ’)
Return an array with the elements of a right-justified in a string of length width.

Calls str.rjust element-wise.

Parameters

a [array_like of str or unicode]

width [int] The length of the resulting strings

fillchar [str or unicode, optional] The character to use for padding

Returns

out [ndarray] Output array of str or unicode, depending on input type

See also:

str.rjust

numpy.core.defchararray.rpartition(a, sep)
Partition (split) each element around the right-most separator.

Calls str.rpartition element-wise.

For each element in a, split the element as the last occurrence of sep, and return 3 strings containing the part
before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3
strings containing the string itself, followed by two empty strings.

Parameters

a [array_like of str or unicode] Input array

sep [str or unicode] Right-most separator to split each element in array.

Returns

out [ndarray] Output array of string or unicode, depending on input type. The output array will
have an extra dimension with 3 elements per input element.

See also:

str.rpartition

numpy.core.defchararray.rsplit(a, sep=None, maxsplit=None)
For each element in a, return a list of the words in the string, using sep as the delimiter string.

Calls str.rsplit element-wise.

Except for splitting from the right, rsplit behaves like split.

Parameters

a [array_like of str or unicode]

sep [str or unicode, optional] If sep is not specified or None, any whitespace string is a separator.

maxsplit [int, optional] If maxsplit is given, at most maxsplit splits are done, the rightmost ones.

Returns

out [ndarray] Array of list objects

4.4. String operations 485

https://docs.python.org/dev/library/stdtypes.html#str.replace
https://docs.python.org/dev/library/stdtypes.html#str.rjust
https://docs.python.org/dev/library/stdtypes.html#str.rpartition


NumPy Reference, Release 1.15.1

See also:

str.rsplit, split

numpy.core.defchararray.rstrip(a, chars=None)
For each element in a, return a copy with the trailing characters removed.

Calls str.rstrip element-wise.

Parameters

a [array-like of str or unicode]

chars [str or unicode, optional] The chars argument is a string specifying the set of characters
to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a suffix; rather, all combinations of its values are stripped.

Returns

out [ndarray] Output array of str or unicode, depending on input type

See also:

str.rstrip

Examples

>>> c = np.array(['aAaAaA', 'abBABba'], dtype='S7'); c
array(['aAaAaA', 'abBABba'],

dtype='|S7')
>>> np.char.rstrip(c, 'a')
array(['aAaAaA', 'abBABb'],

dtype='|S7')
>>> np.char.rstrip(c, 'A')
array(['aAaAa', 'abBABba'],

dtype='|S7')

numpy.core.defchararray.split(a, sep=None, maxsplit=None)
For each element in a, return a list of the words in the string, using sep as the delimiter string.

Calls str.split element-wise.

Parameters

a [array_like of str or unicode]

sep [str or unicode, optional] If sep is not specified or None, any whitespace string is a separator.

maxsplit [int, optional] If maxsplit is given, at most maxsplit splits are done.

Returns

out [ndarray] Array of list objects

See also:

str.split, rsplit

numpy.core.defchararray.splitlines(a, keepends=None)
For each element in a, return a list of the lines in the element, breaking at line boundaries.

Calls str.splitlines element-wise.

Parameters

486 Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.rsplit
https://docs.python.org/dev/library/stdtypes.html#str.rstrip
https://docs.python.org/dev/library/stdtypes.html#str.split


NumPy Reference, Release 1.15.1

a [array_like of str or unicode]

keepends [bool, optional] Line breaks are not included in the resulting list unless keepends is
given and true.

Returns

out [ndarray] Array of list objects

See also:

str.splitlines

numpy.core.defchararray.strip(a, chars=None)
For each element in a, return a copy with the leading and trailing characters removed.

Calls str.strip element-wise.

Parameters

a [array-like of str or unicode]

chars [str or unicode, optional] The chars argument is a string specifying the set of characters to
be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a prefix or suffix; rather, all combinations of its values are stripped.

Returns

out [ndarray] Output array of str or unicode, depending on input type

See also:

str.strip

Examples

>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'],

dtype='|S7')
>>> np.char.strip(c)
array(['aAaAaA', 'aA', 'abBABba'],

dtype='|S7')
>>> np.char.strip(c, 'a') # 'a' unstripped from c[1] because whitespace leads
array(['AaAaA', ' aA ', 'bBABb'],

dtype='|S7')
>>> np.char.strip(c, 'A') # 'A' unstripped from c[1] because (unprinted) ws trails
array(['aAaAa', ' aA ', 'abBABba'],

dtype='|S7')

numpy.core.defchararray.swapcase(a)
Return element-wise a copy of the string with uppercase characters converted to lowercase and vice versa.

Calls str.swapcase element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters

a [array_like, {str, unicode}] Input array.

Returns

out [ndarray, {str, unicode}] Output array of str or unicode, depending on input type

4.4. String operations 487

https://docs.python.org/dev/library/stdtypes.html#str.splitlines
https://docs.python.org/dev/library/stdtypes.html#str.strip


NumPy Reference, Release 1.15.1

See also:

str.swapcase

Examples

>>> c=np.array(['a1B c','1b Ca','b Ca1','cA1b'],'S5'); c
array(['a1B c', '1b Ca', 'b Ca1', 'cA1b'],

dtype='|S5')
>>> np.char.swapcase(c)
array(['A1b C', '1B cA', 'B cA1', 'Ca1B'],

dtype='|S5')

numpy.core.defchararray.title(a)
Return element-wise title cased version of string or unicode.

Title case words start with uppercase characters, all remaining cased characters are lowercase.

Calls str.title element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters

a [array_like, {str, unicode}] Input array.

Returns

out [ndarray] Output array of str or unicode, depending on input type

See also:

str.title

Examples

>>> c=np.array(['a1b c','1b ca','b ca1','ca1b'],'S5'); c
array(['a1b c', '1b ca', 'b ca1', 'ca1b'],

dtype='|S5')
>>> np.char.title(c)
array(['A1B C', '1B Ca', 'B Ca1', 'Ca1B'],

dtype='|S5')

numpy.core.defchararray.translate(a, table, deletechars=None)
For each element in a, return a copy of the string where all characters occurring in the optional argument
deletechars are removed, and the remaining characters have been mapped through the given translation table.

Calls str.translate element-wise.

Parameters

a [array-like of str or unicode]

table [str of length 256]

deletechars [str]

Returns

out [ndarray] Output array of str or unicode, depending on input type

488 Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.swapcase
https://docs.python.org/dev/library/stdtypes.html#str.title


NumPy Reference, Release 1.15.1

See also:

str.translate

numpy.core.defchararray.upper(a)
Return an array with the elements converted to uppercase.

Calls str.upper element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters

a [array_like, {str, unicode}] Input array.

Returns

out [ndarray, {str, unicode}] Output array of str or unicode, depending on input type

See also:

str.upper

Examples

>>> c = np.array(['a1b c', '1bca', 'bca1']); c
array(['a1b c', '1bca', 'bca1'],

dtype='|S5')
>>> np.char.upper(c)
array(['A1B C', '1BCA', 'BCA1'],

dtype='|S5')

numpy.core.defchararray.zfill(a, width)
Return the numeric string left-filled with zeros

Calls str.zfill element-wise.

Parameters

a [array_like, {str, unicode}] Input array.

width [int] Width of string to left-fill elements in a.

Returns

out [ndarray, {str, unicode}] Output array of str or unicode, depending on input type

See also:

str.zfill

4.4.2 Comparison

Unlike the standard numpy comparison operators, the ones in the char module strip trailing whitespace characters
before performing the comparison.

equal(x1, x2) Return (x1 == x2) element-wise.
not_equal(x1, x2) Return (x1 != x2) element-wise.
greater_equal(x1, x2) Return (x1 >= x2) element-wise.
less_equal(x1, x2) Return (x1 <= x2) element-wise.

Continued on next page

4.4. String operations 489

https://docs.python.org/dev/library/stdtypes.html#str.translate
https://docs.python.org/dev/library/stdtypes.html#str.upper
https://docs.python.org/dev/library/stdtypes.html#str.zfill


NumPy Reference, Release 1.15.1

Table 22 – continued from previous page
greater(x1, x2) Return (x1 > x2) element-wise.
less(x1, x2) Return (x1 < x2) element-wise.

numpy.core.defchararray.equal(x1, x2)
Return (x1 == x2) element-wise.

Unlike numpy.equal, this comparison is performed by first stripping whitespace characters from the end of
the string. This behavior is provided for backward-compatibility with numarray.

Parameters

x1, x2 [array_like of str or unicode] Input arrays of the same shape.

Returns

out [ndarray or bool] Output array of bools, or a single bool if x1 and x2 are scalars.

See also:

not_equal, greater_equal, less_equal, greater, less

numpy.core.defchararray.not_equal(x1, x2)
Return (x1 != x2) element-wise.

Unlike numpy.not_equal, this comparison is performed by first stripping whitespace characters from the
end of the string. This behavior is provided for backward-compatibility with numarray.

Parameters

x1, x2 [array_like of str or unicode] Input arrays of the same shape.

Returns

out [ndarray or bool] Output array of bools, or a single bool if x1 and x2 are scalars.

See also:

equal, greater_equal, less_equal, greater, less

numpy.core.defchararray.greater_equal(x1, x2)
Return (x1 >= x2) element-wise.

Unlike numpy.greater_equal, this comparison is performed by first stripping whitespace characters from
the end of the string. This behavior is provided for backward-compatibility with numarray.

Parameters

x1, x2 [array_like of str or unicode] Input arrays of the same shape.

Returns

out [ndarray or bool] Output array of bools, or a single bool if x1 and x2 are scalars.

See also:

equal, not_equal, less_equal, greater, less

numpy.core.defchararray.less_equal(x1, x2)
Return (x1 <= x2) element-wise.

Unlike numpy.less_equal, this comparison is performed by first stripping whitespace characters from the
end of the string. This behavior is provided for backward-compatibility with numarray.

Parameters

x1, x2 [array_like of str or unicode] Input arrays of the same shape.

490 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns

out [ndarray or bool] Output array of bools, or a single bool if x1 and x2 are scalars.

See also:

equal, not_equal, greater_equal, greater, less

numpy.core.defchararray.greater(x1, x2)
Return (x1 > x2) element-wise.

Unlike numpy.greater, this comparison is performed by first stripping whitespace characters from the end
of the string. This behavior is provided for backward-compatibility with numarray.

Parameters

x1, x2 [array_like of str or unicode] Input arrays of the same shape.

Returns

out [ndarray or bool] Output array of bools, or a single bool if x1 and x2 are scalars.

See also:

equal, not_equal, greater_equal, less_equal, less

numpy.core.defchararray.less(x1, x2)
Return (x1 < x2) element-wise.

Unlike numpy.greater, this comparison is performed by first stripping whitespace characters from the end
of the string. This behavior is provided for backward-compatibility with numarray.

Parameters

x1, x2 [array_like of str or unicode] Input arrays of the same shape.

Returns

out [ndarray or bool] Output array of bools, or a single bool if x1 and x2 are scalars.

See also:

equal, not_equal, greater_equal, less_equal, greater

4.4.3 String information

count(a, sub[, start, end]) Returns an array with the number of non-overlapping oc-
currences of substring sub in the range [start, end].

find(a, sub[, start, end]) For each element, return the lowest index in the string
where substring sub is found.

index(a, sub[, start, end]) Like find, but raises ValueError when the substring is not
found.

isalpha(a) Returns true for each element if all characters in the string
are alphabetic and there is at least one character, false oth-
erwise.

isdecimal(a) For each element, return True if there are only decimal
characters in the element.

isdigit(a) Returns true for each element if all characters in the string
are digits and there is at least one character, false otherwise.

Continued on next page

4.4. String operations 491



NumPy Reference, Release 1.15.1

Table 23 – continued from previous page
islower(a) Returns true for each element if all cased characters in the

string are lowercase and there is at least one cased charac-
ter, false otherwise.

isnumeric(a) For each element, return True if there are only numeric
characters in the element.

isspace(a) Returns true for each element if there are only whitespace
characters in the string and there is at least one character,
false otherwise.

istitle(a) Returns true for each element if the element is a titlecased
string and there is at least one character, false otherwise.

isupper(a) Returns true for each element if all cased characters in the
string are uppercase and there is at least one character, false
otherwise.

rfind(a, sub[, start, end]) For each element in a, return the highest index in the string
where substring sub is found, such that sub is contained
within [start, end].

rindex(a, sub[, start, end]) Like rfind, but raises ValueError when the substring sub
is not found.

startswith(a, prefix[, start, end]) Returns a boolean array which is True where the string el-
ement in a starts with prefix, otherwise False.

numpy.core.defchararray.count(a, sub, start=0, end=None)
Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end].

Calls str.count element-wise.

Parameters

a [array_like of str or unicode]

sub [str or unicode] The substring to search for.

start, end [int, optional] Optional arguments start and end are interpreted as slice notation to
specify the range in which to count.

Returns

out [ndarray] Output array of ints.

See also:

str.count

Examples

>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'],

dtype='|S7')
>>> np.char.count(c, 'A')
array([3, 1, 1])
>>> np.char.count(c, 'aA')
array([3, 1, 0])
>>> np.char.count(c, 'A', start=1, end=4)
array([2, 1, 1])

(continues on next page)

492 Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.count


NumPy Reference, Release 1.15.1

(continued from previous page)

>>> np.char.count(c, 'A', start=1, end=3)
array([1, 0, 0])

numpy.core.defchararray.find(a, sub, start=0, end=None)
For each element, return the lowest index in the string where substring sub is found.

Calls str.find element-wise.

For each element, return the lowest index in the string where substring sub is found, such that sub is contained
in the range [start, end].

Parameters

a [array_like of str or unicode]

sub [str or unicode]

start, end [int, optional] Optional arguments start and end are interpreted as in slice notation.

Returns

out [ndarray or int] Output array of ints. Returns -1 if sub is not found.

See also:

str.find

numpy.core.defchararray.index(a, sub, start=0, end=None)
Like find, but raises ValueError when the substring is not found.

Calls str.index element-wise.

Parameters

a [array_like of str or unicode]

sub [str or unicode]

start, end [int, optional]

Returns

out [ndarray] Output array of ints. Returns -1 if sub is not found.

See also:

find, str.find

numpy.core.defchararray.isalpha(a)
Returns true for each element if all characters in the string are alphabetic and there is at least one character, false
otherwise.

Calls str.isalpha element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters

a [array_like of str or unicode]

Returns

out [ndarray] Output array of bools

See also:

str.isalpha

4.4. String operations 493

https://docs.python.org/dev/library/stdtypes.html#str.find
https://docs.python.org/dev/library/stdtypes.html#str.find
https://docs.python.org/dev/library/stdtypes.html#str.isalpha


NumPy Reference, Release 1.15.1

numpy.core.defchararray.isdecimal(a)
For each element, return True if there are only decimal characters in the element.

Calls unicode.isdecimal element-wise.

Decimal characters include digit characters, and all characters that that can be used to form decimal-radix
numbers, e.g. U+0660, ARABIC-INDIC DIGIT ZERO.

Parameters

a [array_like, unicode] Input array.

Returns

out [ndarray, bool] Array of booleans identical in shape to a.

See also:

unicode.isdecimal

numpy.core.defchararray.isdigit(a)
Returns true for each element if all characters in the string are digits and there is at least one character, false
otherwise.

Calls str.isdigit element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters

a [array_like of str or unicode]

Returns

out [ndarray] Output array of bools

See also:

str.isdigit

numpy.core.defchararray.islower(a)
Returns true for each element if all cased characters in the string are lowercase and there is at least one cased
character, false otherwise.

Calls str.islower element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters

a [array_like of str or unicode]

Returns

out [ndarray] Output array of bools

See also:

str.islower

numpy.core.defchararray.isnumeric(a)
For each element, return True if there are only numeric characters in the element.

Calls unicode.isnumeric element-wise.

Numeric characters include digit characters, and all characters that have the Unicode numeric value property,
e.g. U+2155, VULGAR FRACTION ONE FIFTH.

Parameters

494 Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.isdigit
https://docs.python.org/dev/library/stdtypes.html#str.islower


NumPy Reference, Release 1.15.1

a [array_like, unicode] Input array.

Returns

out [ndarray, bool] Array of booleans of same shape as a.

See also:

unicode.isnumeric

numpy.core.defchararray.isspace(a)
Returns true for each element if there are only whitespace characters in the string and there is at least one
character, false otherwise.

Calls str.isspace element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters

a [array_like of str or unicode]

Returns

out [ndarray] Output array of bools

See also:

str.isspace

numpy.core.defchararray.istitle(a)
Returns true for each element if the element is a titlecased string and there is at least one character, false
otherwise.

Call str.istitle element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters

a [array_like of str or unicode]

Returns

out [ndarray] Output array of bools

See also:

str.istitle

numpy.core.defchararray.isupper(a)
Returns true for each element if all cased characters in the string are uppercase and there is at least one character,
false otherwise.

Call str.isupper element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters

a [array_like of str or unicode]

Returns

out [ndarray] Output array of bools

See also:

str.isupper

4.4. String operations 495

https://docs.python.org/dev/library/stdtypes.html#str.isspace
https://docs.python.org/dev/library/stdtypes.html#str.istitle
https://docs.python.org/dev/library/stdtypes.html#str.isupper


NumPy Reference, Release 1.15.1

numpy.core.defchararray.rfind(a, sub, start=0, end=None)
For each element in a, return the highest index in the string where substring sub is found, such that sub is
contained within [start, end].

Calls str.rfind element-wise.

Parameters

a [array-like of str or unicode]

sub [str or unicode]

start, end [int, optional] Optional arguments start and end are interpreted as in slice notation.

Returns

out [ndarray] Output array of ints. Return -1 on failure.

See also:

str.rfind

numpy.core.defchararray.rindex(a, sub, start=0, end=None)
Like rfind, but raises ValueError when the substring sub is not found.

Calls str.rindex element-wise.

Parameters

a [array-like of str or unicode]

sub [str or unicode]

start, end [int, optional]

Returns

out [ndarray] Output array of ints.

See also:

rfind, str.rindex

numpy.core.defchararray.startswith(a, prefix, start=0, end=None)
Returns a boolean array which is True where the string element in a starts with prefix, otherwise False.

Calls str.startswith element-wise.

Parameters

a [array_like of str or unicode]

prefix [str]

start, end [int, optional] With optional start, test beginning at that position. With optional end,
stop comparing at that position.

Returns

out [ndarray] Array of booleans

See also:

str.startswith

4.4.4 Convenience class

496 Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.rfind
https://docs.python.org/dev/library/stdtypes.html#str.rindex
https://docs.python.org/dev/library/stdtypes.html#str.startswith


NumPy Reference, Release 1.15.1

chararray(shape[, itemsize, unicode, . . . ]) Provides a convenient view on arrays of string and unicode
values.

class numpy.core.defchararray.chararray(shape, itemsize=1, unicode=False, buffer=None,
offset=0, strides=None, order=None)

Provides a convenient view on arrays of string and unicode values.

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for
new development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of
dtype object_, string_ or unicode_, and use the free functions in the numpy.char module for fast
vectorized string operations.

Versus a regular NumPy array of type str or unicode, this class adds the following functionality:

1. values automatically have whitespace removed from the end when indexed

2. comparison operators automatically remove whitespace from the end when comparing values

3. vectorized string operations are provided as methods (e.g. endswith) and infix operators (e.g. "+",
"*", "%")

chararrays should be created using numpy.char.array or numpy.char.asarray, rather than this con-
structor directly.

This constructor creates the array, using buffer (with offset and strides) if it is not None. If buffer
is None, then constructs a new array with strides in “C order”, unless both len(shape) >= 2 and
order='Fortran', in which case strides is in “Fortran order”.

Parameters

shape [tuple] Shape of the array.

itemsize [int, optional] Length of each array element, in number of characters. Default is 1.

unicode [bool, optional] Are the array elements of type unicode (True) or string (False). Default
is False.

buffer [int, optional] Memory address of the start of the array data. Default is None, in which
case a new array is created.

offset [int, optional] Fixed stride displacement from the beginning of an axis? Default is 0.
Needs to be >=0.

strides [array_like of ints, optional] Strides for the array (see ndarray.strides for full
description). Default is None.

order [{‘C’, ‘F’}, optional] The order in which the array data is stored in memory: ‘C’ -> “row
major” order (the default), ‘F’ -> “column major” (Fortran) order.

Examples

>>> charar = np.chararray((3, 3))
>>> charar[:] = 'a'
>>> charar
chararray([['a', 'a', 'a'],

['a', 'a', 'a'],
['a', 'a', 'a']],
dtype='|S1')

4.4. String operations 497



NumPy Reference, Release 1.15.1

>>> charar = np.chararray(charar.shape, itemsize=5)
>>> charar[:] = 'abc'
>>> charar
chararray([['abc', 'abc', 'abc'],

['abc', 'abc', 'abc'],
['abc', 'abc', 'abc']],
dtype='|S5')

Attributes

T Same as self.transpose(), except that self is returned if self.ndim < 2.

base Base object if memory is from some other object.

ctypes An object to simplify the interaction of the array with the ctypes module.

data Python buffer object pointing to the start of the array’s data.

dtype Data-type of the array’s elements.

flags Information about the memory layout of the array.

flat A 1-D iterator over the array.

imag The imaginary part of the array.

itemsize Length of one array element in bytes.

nbytes Total bytes consumed by the elements of the array.

ndim Number of array dimensions.

real The real part of the array.

shape Tuple of array dimensions.

size Number of elements in the array.

strides Tuple of bytes to step in each dimension when traversing an array.

Methods

astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
argsort([axis, kind, order]) Returns the indices that would sort this array.
copy([order]) Return a copy of the array.
count(sub[, start, end]) Returns an array with the number of non-overlapping

occurrences of substring sub in the range [start, end].
decode([encoding, errors]) Calls str.decode element-wise.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
encode([encoding, errors]) Calls str.encode element-wise.
endswith(suffix[, start, end]) Returns a boolean array which is True where the string

element in self ends with suffix, otherwise False.
expandtabs([tabsize]) Return a copy of each string element where all tab char-

acters are replaced by one or more spaces.
fill(value) Fill the array with a scalar value.
find(sub[, start, end]) For each element, return the lowest index in the string

where substring sub is found.
Continued on next page

498 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Table 25 – continued from previous page
flatten([order]) Return a copy of the array collapsed into one dimension.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
index(sub[, start, end]) Like find, but raises ValueError when the substring is

not found.
isalnum() Returns true for each element if all characters in the

string are alphanumeric and there is at least one char-
acter, false otherwise.

isalpha() Returns true for each element if all characters in the
string are alphabetic and there is at least one character,
false otherwise.

isdecimal() For each element in self, return True if there are only
decimal characters in the element.

isdigit() Returns true for each element if all characters in the
string are digits and there is at least one character, false
otherwise.

islower() Returns true for each element if all cased characters in
the string are lowercase and there is at least one cased
character, false otherwise.

isnumeric() For each element in self, return True if there are only
numeric characters in the element.

isspace() Returns true for each element if there are only whites-
pace characters in the string and there is at least one
character, false otherwise.

istitle() Returns true for each element if the element is a title-
cased string and there is at least one character, false oth-
erwise.

isupper() Returns true for each element if all cased characters in
the string are uppercase and there is at least one charac-
ter, false otherwise.

item(*args) Copy an element of an array to a standard Python scalar
and return it.

join(seq) Return a string which is the concatenation of the strings
in the sequence seq.

ljust(width[, fillchar]) Return an array with the elements of self left-justified
in a string of length width.

lower() Return an array with the elements of self converted to
lowercase.

lstrip([chars]) For each element in self, return a copy with the leading
characters removed.

nonzero() Return the indices of the elements that are non-zero.
put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
replace(old, new[, count]) For each element in self, return a copy of the string with

all occurrences of substring old replaced by new.
reshape(shape[, order]) Returns an array containing the same data with a new

shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
rfind(sub[, start, end]) For each element in self, return the highest index in the

string where substring sub is found, such that sub is con-
tained within [start, end].

Continued on next page

4.4. String operations 499



NumPy Reference, Release 1.15.1

Table 25 – continued from previous page
rindex(sub[, start, end]) Like rfind, but raises ValueError when the substring

sub is not found.
rjust(width[, fillchar]) Return an array with the elements of self right-justified

in a string of length width.
rsplit([sep, maxsplit]) For each element in self, return a list of the words in the

string, using sep as the delimiter string.
rstrip([chars]) For each element in self, return a copy with the trailing

characters removed.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in

a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by a

data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, (WRITE-

BACKIFCOPY and UPDATEIFCOPY), respectively.
sort([axis, kind, order]) Sort an array, in-place.
split([sep, maxsplit]) For each element in self, return a list of the words in the

string, using sep as the delimiter string.
splitlines([keepends]) For each element in self, return a list of the lines in the

element, breaking at line boundaries.
squeeze([axis]) Remove single-dimensional entries from the shape of a.
startswith(prefix[, start, end]) Returns a boolean array which is True where the string

element in self starts with prefix, otherwise False.
strip([chars]) For each element in self, return a copy with the leading

and trailing characters removed.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
swapcase() For each element in self, return a copy of the string with

uppercase characters converted to lowercase and vice
versa.

take(indices[, axis, out, mode]) Return an array formed from the elements of a at the
given indices.

title() For each element in self, return a titlecased version of
the string: words start with uppercase characters, all re-
maining cased characters are lowercase.

tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as a (possibly nested) list.
tostring([order]) Construct Python bytes containing the raw data bytes in

the array.
translate(table[, deletechars]) For each element in self, return a copy of the string

where all characters occurring in the optional argument
deletechars are removed, and the remaining characters
have been mapped through the given translation table.

transpose(*axes) Returns a view of the array with axes transposed.
upper() Return an array with the elements of self converted to

uppercase.
view([dtype, type]) New view of array with the same data.
zfill(width) Return the numeric string left-filled with zeros in a

string of length width.

chararray.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters

500 Chapter 4. Routines



NumPy Reference, Release 1.15.1

dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’
means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran
contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements
appear in memory as possible. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is
set to false, and the dtype, order, and subok requirements are satisfied, the input array is
returned instead of a copy.

Returns

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array
are satisfied (see description for copy input parameter), arr_t is a new array of the same
shape as the input array, with dtype, order given by dtype, order.

Raises

ComplexWarning When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([ 1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

chararray.argsort(axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

4.4. String operations 501



NumPy Reference, Release 1.15.1

See also:

numpy.argsort equivalent function

chararray.copy(order=’C’)
Return a copy of the array.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means
C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible. (Note that this function and numpy.
copy are very similar, but have different default values for their order= arguments.)

See also:

numpy.copy , numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

chararray.count(sub, start=0, end=None)
Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end].

See also:

char.count

chararray.decode(encoding=None, errors=None)
Calls str.decode element-wise.

See also:

char.decode

chararray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters

file [str] A string naming the dump file.

502 Chapter 4. Routines



NumPy Reference, Release 1.15.1

chararray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters

None

chararray.encode(encoding=None, errors=None)
Calls str.encode element-wise.

See also:

char.encode

chararray.endswith(suffix, start=0, end=None)
Returns a boolean array which is True where the string element in self ends with suffix, otherwise False.

See also:

char.endswith

chararray.expandtabs(tabsize=8)
Return a copy of each string element where all tab characters are replaced by one or more spaces.

See also:

char.expandtabs

chararray.fill(value)
Fill the array with a scalar value.

Parameters

value [scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([ 1., 1.])

chararray.find(sub, start=0, end=None)
For each element, return the lowest index in the string where substring sub is found.

See also:

char.find

chararray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’
means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-
major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means
to flatten a in the order the elements occur in memory. The default is ‘C’.

4.4. String operations 503



NumPy Reference, Release 1.15.1

Returns

y [ndarray] A copy of the input array, flattened to one dimension.

See also:

ravel Return a flattened array.

flat A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

chararray.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset [int] Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[ 1.+1.j, 0.+0.j],

[ 0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[ 1., 0.],

[ 0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[ 1., 0.],

[ 0., 4.]])

chararray.index(sub, start=0, end=None)
Like find, but raises ValueError when the substring is not found.

See also:

char.index

504 Chapter 4. Routines



NumPy Reference, Release 1.15.1

chararray.isalnum()
Returns true for each element if all characters in the string are alphanumeric and there is at least one
character, false otherwise.

See also:

char.isalnum

chararray.isalpha()
Returns true for each element if all characters in the string are alphabetic and there is at least one character,
false otherwise.

See also:

char.isalpha

chararray.isdecimal()
For each element in self, return True if there are only decimal characters in the element.

See also:

char.isdecimal

chararray.isdigit()
Returns true for each element if all characters in the string are digits and there is at least one character,
false otherwise.

See also:

char.isdigit

chararray.islower()
Returns true for each element if all cased characters in the string are lowercase and there is at least one
cased character, false otherwise.

See also:

char.islower

chararray.isnumeric()
For each element in self, return True if there are only numeric characters in the element.

See also:

char.isnumeric

chararray.isspace()
Returns true for each element if there are only whitespace characters in the string and there is at least one
character, false otherwise.

See also:

char.isspace

chararray.istitle()
Returns true for each element if the element is a titlecased string and there is at least one character, false
otherwise.

See also:

char.istitle

chararray.isupper()
Returns true for each element if all cased characters in the string are uppercase and there is at least one
character, false otherwise.

4.4. String operations 505



NumPy Reference, Release 1.15.1

See also:

char.isupper

chararray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters

*args [Arguments (variable number and type)]

• none: in this case, the method only works for arrays with one element (a.size == 1),
which element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which
element to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argu-
ment is interpreted as an nd-index into the array.

Returns

z [Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

chararray.join(seq)
Return a string which is the concatenation of the strings in the sequence seq.

See also:

char.join

506 Chapter 4. Routines



NumPy Reference, Release 1.15.1

chararray.ljust(width, fillchar=’ ’)
Return an array with the elements of self left-justified in a string of length width.

See also:

char.ljust

chararray.lower()
Return an array with the elements of self converted to lowercase.

See also:

char.lower

chararray.lstrip(chars=None)
For each element in self, return a copy with the leading characters removed.

See also:

char.lstrip

chararray.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also:

numpy.nonzero equivalent function

chararray.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also:

numpy.put equivalent function

chararray.ravel([order ])
Return a flattened array.

Refer to numpy.ravel for full documentation.

See also:

numpy.ravel equivalent function

ndarray.flat a flat iterator on the array.

chararray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also:

numpy.repeat equivalent function

chararray.replace(old, new, count=None)
For each element in self, return a copy of the string with all occurrences of substring old replaced by new.

See also:

4.4. String operations 507



NumPy Reference, Release 1.15.1

char.replace

chararray.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also:

numpy.reshape equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to
a.reshape((10, 11)).

chararray.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters

new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.

Returns

None

Raises

ValueError If a does not own its own data or references or views to it exist, and the data
memory must be changed. PyPy only: will always raise if the data memory must be
changed, since there is no reliable way to determine if references or views to it exist.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:

508 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing. . .

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

chararray.rfind(sub, start=0, end=None)
For each element in self, return the highest index in the string where substring sub is found, such that sub
is contained within [start, end].

See also:

char.rfind

chararray.rindex(sub, start=0, end=None)
Like rfind, but raises ValueError when the substring sub is not found.

See also:

char.rindex

chararray.rjust(width, fillchar=’ ’)
Return an array with the elements of self right-justified in a string of length width.

See also:

char.rjust

chararray.rsplit(sep=None, maxsplit=None)
For each element in self, return a list of the words in the string, using sep as the delimiter string.

4.4. String operations 509



NumPy Reference, Release 1.15.1

See also:

char.rsplit

chararray.rstrip(chars=None)
For each element in self, return a copy with the trailing characters removed.

See also:

char.rstrip

chararray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted equivalent function

chararray.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

Parameters

val [object] Value to be placed in field.

dtype [dtype object] Data-type of the field in which to place val.

offset [int, optional] The number of bytes into the field at which to place val.

Returns

None

See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]])

>>> x
array([[ 1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[ 1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[ 1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

510 Chapter 4. Routines



NumPy Reference, Release 1.15.1

chararray.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a
writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done
without copying memory.)

Parameters

write [bool, optional] Describes whether or not a can be written to.

align [bool, optional] Describes whether or not a is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UP-
DATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of
this array.

All flags can be accessed using the single (upper case) letter as well as the full name.

Examples

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False

(continues on next page)

4.4. String operations 511



NumPy Reference, Release 1.15.1

(continued from previous page)

ALIGNED : False
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set WRITEBACKIFCOPY flag to True

chararray.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

Parameters

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. Default
is ‘quicksort’.

order [str or list of str, optional] When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy.sort Return a sorted copy of an array.

argsort Indirect sort.

lexsort Indirect stable sort on multiple keys.

searchsorted Find elements in sorted array.

partition Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

512 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

chararray.split(sep=None, maxsplit=None)
For each element in self, return a list of the words in the string, using sep as the delimiter string.

See also:

char.split

chararray.splitlines(keepends=None)
For each element in self, return a list of the lines in the element, breaking at line boundaries.

See also:

char.splitlines

chararray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also:

numpy.squeeze equivalent function

chararray.startswith(prefix, start=0, end=None)
Returns a boolean array which is True where the string element in self starts with prefix, otherwise False.

See also:

char.startswith

chararray.strip(chars=None)
For each element in self, return a copy with the leading and trailing characters removed.

See also:

char.strip

chararray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes equivalent function

chararray.swapcase()
For each element in self, return a copy of the string with uppercase characters converted to lowercase and
vice versa.

See also:

char.swapcase

chararray.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

4.4. String operations 513



NumPy Reference, Release 1.15.1

See also:

numpy.take equivalent function

chararray.title()
For each element in self, return a titlecased version of the string: words start with uppercase characters, all
remaining cased characters are lowercase.

See also:

char.title

chararray.tofile(fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters

fid [file or str] An open file object, or a string containing a filename.

sep [str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text by
first converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or
file-like objects that do not support fileno() (e.g., BytesIO).

chararray.tolist()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

Parameters

none

Returns

y [list] The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

514 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

chararray.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,
or the same as for the original array.

Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

chararray.translate(table, deletechars=None)
For each element in self, return a copy of the string where all characters occurring in the optional argument
deletechars are removed, and the remaining characters have been mapped through the given translation
table.

See also:

char.translate

chararray.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D ar-
ray into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape =
(i[n-1], i[n-2], ... i[1], i[0]).

Parameters

4.4. String operations 515



NumPy Reference, Release 1.15.1

axes [None, tuple of ints, or n ints]

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s
j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “conve-
nience” alternative to the tuple form)

Returns

out [ndarray] View of a, with axes suitably permuted.

See also:

ndarray.T Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

chararray.upper()
Return an array with the elements of self converted to uppercase.

See also:

char.upper

chararray.view(dtype=None, type=None)
New view of array with the same data.

Parameters

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view,
e.g., float32 or int16. The default, None, results in the view having the same data-type as
a. This argument can also be specified as an ndarray sub-class, which then specifies the
type of the returned object (this is equivalent to setting the type parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view() is used two different ways:

516 Chapter 4. Routines



NumPy Reference, Release 1.15.1

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([ 2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

4.4. String operations 517



NumPy Reference, Release 1.15.1

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

chararray.zfill(width)
Return the numeric string left-filled with zeros in a string of length width.

See also:

char.zfill

4.5 C-Types Foreign Function Interface (numpy.ctypeslib)

numpy.ctypeslib.as_array(obj, shape=None)
Create a numpy array from a ctypes array or POINTER.

The numpy array shares the memory with the ctypes object.

The shape parameter must be given if converting from a ctypes POINTER. The shape parameter is ignored if
converting from a ctypes array

numpy.ctypeslib.as_ctypes(obj)
Create and return a ctypes object from a numpy array. Actually anything that exposes the __array_interface__
is accepted.

numpy.ctypeslib.ctypes_load_library(*args, **kwds)
ctypes_load_library is deprecated, use load_library instead!

It is possible to load a library using >>> lib = ctypes.cdll[<full_path_name>]

But there are cross-platform considerations, such as library file extensions, plus the fact Windows will just load
the first library it finds with that name. NumPy supplies the load_library function as a convenience.

Parameters

libname [str] Name of the library, which can have ‘lib’ as a prefix, but without an extension.

loader_path [str] Where the library can be found.

Returns

ctypes.cdll[libpath] [library object] A ctypes library object

Raises

OSError If there is no library with the expected extension, or the library is defective and cannot
be loaded.

numpy.ctypeslib.load_library(libname, loader_path)
It is possible to load a library using >>> lib = ctypes.cdll[<full_path_name>]

518 Chapter 4. Routines



NumPy Reference, Release 1.15.1

But there are cross-platform considerations, such as library file extensions, plus the fact Windows will just load
the first library it finds with that name. NumPy supplies the load_library function as a convenience.

Parameters

libname [str] Name of the library, which can have ‘lib’ as a prefix, but without an extension.

loader_path [str] Where the library can be found.

Returns

ctypes.cdll[libpath] [library object] A ctypes library object

Raises

OSError If there is no library with the expected extension, or the library is defective and cannot
be loaded.

numpy.ctypeslib.ndpointer(dtype=None, ndim=None, shape=None, flags=None)
Array-checking restype/argtypes.

An ndpointer instance is used to describe an ndarray in restypes and argtypes specifications. This approach
is more flexible than using, for example, POINTER(c_double), since several restrictions can be specified,
which are verified upon calling the ctypes function. These include data type, number of dimensions, shape and
flags. If a given array does not satisfy the specified restrictions, a TypeError is raised.

Parameters

dtype [data-type, optional] Array data-type.

ndim [int, optional] Number of array dimensions.

shape [tuple of ints, optional] Array shape.

flags [str or tuple of str] Array flags; may be one or more of:

• C_CONTIGUOUS / C / CONTIGUOUS

• F_CONTIGUOUS / F / FORTRAN

• OWNDATA / O

• WRITEABLE / W

• ALIGNED / A

• WRITEBACKIFCOPY / X

• UPDATEIFCOPY / U

Returns

klass [ndpointer type object] A type object, which is an _ndtpr instance containing dtype,
ndim, shape and flags information.

Raises

TypeError If a given array does not satisfy the specified restrictions.

Examples

>>> clib.somefunc.argtypes = [np.ctypeslib.ndpointer(dtype=np.float64,
... ndim=1,
... flags='C_CONTIGUOUS')]
...

(continues on next page)

4.5. C-Types Foreign Function Interface (numpy.ctypeslib) 519



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> clib.somefunc(np.array([1, 2, 3], dtype=np.float64))
...

4.6 Datetime Support Functions

datetime_as_string(arr[, unit, timezone, . . . ]) Convert an array of datetimes into an array of strings.
datetime_data(dtype, /) Get information about the step size of a date or time type.

numpy.datetime_as_string(arr, unit=None, timezone=’naive’, casting=’same_kind’)
Convert an array of datetimes into an array of strings.

Parameters

arr [array_like of datetime64] The array of UTC timestamps to format.

unit [str] One of None, ‘auto’, or a datetime unit.

timezone [{‘naive’, ‘UTC’, ‘local’} or tzinfo] Timezone information to use when displaying
the datetime. If ‘UTC’, end with a Z to indicate UTC time. If ‘local’, convert to the local
timezone first, and suffix with a +-#### timezone offset. If a tzinfo object, then do as with
‘local’, but use the specified timezone.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}] Casting to allow when changing be-
tween datetime units.

Returns

str_arr [ndarray] An array of strings the same shape as arr.

Examples

>>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]')
>>> d
array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30',

'2002-10-27T07:30'], dtype='datetime64[m]')

Setting the timezone to UTC shows the same information, but with a Z suffix

>>> np.datetime_as_string(d, timezone='UTC')
array(['2002-10-27T04:30Z', '2002-10-27T05:30Z', '2002-10-27T06:30Z',

'2002-10-27T07:30Z'], dtype='<U35')

Note that we picked datetimes that cross a DST boundary. Passing in a pytz timezone object will print the
appropriate offset

>>> np.datetime_as_string(d, timezone=pytz.timezone('US/Eastern'))
array(['2002-10-27T00:30-0400', '2002-10-27T01:30-0400',

'2002-10-27T01:30-0500', '2002-10-27T02:30-0500'], dtype='<U39')

Passing in a unit will change the precision

520 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> np.datetime_as_string(d, unit='h')
array(['2002-10-27T04', '2002-10-27T05', '2002-10-27T06', '2002-10-27T07'],

dtype='<U32')
>>> np.datetime_as_string(d, unit='s')
array(['2002-10-27T04:30:00', '2002-10-27T05:30:00', '2002-10-27T06:30:00',

'2002-10-27T07:30:00'], dtype='<U38')

‘casting’ can be used to specify whether precision can be changed

>>> np.datetime_as_string(d, unit='h', casting='safe')
TypeError: Cannot create a datetime string as units 'h' from a NumPy
datetime with units 'm' according to the rule 'safe'

numpy.datetime_data(dtype, /)
Get information about the step size of a date or time type.

The returned tuple can be passed as the second argument of datetime64 and timedelta64.

Parameters

dtype [dtype] The dtype object, which must be a datetime64 or timedelta64 type.

Returns

unit [str] The datetime unit on which this dtype is based.

count [int] The number of base units in a step.

Examples

>>> dt_25s = np.dtype('timedelta64[25s]')
>>> np.datetime_data(dt_25s)
('s', 25)
>>> np.array(10, dt_25s).astype('timedelta64[s]')
array(250, dtype='timedelta64[s]')

The result can be used to construct a datetime that uses the same units as a timedelta:

>>> np.datetime64('2010', np.datetime_data(dt_25s))

numpy.datetime64(‘2010-01-01T00:00:00’,’25s’)

4.6.1 Business Day Functions

busdaycalendar([weekmask, holidays]) A business day calendar object that efficiently stores infor-
mation defining valid days for the busday family of func-
tions.

is_busday(dates[, weekmask, holidays, . . . ]) Calculates which of the given dates are valid days, and
which are not.

busday_offset(dates, offsets[, roll, . . . ]) First adjusts the date to fall on a valid day according to the
roll rule, then applies offsets to the given dates counted
in valid days.

busday_count(begindates, enddates[, . . . ]) Counts the number of valid days between begindates and
enddates, not including the day of enddates.

4.6. Datetime Support Functions 521



NumPy Reference, Release 1.15.1

class numpy.busdaycalendar(weekmask=’1111100’, holidays=None)
A business day calendar object that efficiently stores information defining valid days for the busday family of
functions.

The default valid days are Monday through Friday (“business days”). A busdaycalendar object can be specified
with any set of weekly valid days, plus an optional “holiday” dates that always will be invalid.

Once a busdaycalendar object is created, the weekmask and holidays cannot be modified.

New in version 1.7.0.

Parameters

weekmask [str or array_like of bool, optional] A seven-element array indicating which of Mon-
day through Sunday are valid days. May be specified as a length-seven list or array, like
[1,1,1,1,1,0,0]; a length-seven string, like ‘1111100’; or a string like “Mon Tue Wed Thu
Fri”, made up of 3-character abbreviations for weekdays, optionally separated by white
space. Valid abbreviations are: Mon Tue Wed Thu Fri Sat Sun

holidays [array_like of datetime64[D], optional] An array of dates to consider as invalid dates,
no matter which weekday they fall upon. Holiday dates may be specified in any order, and
NaT (not-a-time) dates are ignored. This list is saved in a normalized form that is suited for
fast calculations of valid days.

Returns

out [busdaycalendar] A business day calendar object containing the specified weekmask and
holidays values.

See also:

is_busday Returns a boolean array indicating valid days.

busday_offset Applies an offset counted in valid days.

busday_count Counts how many valid days are in a half-open date range.

Examples

>>> # Some important days in July
... bdd = np.busdaycalendar(
... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
>>> # Default is Monday to Friday weekdays
... bdd.weekmask
array([ True, True, True, True, True, False, False], dtype='bool')
>>> # Any holidays already on the weekend are removed
... bdd.holidays
array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]')

Attributes

Note: once a busdaycalendar object is created, you cannot modify the

weekmask or holidays. The attributes return copies of internal data.

weekmask [(copy) seven-element array of bool] A copy of the seven-element boolean mask
indicating valid days.

holidays [(copy) sorted array of datetime64[D]] A copy of the holiday array indicating ad-
ditional invalid days.

522 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.is_busday(dates, weekmask=’1111100’, holidays=None, busdaycal=None, out=None)
Calculates which of the given dates are valid days, and which are not.

New in version 1.7.0.

Parameters

dates [array_like of datetime64[D]] The array of dates to process.

weekmask [str or array_like of bool, optional] A seven-element array indicating which of Mon-
day through Sunday are valid days. May be specified as a length-seven list or array, like
[1,1,1,1,1,0,0]; a length-seven string, like ‘1111100’; or a string like “Mon Tue Wed Thu
Fri”, made up of 3-character abbreviations for weekdays, optionally separated by white
space. Valid abbreviations are: Mon Tue Wed Thu Fri Sat Sun

holidays [array_like of datetime64[D], optional] An array of dates to consider as invalid dates.
They may be specified in any order, and NaT (not-a-time) dates are ignored. This list is
saved in a normalized form that is suited for fast calculations of valid days.

busdaycal [busdaycalendar, optional] A busdaycalendar object which specifies the valid
days. If this parameter is provided, neither weekmask nor holidays may be provided.

out [array of bool, optional] If provided, this array is filled with the result.

Returns

out [array of bool] An array with the same shape as dates, containing True for each valid day,
and False for each invalid day.

See also:

busdaycalendar An object that specifies a custom set of valid days.

busday_offset Applies an offset counted in valid days.

busday_count Counts how many valid days are in a half-open date range.

Examples

>>> # The weekdays are Friday, Saturday, and Monday
... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'],
... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
array([False, False, True], dtype='bool')

numpy.busday_offset(dates, offsets, roll=’raise’, weekmask=’1111100’, holidays=None, busday-
cal=None, out=None)

First adjusts the date to fall on a valid day according to the roll rule, then applies offsets to the given dates
counted in valid days.

New in version 1.7.0.

Parameters

dates [array_like of datetime64[D]] The array of dates to process.

offsets [array_like of int] The array of offsets, which is broadcast with dates.

roll [{‘raise’, ‘nat’, ‘forward’, ‘following’, ‘backward’, ‘preceding’, ‘modifiedfollowing’,
‘modifiedpreceding’}, optional] How to treat dates that do not fall on a valid day. The
default is ‘raise’.

• ‘raise’ means to raise an exception for an invalid day.

4.6. Datetime Support Functions 523



NumPy Reference, Release 1.15.1

• ‘nat’ means to return a NaT (not-a-time) for an invalid day.

• ‘forward’ and ‘following’ mean to take the first valid day later in time.

• ‘backward’ and ‘preceding’ mean to take the first valid day earlier in time.

• ‘modifiedfollowing’ means to take the first valid day later in time unless it is across a
Month boundary, in which case to take the first valid day earlier in time.

• ‘modifiedpreceding’ means to take the first valid day earlier in time unless it is across a
Month boundary, in which case to take the first valid day later in time.

weekmask [str or array_like of bool, optional] A seven-element array indicating which of Mon-
day through Sunday are valid days. May be specified as a length-seven list or array, like
[1,1,1,1,1,0,0]; a length-seven string, like ‘1111100’; or a string like “Mon Tue Wed Thu
Fri”, made up of 3-character abbreviations for weekdays, optionally separated by white
space. Valid abbreviations are: Mon Tue Wed Thu Fri Sat Sun

holidays [array_like of datetime64[D], optional] An array of dates to consider as invalid dates.
They may be specified in any order, and NaT (not-a-time) dates are ignored. This list is
saved in a normalized form that is suited for fast calculations of valid days.

busdaycal [busdaycalendar, optional] A busdaycalendar object which specifies the valid
days. If this parameter is provided, neither weekmask nor holidays may be provided.

out [array of datetime64[D], optional] If provided, this array is filled with the result.

Returns

out [array of datetime64[D]] An array with a shape from broadcasting dates and offsets
together, containing the dates with offsets applied.

See also:

busdaycalendar An object that specifies a custom set of valid days.

is_busday Returns a boolean array indicating valid days.

busday_count Counts how many valid days are in a half-open date range.

Examples

>>> # First business day in October 2011 (not accounting for holidays)
... np.busday_offset('2011-10', 0, roll='forward')
numpy.datetime64('2011-10-03','D')
>>> # Last business day in February 2012 (not accounting for holidays)
... np.busday_offset('2012-03', -1, roll='forward')
numpy.datetime64('2012-02-29','D')
>>> # Third Wednesday in January 2011
... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed')
numpy.datetime64('2011-01-19','D')
>>> # 2012 Mother's Day in Canada and the U.S.
... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
numpy.datetime64('2012-05-13','D')

>>> # First business day on or after a date
... np.busday_offset('2011-03-20', 0, roll='forward')
numpy.datetime64('2011-03-21','D')
>>> np.busday_offset('2011-03-22', 0, roll='forward')

(continues on next page)

524 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

numpy.datetime64('2011-03-22','D')
>>> # First business day after a date
... np.busday_offset('2011-03-20', 1, roll='backward')
numpy.datetime64('2011-03-21','D')
>>> np.busday_offset('2011-03-22', 1, roll='backward')
numpy.datetime64('2011-03-23','D')

numpy.busday_count(begindates, enddates, weekmask=’1111100’, holidays=[], busdaycal=None,
out=None)

Counts the number of valid days between begindates and enddates, not including the day of enddates.

If enddates specifies a date value that is earlier than the corresponding begindates date value, the count
will be negative.

New in version 1.7.0.

Parameters

begindates [array_like of datetime64[D]] The array of the first dates for counting.

enddates [array_like of datetime64[D]] The array of the end dates for counting, which are
excluded from the count themselves.

weekmask [str or array_like of bool, optional] A seven-element array indicating which of Mon-
day through Sunday are valid days. May be specified as a length-seven list or array, like
[1,1,1,1,1,0,0]; a length-seven string, like ‘1111100’; or a string like “Mon Tue Wed Thu
Fri”, made up of 3-character abbreviations for weekdays, optionally separated by white
space. Valid abbreviations are: Mon Tue Wed Thu Fri Sat Sun

holidays [array_like of datetime64[D], optional] An array of dates to consider as invalid dates.
They may be specified in any order, and NaT (not-a-time) dates are ignored. This list is
saved in a normalized form that is suited for fast calculations of valid days.

busdaycal [busdaycalendar, optional] A busdaycalendar object which specifies the valid
days. If this parameter is provided, neither weekmask nor holidays may be provided.

out [array of int, optional] If provided, this array is filled with the result.

Returns

out [array of int] An array with a shape from broadcasting begindates and enddates
together, containing the number of valid days between the begin and end dates.

See also:

busdaycalendar An object that specifies a custom set of valid days.

is_busday Returns a boolean array indicating valid days.

busday_offset Applies an offset counted in valid days.

Examples

>>> # Number of weekdays in January 2011
... np.busday_count('2011-01', '2011-02')
21
>>> # Number of weekdays in 2011
... np.busday_count('2011', '2012')
260

(continues on next page)

4.6. Datetime Support Functions 525



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> # Number of Saturdays in 2011
... np.busday_count('2011', '2012', weekmask='Sat')
53

4.7 Data type routines

can_cast(from_, to[, casting]) Returns True if cast between data types can occur accord-
ing to the casting rule.

promote_types(type1, type2) Returns the data type with the smallest size and small-
est scalar kind to which both type1 and type2 may be
safely cast.

min_scalar_type(a) For scalar a, returns the data type with the smallest size and
smallest scalar kind which can hold its value.

result_type(*arrays_and_dtypes) Returns the type that results from applying the NumPy type
promotion rules to the arguments.

common_type(*arrays) Return a scalar type which is common to the input arrays.
obj2sctype(rep[, default]) Return the scalar dtype or NumPy equivalent of Python

type of an object.

numpy.can_cast(from_, to, casting=’safe’)
Returns True if cast between data types can occur according to the casting rule. If from is a scalar or array scalar,
also returns True if the scalar value can be cast without overflow or truncation to an integer.

Parameters

from_ [dtype, dtype specifier, scalar, or array] Data type, scalar, or array to cast from.

to [dtype or dtype specifier] Data type to cast to.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

Returns

out [bool] True if cast can occur according to the casting rule.

See also:

dtype, result_type

Notes

Starting in NumPy 1.9, can_cast function now returns False in ‘safe’ casting mode for integer/float dtype and
string dtype if the string dtype length is not long enough to store the max integer/float value converted to a string.

526 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Previously can_cast in ‘safe’ mode returned True for integer/float dtype and a string dtype of any length.

Examples

Basic examples

>>> np.can_cast(np.int32, np.int64)
True
>>> np.can_cast(np.float64, complex)
True
>>> np.can_cast(complex, float)
False

>>> np.can_cast('i8', 'f8')
True
>>> np.can_cast('i8', 'f4')
False
>>> np.can_cast('i4', 'S4')
False

Casting scalars

>>> np.can_cast(100, 'i1')
True
>>> np.can_cast(150, 'i1')
False
>>> np.can_cast(150, 'u1')
True

>>> np.can_cast(3.5e100, np.float32)
False
>>> np.can_cast(1000.0, np.float32)
True

Array scalar checks the value, array does not

>>> np.can_cast(np.array(1000.0), np.float32)
True
>>> np.can_cast(np.array([1000.0]), np.float32)
False

Using the casting rules

>>> np.can_cast('i8', 'i8', 'no')
True
>>> np.can_cast('<i8', '>i8', 'no')
False

>>> np.can_cast('<i8', '>i8', 'equiv')
True
>>> np.can_cast('<i4', '>i8', 'equiv')
False

>>> np.can_cast('<i4', '>i8', 'safe')
True

(continues on next page)

4.7. Data type routines 527



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> np.can_cast('<i8', '>i4', 'safe')
False

>>> np.can_cast('<i8', '>i4', 'same_kind')
True
>>> np.can_cast('<i8', '>u4', 'same_kind')
False

>>> np.can_cast('<i8', '>u4', 'unsafe')
True

numpy.promote_types(type1, type2)
Returns the data type with the smallest size and smallest scalar kind to which both type1 and type2 may be
safely cast. The returned data type is always in native byte order.

This function is symmetric, but rarely associative.

Parameters

type1 [dtype or dtype specifier] First data type.

type2 [dtype or dtype specifier] Second data type.

Returns

out [dtype] The promoted data type.

See also:

result_type, dtype, can_cast

Notes

New in version 1.6.0.

Starting in NumPy 1.9, promote_types function now returns a valid string length when given an integer or float
dtype as one argument and a string dtype as another argument. Previously it always returned the input string
dtype, even if it wasn’t long enough to store the max integer/float value converted to a string.

Examples

>>> np.promote_types('f4', 'f8')
dtype('float64')

>>> np.promote_types('i8', 'f4')
dtype('float64')

>>> np.promote_types('>i8', '<c8')
dtype('complex128')

>>> np.promote_types('i4', 'S8')
dtype('S11')

An example of a non-associative case:

528 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> p = np.promote_types
>>> p('S', p('i1', 'u1'))
dtype('S6')
>>> p(p('S', 'i1'), 'u1')
dtype('S4')

numpy.min_scalar_type(a)
For scalar a, returns the data type with the smallest size and smallest scalar kind which can hold its value. For
non-scalar array a, returns the vector’s dtype unmodified.

Floating point values are not demoted to integers, and complex values are not demoted to floats.

Parameters

a [scalar or array_like] The value whose minimal data type is to be found.

Returns

out [dtype] The minimal data type.

See also:

result_type, promote_types, dtype, can_cast

Notes

New in version 1.6.0.

Examples

>>> np.min_scalar_type(10)
dtype('uint8')

>>> np.min_scalar_type(-260)
dtype('int16')

>>> np.min_scalar_type(3.1)
dtype('float16')

>>> np.min_scalar_type(1e50)
dtype('float64')

>>> np.min_scalar_type(np.arange(4,dtype='f8'))
dtype('float64')

numpy.result_type(*arrays_and_dtypes)
Returns the type that results from applying the NumPy type promotion rules to the arguments.

Type promotion in NumPy works similarly to the rules in languages like C++, with some slight differences.
When both scalars and arrays are used, the array’s type takes precedence and the actual value of the scalar is
taken into account.

For example, calculating 3*a, where a is an array of 32-bit floats, intuitively should result in a 32-bit float output.
If the 3 is a 32-bit integer, the NumPy rules indicate it can’t convert losslessly into a 32-bit float, so a 64-bit
float should be the result type. By examining the value of the constant, ‘3’, we see that it fits in an 8-bit integer,
which can be cast losslessly into the 32-bit float.

4.7. Data type routines 529



NumPy Reference, Release 1.15.1

Parameters

arrays_and_dtypes [list of arrays and dtypes] The operands of some operation whose result
type is needed.

Returns

out [dtype] The result type.

See also:

dtype, promote_types, min_scalar_type, can_cast

Notes

New in version 1.6.0.

The specific algorithm used is as follows.

Categories are determined by first checking which of boolean, integer (int/uint), or floating point (float/complex)
the maximum kind of all the arrays and the scalars are.

If there are only scalars or the maximum category of the scalars is higher than the maximum category of the
arrays, the data types are combined with promote_types to produce the return value.

Otherwise, min_scalar_type is called on each array, and the resulting data types are all combined with
promote_types to produce the return value.

The set of int values is not a subset of the uint values for types with the same number of bits, something not
reflected in min_scalar_type, but handled as a special case in result_type.

Examples

>>> np.result_type(3, np.arange(7, dtype='i1'))
dtype('int8')

>>> np.result_type('i4', 'c8')
dtype('complex128')

>>> np.result_type(3.0, -2)
dtype('float64')

numpy.common_type(*arrays)
Return a scalar type which is common to the input arrays.

The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays.
If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point
dtype.

All input arrays except int64 and uint64 can be safely cast to the returned dtype without loss of information.

Parameters

array1, array2, . . . [ndarrays] Input arrays.

Returns

out [data type code] Data type code.

530 Chapter 4. Routines



NumPy Reference, Release 1.15.1

See also:

dtype, mintypecode

Examples

>>> np.common_type(np.arange(2, dtype=np.float32))
<type 'numpy.float32'>
>>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
<type 'numpy.float64'>
>>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
<type 'numpy.complex128'>

numpy.obj2sctype(rep, default=None)
Return the scalar dtype or NumPy equivalent of Python type of an object.

Parameters

rep [any] The object of which the type is returned.

default [any, optional] If given, this is returned for objects whose types can not be determined.
If not given, None is returned for those objects.

Returns

dtype [dtype or Python type] The data type of rep.

See also:

sctype2char, issctype, issubsctype, issubdtype, maximum_sctype

Examples

>>> np.obj2sctype(np.int32)
<type 'numpy.int32'>
>>> np.obj2sctype(np.array([1., 2.]))
<type 'numpy.float64'>
>>> np.obj2sctype(np.array([1.j]))
<type 'numpy.complex128'>

>>> np.obj2sctype(dict)
<type 'numpy.object_'>
>>> np.obj2sctype('string')
<type 'numpy.string_'>

>>> np.obj2sctype(1, default=list)
<type 'list'>

4.7.1 Creating data types

dtype(obj[, align, copy]) Create a data type object.
format_parser(formats, names, titles[, . . . ]) Class to convert formats, names, titles description to a

dtype.

4.7. Data type routines 531



NumPy Reference, Release 1.15.1

class numpy.format_parser(formats, names, titles, aligned=False, byteorder=None)
Class to convert formats, names, titles description to a dtype.

After constructing the format_parser object, the dtype attribute is the converted data-type: dtype =
format_parser(formats, names, titles).dtype

Parameters

formats [str or list of str] The format description, either specified as a string with comma-
separated format descriptions in the form 'f8, i4, a5', or a list of format description
strings in the form ['f8', 'i4', 'a5'].

names [str or list/tuple of str] The field names, either specified as a comma-separated string in
the form 'col1, col2, col3', or as a list or tuple of strings in the form ['col1',
'col2', 'col3']. An empty list can be used, in that case default field names (‘f0’,
‘f1’, . . . ) are used.

titles [sequence] Sequence of title strings. An empty list can be used to leave titles out.

aligned [bool, optional] If True, align the fields by padding as the C-compiler would. Default
is False.

byteorder [str, optional] If specified, all the fields will be changed to the provided byte-order.
Otherwise, the default byte-order is used. For all available string specifiers, see dtype.
newbyteorder.

See also:

dtype, typename, sctype2char

Examples

>>> np.format_parser(['f8', 'i4', 'a5'], ['col1', 'col2', 'col3'],
... ['T1', 'T2', 'T3']).dtype
dtype([(('T1', 'col1'), '<f8'), (('T2', 'col2'), '<i4'),

(('T3', 'col3'), '|S5')])

names and/or titles can be empty lists. If titles is an empty list, titles will simply not appear. If names is empty,
default field names will be used.

>>> np.format_parser(['f8', 'i4', 'a5'], ['col1', 'col2', 'col3'],
... []).dtype
dtype([('col1', '<f8'), ('col2', '<i4'), ('col3', '|S5')])
>>> np.format_parser(['f8', 'i4', 'a5'], [], []).dtype
dtype([('f0', '<f8'), ('f1', '<i4'), ('f2', '|S5')])

Attributes

dtype [dtype] The converted data-type.

4.7.2 Data type information

finfo(dtype) Machine limits for floating point types.
iinfo(type) Machine limits for integer types.
MachAr([float_conv, int_conv, . . . ]) Diagnosing machine parameters.

532 Chapter 4. Routines



NumPy Reference, Release 1.15.1

class numpy.finfo(dtype)
Machine limits for floating point types.

Parameters

dtype [float, dtype, or instance] Kind of floating point data-type about which to get information.

See also:

MachAr The implementation of the tests that produce this information.

iinfo The equivalent for integer data types.

Notes

For developers of NumPy: do not instantiate this at the module level. The initial calculation of these parameters
is expensive and negatively impacts import times. These objects are cached, so calling finfo() repeatedly
inside your functions is not a problem.

Attributes

bits [int] The number of bits occupied by the type.

eps [float] The smallest representable positive number such that 1.0 + eps != 1.0. Type
of eps is an appropriate floating point type.

epsneg [floating point number of the appropriate type] The smallest representable positive num-
ber such that 1.0 - epsneg != 1.0.

iexp [int] The number of bits in the exponent portion of the floating point representation.

machar [MachAr] The object which calculated these parameters and holds more detailed in-
formation.

machep [int] The exponent that yields eps.

max [floating point number of the appropriate type] The largest representable number.

maxexp [int] The smallest positive power of the base (2) that causes overflow.

min [floating point number of the appropriate type] The smallest representable number, typi-
cally -max.

minexp [int] The most negative power of the base (2) consistent with there being no leading 0’s
in the mantissa.

negep [int] The exponent that yields epsneg.

nexp [int] The number of bits in the exponent including its sign and bias.

nmant [int] The number of bits in the mantissa.

precision [int] The approximate number of decimal digits to which this kind of float is precise.

resolution [floating point number of the appropriate type] The approximate decimal resolution
of this type, i.e., 10**-precision.

tiny [float] The smallest positive usable number. Type of tiny is an appropriate floating point
type.

class numpy.iinfo(type)
Machine limits for integer types.

Parameters

4.7. Data type routines 533



NumPy Reference, Release 1.15.1

int_type [integer type, dtype, or instance] The kind of integer data type to get information
about.

See also:

finfo The equivalent for floating point data types.

Examples

With types:

>>> ii16 = np.iinfo(np.int16)
>>> ii16.min
-32768
>>> ii16.max
32767
>>> ii32 = np.iinfo(np.int32)
>>> ii32.min
-2147483648
>>> ii32.max
2147483647

With instances:

>>> ii32 = np.iinfo(np.int32(10))
>>> ii32.min
-2147483648
>>> ii32.max
2147483647

Attributes

bits [int] The number of bits occupied by the type.

min [int] Minimum value of given dtype.

max [int] Maximum value of given dtype.

class numpy.MachAr(float_conv=<class ’float’>, int_conv=<class ’int’>, float_to_float=<class
’float’>, float_to_str=<function MachAr.<lambda>>, title=’Python floating point
number’)

Diagnosing machine parameters.

Parameters

float_conv [function, optional] Function that converts an integer or integer array to a float or
float array. Default is float.

int_conv [function, optional] Function that converts a float or float array to an integer or integer
array. Default is int.

float_to_float [function, optional] Function that converts a float array to float. Default is
float. Note that this does not seem to do anything useful in the current implementation.

float_to_str [function, optional] Function that converts a single float to a string. Default is
lambda v:'%24.16e' %v.

title [str, optional] Title that is printed in the string representation of MachAr.

See also:

534 Chapter 4. Routines

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#float


NumPy Reference, Release 1.15.1

finfo Machine limits for floating point types.

iinfo Machine limits for integer types.

References

[1]

Attributes

ibeta [int] Radix in which numbers are represented.

it [int] Number of base-ibeta digits in the floating point mantissa M.

machep [int] Exponent of the smallest (most negative) power of ibeta that, added to 1.0, gives
something different from 1.0

eps [float] Floating-point number beta**machep (floating point precision)

negep [int] Exponent of the smallest power of ibeta that, subtracted from 1.0, gives something
different from 1.0.

epsneg [float] Floating-point number beta**negep.

iexp [int] Number of bits in the exponent (including its sign and bias).

minexp [int] Smallest (most negative) power of ibeta consistent with there being no leading
zeros in the mantissa.

xmin [float] Floating point number beta**minexp (the smallest [in magnitude] usable float-
ing value).

maxexp [int] Smallest (positive) power of ibeta that causes overflow.

xmax [float] (1-epsneg) * beta**maxexp (the largest [in magnitude] usable floating
value).

irnd [int] In range(6), information on what kind of rounding is done in addition, and on how
underflow is handled.

ngrd [int] Number of ‘guard digits’ used when truncating the product of two mantissas to fit
the representation.

epsilon [float] Same as eps.

tiny [float] Same as xmin.

huge [float] Same as xmax.

precision [float] - int(-log10(eps))

resolution [float] - 10**(-precision)

4.7.3 Data type testing

issctype(rep) Determines whether the given object represents a scalar
data-type.

issubdtype(arg1, arg2) Returns True if first argument is a typecode lower/equal in
type hierarchy.

Continued on next page

4.7. Data type routines 535



NumPy Reference, Release 1.15.1

Table 31 – continued from previous page
issubsctype(arg1, arg2) Determine if the first argument is a subclass of the second

argument.
issubclass_(arg1, arg2) Determine if a class is a subclass of a second class.
find_common_type(array_types, scalar_types) Determine common type following standard coercion rules.

numpy.issctype(rep)
Determines whether the given object represents a scalar data-type.

Parameters

rep [any] If rep is an instance of a scalar dtype, True is returned. If not, False is returned.

Returns

out [bool] Boolean result of check whether rep is a scalar dtype.

See also:

issubsctype, issubdtype, obj2sctype, sctype2char

Examples

>>> np.issctype(np.int32)
True
>>> np.issctype(list)
False
>>> np.issctype(1.1)
False

Strings are also a scalar type:

>>> np.issctype(np.dtype('str'))
True

numpy.issubdtype(arg1, arg2)
Returns True if first argument is a typecode lower/equal in type hierarchy.

Parameters

arg1, arg2 [dtype_like] dtype or string representing a typecode.

Returns

out [bool]

See also:

issubsctype, issubclass_

numpy.core.numerictypes Overview of numpy type hierarchy.

Examples

>>> np.issubdtype('S1', np.string_)
True
>>> np.issubdtype(np.float64, np.float32)
False

536 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.issubsctype(arg1, arg2)
Determine if the first argument is a subclass of the second argument.

Parameters

arg1, arg2 [dtype or dtype specifier] Data-types.

Returns

out [bool] The result.

See also:

issctype, issubdtype, obj2sctype

Examples

>>> np.issubsctype('S8', str)
True
>>> np.issubsctype(np.array([1]), int)
True
>>> np.issubsctype(np.array([1]), float)
False

numpy.issubclass_(arg1, arg2)
Determine if a class is a subclass of a second class.

issubclass_ is equivalent to the Python built-in issubclass, except that it returns False instead of raising
a TypeError if one of the arguments is not a class.

Parameters

arg1 [class] Input class. True is returned if arg1 is a subclass of arg2.

arg2 [class or tuple of classes.] Input class. If a tuple of classes, True is returned if arg1 is a
subclass of any of the tuple elements.

Returns

out [bool] Whether arg1 is a subclass of arg2 or not.

See also:

issubsctype, issubdtype, issctype

Examples

>>> np.issubclass_(np.int32, int)
True
>>> np.issubclass_(np.int32, float)
False

numpy.find_common_type(array_types, scalar_types)
Determine common type following standard coercion rules.

Parameters

array_types [sequence] A list of dtypes or dtype convertible objects representing arrays.

scalar_types [sequence] A list of dtypes or dtype convertible objects representing scalars.

4.7. Data type routines 537



NumPy Reference, Release 1.15.1

Returns

datatype [dtype] The common data type, which is the maximum of array_types ignoring
scalar_types, unless the maximum of scalar_types is of a different kind (dtype.kind).
If the kind is not understood, then None is returned.

See also:

dtype, common_type, can_cast, mintypecode

Examples

>>> np.find_common_type([], [np.int64, np.float32, complex])
dtype('complex128')
>>> np.find_common_type([np.int64, np.float32], [])
dtype('float64')

The standard casting rules ensure that a scalar cannot up-cast an array unless the scalar is of a fundamentally
different kind of data (i.e. under a different hierarchy in the data type hierarchy) then the array:

>>> np.find_common_type([np.float32], [np.int64, np.float64])
dtype('float32')

Complex is of a different type, so it up-casts the float in the array_types argument:

>>> np.find_common_type([np.float32], [complex])
dtype('complex128')

Type specifier strings are convertible to dtypes and can therefore be used instead of dtypes:

>>> np.find_common_type(['f4', 'f4', 'i4'], ['c8'])
dtype('complex128')

4.7.4 Miscellaneous

typename(char) Return a description for the given data type code.
sctype2char(sctype) Return the string representation of a scalar dtype.
mintypecode(typechars[, typeset, default]) Return the character for the minimum-size type to which

given types can be safely cast.

numpy.typename(char)
Return a description for the given data type code.

Parameters

char [str] Data type code.

Returns

out [str] Description of the input data type code.

See also:

dtype, typecodes

538 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
... 'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
>>> for typechar in typechars:
... print(typechar, ' : ', np.typename(typechar))
...
S1 : character
? : bool
B : unsigned char
D : complex double precision
G : complex long double precision
F : complex single precision
I : unsigned integer
H : unsigned short
L : unsigned long integer
O : object
Q : unsigned long long integer
S : string
U : unicode
V : void
b : signed char
d : double precision
g : long precision
f : single precision
i : integer
h : short
l : long integer
q : long long integer

numpy.sctype2char(sctype)
Return the string representation of a scalar dtype.

Parameters

sctype [scalar dtype or object] If a scalar dtype, the corresponding string character is returned.
If an object, sctype2char tries to infer its scalar type and then return the corresponding
string character.

Returns

typechar [str] The string character corresponding to the scalar type.

Raises

ValueError If sctype is an object for which the type can not be inferred.

See also:

obj2sctype, issctype, issubsctype, mintypecode

Examples

>>> for sctype in [np.int32, float, complex, np.string_, np.ndarray]:
... print(np.sctype2char(sctype))
l
d
D

(continues on next page)

4.7. Data type routines 539



NumPy Reference, Release 1.15.1

(continued from previous page)

S
O

>>> x = np.array([1., 2-1.j])
>>> np.sctype2char(x)
'D'
>>> np.sctype2char(list)
'O'

numpy.mintypecode(typechars, typeset=’GDFgdf’, default=’d’)
Return the character for the minimum-size type to which given types can be safely cast.

The returned type character must represent the smallest size dtype such that an array of the returned type can
handle the data from an array of all types in typechars (or if typechars is an array, then its dtype.char).

Parameters

typechars [list of str or array_like] If a list of strings, each string should represent a dtype. If
array_like, the character representation of the array dtype is used.

typeset [str or list of str, optional] The set of characters that the returned character is chosen
from. The default set is ‘GDFgdf’.

default [str, optional] The default character, this is returned if none of the characters in type-
chars matches a character in typeset.

Returns

typechar [str] The character representing the minimum-size type that was found.

See also:

dtype, sctype2char, maximum_sctype

Examples

>>> np.mintypecode(['d', 'f', 'S'])
'd'
>>> x = np.array([1.1, 2-3.j])
>>> np.mintypecode(x)
'D'

>>> np.mintypecode('abceh', default='G')
'G'

4.8 Optionally Scipy-accelerated routines (numpy.dual)

Aliases for functions which may be accelerated by Scipy.

Scipy can be built to use accelerated or otherwise improved libraries for FFTs, linear algebra, and special functions.
This module allows developers to transparently support these accelerated functions when scipy is available but still
support users who have only installed NumPy.

540 Chapter 4. Routines

http://www.scipy.org


NumPy Reference, Release 1.15.1

4.8.1 Linear algebra

cholesky(a) Cholesky decomposition.
det(a) Compute the determinant of an array.
eig(a) Compute the eigenvalues and right eigenvectors of a square

array.
eigh(a[, UPLO]) Return the eigenvalues and eigenvectors of a Hermitian or

symmetric matrix.
eigvals(a) Compute the eigenvalues of a general matrix.
eigvalsh(a[, UPLO]) Compute the eigenvalues of a Hermitian or real symmetric

matrix.
inv(a) Compute the (multiplicative) inverse of a matrix.
lstsq(a, b[, rcond]) Return the least-squares solution to a linear matrix equa-

tion.
norm(x[, ord, axis, keepdims]) Matrix or vector norm.
pinv(a[, rcond]) Compute the (Moore-Penrose) pseudo-inverse of a matrix.
solve(a, b) Solve a linear matrix equation, or system of linear scalar

equations.
svd(a[, full_matrices, compute_uv]) Singular Value Decomposition.

4.8.2 FFT

fft(a[, n, axis, norm]) Compute the one-dimensional discrete Fourier Transform.
fft2(a[, s, axes, norm]) Compute the 2-dimensional discrete Fourier Transform
fftn(a[, s, axes, norm]) Compute the N-dimensional discrete Fourier Transform.
ifft(a[, n, axis, norm]) Compute the one-dimensional inverse discrete Fourier

Transform.
ifft2(a[, s, axes, norm]) Compute the 2-dimensional inverse discrete Fourier Trans-

form.
ifftn(a[, s, axes, norm]) Compute the N-dimensional inverse discrete Fourier Trans-

form.

4.8.3 Other

i0(x) Modified Bessel function of the first kind, order 0.

4.9 Mathematical functions with automatic domain (numpy.emath)

Note: numpy.emath is a preferred alias for numpy.lib.scimath, available after numpy is imported.

Wrapper functions to more user-friendly calling of certain math functions whose output data-type is different than the
input data-type in certain domains of the input.

For example, for functions like log with branch cuts, the versions in this module provide the mathematically valid
answers in the complex plane:

>>> import math
>>> from numpy.lib import scimath

(continues on next page)

4.9. Mathematical functions with automatic domain (numpy.emath) 541



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> scimath.log(-math.exp(1)) == (1+1j*math.pi)
True

Similarly, sqrt, other base logarithms, power and trig functions are correctly handled. See their respective doc-
strings for specific examples.

4.10 Floating point error handling

4.10.1 Setting and getting error handling

seterr([all, divide, over, under, invalid]) Set how floating-point errors are handled.
geterr() Get the current way of handling floating-point errors.
seterrcall(func) Set the floating-point error callback function or log object.
geterrcall() Return the current callback function used on floating-point

errors.
errstate(**kwargs) Context manager for floating-point error handling.

numpy.geterr()
Get the current way of handling floating-point errors.

Returns

res [dict] A dictionary with keys “divide”, “over”, “under”, and “invalid”, whose values are
from the strings “ignore”, “print”, “log”, “warn”, “raise”, and “call”. The keys represent
possible floating-point exceptions, and the values define how these exceptions are handled.

See also:

geterrcall, seterr, seterrcall

Notes

For complete documentation of the types of floating-point exceptions and treatment options, see seterr.

Examples

>>> np.geterr()
{'over': 'warn', 'divide': 'warn', 'invalid': 'warn',
'under': 'ignore'}
>>> np.arange(3.) / np.arange(3.)
array([ NaN, 1., 1.])

>>> oldsettings = np.seterr(all='warn', over='raise')
>>> np.geterr()
{'over': 'raise', 'divide': 'warn', 'invalid': 'warn', 'under': 'warn'}
>>> np.arange(3.) / np.arange(3.)
__main__:1: RuntimeWarning: invalid value encountered in divide
array([ NaN, 1., 1.])

542 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.geterrcall()
Return the current callback function used on floating-point errors.

When the error handling for a floating-point error (one of “divide”, “over”, “under”, or “invalid”) is set to ‘call’
or ‘log’, the function that is called or the log instance that is written to is returned by geterrcall. This
function or log instance has been set with seterrcall.

Returns

errobj [callable, log instance or None] The current error handler. If no handler was set through
seterrcall, None is returned.

See also:

seterrcall, seterr, geterr

Notes

For complete documentation of the types of floating-point exceptions and treatment options, see seterr.

Examples

>>> np.geterrcall() # we did not yet set a handler, returns None

>>> oldsettings = np.seterr(all='call')
>>> def err_handler(type, flag):
... print("Floating point error (%s), with flag %s" % (type, flag))
>>> oldhandler = np.seterrcall(err_handler)
>>> np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
array([ Inf, Inf, Inf])

>>> cur_handler = np.geterrcall()
>>> cur_handler is err_handler
True

class numpy.errstate(**kwargs)
Context manager for floating-point error handling.

Using an instance of errstate as a context manager allows statements in that context to execute with a known
error handling behavior. Upon entering the context the error handling is set with seterr and seterrcall,
and upon exiting it is reset to what it was before.

Parameters

kwargs [{divide, over, under, invalid}] Keyword arguments. The valid keywords are the pos-
sible floating-point exceptions. Each keyword should have a string value that defines the
treatment for the particular error. Possible values are {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’,
‘log’}.

See also:

seterr, geterr, seterrcall, geterrcall

4.10. Floating point error handling 543



NumPy Reference, Release 1.15.1

Notes

The with statement was introduced in Python 2.5, and can only be used there by importing it: from
__future__ import with_statement. In earlier Python versions the with statement is not avail-
able.

For complete documentation of the types of floating-point exceptions and treatment options, see seterr.

Examples

>>> from __future__ import with_statement # use 'with' in Python 2.5
>>> olderr = np.seterr(all='ignore') # Set error handling to known state.

>>> np.arange(3) / 0.
array([ NaN, Inf, Inf])
>>> with np.errstate(divide='warn'):
... np.arange(3) / 0.
...
__main__:2: RuntimeWarning: divide by zero encountered in divide
array([ NaN, Inf, Inf])

>>> np.sqrt(-1)
nan
>>> with np.errstate(invalid='raise'):
... np.sqrt(-1)
Traceback (most recent call last):
File "<stdin>", line 2, in <module>

FloatingPointError: invalid value encountered in sqrt

Outside the context the error handling behavior has not changed:

>>> np.geterr()
{'over': 'warn', 'divide': 'warn', 'invalid': 'warn',
'under': 'ignore'}

4.10.2 Internal functions

seterrobj(errobj) Set the object that defines floating-point error handling.
geterrobj() Return the current object that defines floating-point error

handling.

numpy.seterrobj(errobj)
Set the object that defines floating-point error handling.

The error object contains all information that defines the error handling behavior in NumPy. seterrobj is
used internally by the other functions that set error handling behavior (seterr, seterrcall).

Parameters

errobj [list] The error object, a list containing three elements: [internal numpy buffer size, error
mask, error callback function].

The error mask is a single integer that holds the treatment information on all four floating

544 Chapter 4. Routines



NumPy Reference, Release 1.15.1

point errors. The information for each error type is contained in three bits of the integer. If
we print it in base 8, we can see what treatment is set for “invalid”, “under”, “over”, and
“divide” (in that order). The printed string can be interpreted with

• 0 : ‘ignore’

• 1 : ‘warn’

• 2 : ‘raise’

• 3 : ‘call’

• 4 : ‘print’

• 5 : ‘log’

See also:

geterrobj, seterr, geterr, seterrcall, geterrcall, getbufsize, setbufsize

Notes

For complete documentation of the types of floating-point exceptions and treatment options, see seterr.

Examples

>>> old_errobj = np.geterrobj() # first get the defaults
>>> old_errobj
[10000, 0, None]

>>> def err_handler(type, flag):
... print("Floating point error (%s), with flag %s" % (type, flag))
...
>>> new_errobj = [20000, 12, err_handler]
>>> np.seterrobj(new_errobj)
>>> np.base_repr(12, 8) # int for divide=4 ('print') and over=1 ('warn')
'14'
>>> np.geterr()
{'over': 'warn', 'divide': 'print', 'invalid': 'ignore', 'under': 'ignore'}
>>> np.geterrcall() is err_handler
True

numpy.geterrobj()
Return the current object that defines floating-point error handling.

The error object contains all information that defines the error handling behavior in NumPy. geterrobj
is used internally by the other functions that get and set error handling behavior (geterr, seterr,
geterrcall, seterrcall).

Returns

errobj [list] The error object, a list containing three elements: [internal numpy buffer size, error
mask, error callback function].

The error mask is a single integer that holds the treatment information on all four floating
point errors. The information for each error type is contained in three bits of the integer. If
we print it in base 8, we can see what treatment is set for “invalid”, “under”, “over”, and
“divide” (in that order). The printed string can be interpreted with

4.10. Floating point error handling 545



NumPy Reference, Release 1.15.1

• 0 : ‘ignore’

• 1 : ‘warn’

• 2 : ‘raise’

• 3 : ‘call’

• 4 : ‘print’

• 5 : ‘log’

See also:

seterrobj, seterr, geterr, seterrcall, geterrcall, getbufsize, setbufsize

Notes

For complete documentation of the types of floating-point exceptions and treatment options, see seterr.

Examples

>>> np.geterrobj() # first get the defaults
[10000, 0, None]

>>> def err_handler(type, flag):
... print("Floating point error (%s), with flag %s" % (type, flag))
...
>>> old_bufsize = np.setbufsize(20000)
>>> old_err = np.seterr(divide='raise')
>>> old_handler = np.seterrcall(err_handler)
>>> np.geterrobj()
[20000, 2, <function err_handler at 0x91dcaac>]

>>> old_err = np.seterr(all='ignore')
>>> np.base_repr(np.geterrobj()[1], 8)
'0'
>>> old_err = np.seterr(divide='warn', over='log', under='call',

invalid='print')
>>> np.base_repr(np.geterrobj()[1], 8)
'4351'

4.11 Discrete Fourier Transform (numpy.fft)

4.11.1 Standard FFTs

fft(a[, n, axis, norm]) Compute the one-dimensional discrete Fourier Transform.
ifft(a[, n, axis, norm]) Compute the one-dimensional inverse discrete Fourier

Transform.
fft2(a[, s, axes, norm]) Compute the 2-dimensional discrete Fourier Transform
ifft2(a[, s, axes, norm]) Compute the 2-dimensional inverse discrete Fourier Trans-

form.
Continued on next page

546 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Table 38 – continued from previous page
fftn(a[, s, axes, norm]) Compute the N-dimensional discrete Fourier Transform.
ifftn(a[, s, axes, norm]) Compute the N-dimensional inverse discrete Fourier Trans-

form.

numpy.fft.fft(a, n=None, axis=-1, norm=None)
Compute the one-dimensional discrete Fourier Transform.

This function computes the one-dimensional n-point discrete Fourier Transform (DFT) with the efficient Fast
Fourier Transform (FFT) algorithm [CT].

Parameters

a [array_like] Input array, can be complex.

n [int, optional] Length of the transformed axis of the output. If n is smaller than the length of
the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not given,
the length of the input along the axis specified by axis is used.

axis [int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified.

Raises

IndexError if axes is larger than the last axis of a.

See also:

numpy.fft for definition of the DFT and conventions used.

ifft The inverse of fft.

fft2 The two-dimensional FFT.

fftn The n-dimensional FFT.

rfftn The n-dimensional FFT of real input.

fftfreq Frequency bins for given FFT parameters.

Notes

FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently,
by using symmetries in the calculated terms. The symmetry is highest when n is a power of 2, and the transform
is therefore most efficient for these sizes.

The DFT is defined, with the conventions used in this implementation, in the documentation for the numpy.
fft module.

References

[CT]

4.11. Discrete Fourier Transform (numpy.fft) 547



NumPy Reference, Release 1.15.1

Examples

>>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
array([ -3.44505240e-16 +1.14383329e-17j,

8.00000000e+00 -5.71092652e-15j,
2.33482938e-16 +1.22460635e-16j,
1.64863782e-15 +1.77635684e-15j,
9.95839695e-17 +2.33482938e-16j,
0.00000000e+00 +1.66837030e-15j,
1.14383329e-17 +1.22460635e-16j,
-1.64863782e-15 +1.77635684e-15j])

In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in
the imaginary part, as described in the numpy.fft documentation:

>>> import matplotlib.pyplot as plt
>>> t = np.arange(256)
>>> sp = np.fft.fft(np.sin(t))
>>> freq = np.fft.fftfreq(t.shape[-1])
>>> plt.plot(freq, sp.real, freq, sp.imag)
[<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x.
→˓..>]
>>> plt.show()

0.4 0.2 0.0 0.2 0.4

75

50

25

0

25

50

75

numpy.fft.ifft(a, n=None, axis=-1, norm=None)
Compute the one-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the one-dimensional n-point discrete Fourier transform computed by
fft. In other words, ifft(fft(a)) == a to within numerical accuracy. For a general description of the
algorithm and definitions, see numpy.fft.

The input should be ordered in the same way as is returned by fft, i.e.,

• a[0] should contain the zero frequency term,

• a[1:n//2] should contain the positive-frequency terms,

548 Chapter 4. Routines



NumPy Reference, Release 1.15.1

• a[n//2 + 1:] should contain the negative-frequency terms, in increasing order starting from the most
negative frequency.

For an even number of input points, A[n//2] represents the sum of the values at the positive and negative
Nyquist frequencies, as the two are aliased together. See numpy.fft for details.

Parameters

a [array_like] Input array, can be complex.

n [int, optional] Length of the transformed axis of the output. If n is smaller than the length of
the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not given,
the length of the input along the axis specified by axis is used. See notes about padding
issues.

axis [int, optional] Axis over which to compute the inverse DFT. If not given, the last axis is
used.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified.

Raises

IndexError If axes is larger than the last axis of a.

See also:

numpy.fft An introduction, with definitions and general explanations.

fft The one-dimensional (forward) FFT, of which ifft is the inverse

ifft2 The two-dimensional inverse FFT.

ifftn The n-dimensional inverse FFT.

Notes

If the input parameter n is larger than the size of the input, the input is padded by appending zeros at the end.
Even though this is the common approach, it might lead to surprising results. If a different padding is desired, it
must be performed before calling ifft.

Examples

>>> np.fft.ifft([0, 4, 0, 0])
array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j])

Create and plot a band-limited signal with random phases:

>>> import matplotlib.pyplot as plt
>>> t = np.arange(400)
>>> n = np.zeros((400,), dtype=complex)
>>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,)))
>>> s = np.fft.ifft(n)

(continues on next page)

4.11. Discrete Fourier Transform (numpy.fft) 549



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--')
...
>>> plt.legend(('real', 'imaginary'))
...
>>> plt.show()

0 50 100 150 200 250 300 350 400

0.02

0.01

0.00

0.01

0.02

real
imaginary

numpy.fft.fft2(a, s=None, axes=(-2, -1), norm=None)
Compute the 2-dimensional discrete Fourier Transform

This function computes the n-dimensional discrete Fourier Transform over any axes in an M-dimensional array
by means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of
the input array, i.e., a 2-dimensional FFT.

Parameters

a [array_like] Input array, can be complex

s [sequence of ints, optional] Shape (length of each transformed axis) of the output (s[0] refers
to axis 0, s[1] to axis 1, etc.). This corresponds to n for fft(x, n). Along each axis,
if the given shape is smaller than that of the input, the input is cropped. If it is larger, the
input is padded with zeros. if s is not given, the shape of the input along the axes specified
by axes is used.

axes [sequence of ints, optional] Axes over which to compute the FFT. If not given, the last two
axes are used. A repeated index in axes means the transform over that axis is performed
multiple times. A one-element sequence means that a one-dimensional FFT is performed.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or the last two axes if axes is not given.

Raises

ValueError If s and axes have different length, or axes not given and len(s) != 2.

550 Chapter 4. Routines



NumPy Reference, Release 1.15.1

IndexError If an element of axes is larger than than the number of axes of a.

See also:

numpy.fft Overall view of discrete Fourier transforms, with definitions and conventions used.

ifft2 The inverse two-dimensional FFT.

fft The one-dimensional FFT.

fftn The n-dimensional FFT.

fftshift Shifts zero-frequency terms to the center of the array. For two-dimensional input, swaps first and
third quadrants, and second and fourth quadrants.

Notes

fft2 is just fftn with a different default for axes.

The output, analogously to fft, contains the term for zero frequency in the low-order corner of the transformed
axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle
of the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative
frequency.

See fftn for details and a plotting example, and numpy.fft for definitions and conventions used.

Examples

>>> a = np.mgrid[:5, :5][0]
>>> np.fft.fft2(a)
array([[ 50.0 +0.j , 0.0 +0.j , 0.0 +0.j ,

0.0 +0.j , 0.0 +0.j ],
[-12.5+17.20477401j, 0.0 +0.j , 0.0 +0.j ,

0.0 +0.j , 0.0 +0.j ],
[-12.5 +4.0614962j , 0.0 +0.j , 0.0 +0.j ,

0.0 +0.j , 0.0 +0.j ],
[-12.5 -4.0614962j , 0.0 +0.j , 0.0 +0.j ,

0.0 +0.j , 0.0 +0.j ],
[-12.5-17.20477401j, 0.0 +0.j , 0.0 +0.j ,

0.0 +0.j , 0.0 +0.j ]])

numpy.fft.ifft2(a, s=None, axes=(-2, -1), norm=None)
Compute the 2-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the 2-dimensional discrete Fourier Transform over any number of axes
in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ifft2(fft2(a))
== a to within numerical accuracy. By default, the inverse transform is computed over the last two axes of the
input array.

The input, analogously to ifft, should be ordered in the same way as is returned by fft2, i.e. it should have
the term for zero frequency in the low-order corner of the two axes, the positive frequency terms in the first half
of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in
the second half of both axes, in order of decreasingly negative frequency.

Parameters

a [array_like] Input array, can be complex.

4.11. Discrete Fourier Transform (numpy.fft) 551



NumPy Reference, Release 1.15.1

s [sequence of ints, optional] Shape (length of each axis) of the output (s[0] refers to axis 0,
s[1] to axis 1, etc.). This corresponds to n for ifft(x, n). Along each axis, if the
given shape is smaller than that of the input, the input is cropped. If it is larger, the input is
padded with zeros. if s is not given, the shape of the input along the axes specified by axes
is used. See notes for issue on ifft zero padding.

axes [sequence of ints, optional] Axes over which to compute the FFT. If not given, the last two
axes are used. A repeated index in axes means the transform over that axis is performed
multiple times. A one-element sequence means that a one-dimensional FFT is performed.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or the last two axes if axes is not given.

Raises

ValueError If s and axes have different length, or axes not given and len(s) != 2.

IndexError If an element of axes is larger than than the number of axes of a.

See also:

numpy.fft Overall view of discrete Fourier transforms, with definitions and conventions used.

fft2 The forward 2-dimensional FFT, of which ifft2 is the inverse.

ifftn The inverse of the n-dimensional FFT.

fft The one-dimensional FFT.

ifft The one-dimensional inverse FFT.

Notes

ifft2 is just ifftn with a different default for axes.

See ifftn for details and a plotting example, and numpy.fft for definition and conventions used.

Zero-padding, analogously with ifft, is performed by appending zeros to the input along the specified dimen-
sion. Although this is the common approach, it might lead to surprising results. If another form of zero padding
is desired, it must be performed before ifft2 is called.

Examples

>>> a = 4 * np.eye(4)
>>> np.fft.ifft2(a)
array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],

[ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
[ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])

numpy.fft.fftn(a, s=None, axes=None, norm=None)
Compute the N-dimensional discrete Fourier Transform.

552 Chapter 4. Routines



NumPy Reference, Release 1.15.1

This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-
dimensional array by means of the Fast Fourier Transform (FFT).

Parameters

a [array_like] Input array, can be complex.

s [sequence of ints, optional] Shape (length of each transformed axis) of the output (s[0] refers
to axis 0, s[1] to axis 1, etc.). This corresponds to n for fft(x, n). Along any axis,
if the given shape is smaller than that of the input, the input is cropped. If it is larger, the
input is padded with zeros. if s is not given, the shape of the input along the axes specified
by axes is used.

axes [sequence of ints, optional] Axes over which to compute the FFT. If not given, the last
len(s) axes are used, or all axes if s is also not specified. Repeated indices in axes means
that the transform over that axis is performed multiple times.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s and a, as explained in the parameters section above.

Raises

ValueError If s and axes have different length.

IndexError If an element of axes is larger than than the number of axes of a.

See also:

numpy.fft Overall view of discrete Fourier transforms, with definitions and conventions used.

ifftn The inverse of fftn, the inverse n-dimensional FFT.

fft The one-dimensional FFT, with definitions and conventions used.

rfftn The n-dimensional FFT of real input.

fft2 The two-dimensional FFT.

fftshift Shifts zero-frequency terms to centre of array

Notes

The output, analogously to fft, contains the term for zero frequency in the low-order corner of all axes, the
positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes
and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency.

See numpy.fft for details, definitions and conventions used.

Examples

>>> a = np.mgrid[:3, :3, :3][0]
>>> np.fft.fftn(a, axes=(1, 2))
array([[[ 0.+0.j, 0.+0.j, 0.+0.j],

[ 0.+0.j, 0.+0.j, 0.+0.j],

(continues on next page)

4.11. Discrete Fourier Transform (numpy.fft) 553



NumPy Reference, Release 1.15.1

(continued from previous page)

[ 0.+0.j, 0.+0.j, 0.+0.j]],
[[ 9.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j]],

[[ 18.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j]]])

>>> np.fft.fftn(a, (2, 2), axes=(0, 1))
array([[[ 2.+0.j, 2.+0.j, 2.+0.j],

[ 0.+0.j, 0.+0.j, 0.+0.j]],
[[-2.+0.j, -2.+0.j, -2.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j]]])

>>> import matplotlib.pyplot as plt
>>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12,
... 2 * np.pi * np.arange(200) / 34)
>>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape)
>>> FS = np.fft.fftn(S)
>>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2))
<matplotlib.image.AxesImage object at 0x...>
>>> plt.show()

0 50 100 150 200

0

25

50

75

100

125

150

175

200

numpy.fft.ifftn(a, s=None, axes=None, norm=None)
Compute the N-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the N-dimensional discrete Fourier Transform over any number of axes
in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ifftn(fftn(a))
== a to within numerical accuracy. For a description of the definitions and conventions used, see numpy.fft.

The input, analogously to ifft, should be ordered in the same way as is returned by fftn, i.e. it should have
the term for zero frequency in all axes in the low-order corner, the positive frequency terms in the first half of all
axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second
half of all axes, in order of decreasingly negative frequency.

Parameters

a [array_like] Input array, can be complex.

554 Chapter 4. Routines



NumPy Reference, Release 1.15.1

s [sequence of ints, optional] Shape (length of each transformed axis) of the output (s[0] refers
to axis 0, s[1] to axis 1, etc.). This corresponds to n for ifft(x, n). Along any axis,
if the given shape is smaller than that of the input, the input is cropped. If it is larger, the
input is padded with zeros. if s is not given, the shape of the input along the axes specified
by axes is used. See notes for issue on ifft zero padding.

axes [sequence of ints, optional] Axes over which to compute the IFFT. If not given, the last
len(s) axes are used, or all axes if s is also not specified. Repeated indices in axes means
that the inverse transform over that axis is performed multiple times.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s or a, as explained in the parameters section above.

Raises

ValueError If s and axes have different length.

IndexError If an element of axes is larger than than the number of axes of a.

See also:

numpy.fft Overall view of discrete Fourier transforms, with definitions and conventions used.

fftn The forward n-dimensional FFT, of which ifftn is the inverse.

ifft The one-dimensional inverse FFT.

ifft2 The two-dimensional inverse FFT.

ifftshift Undoes fftshift, shifts zero-frequency terms to beginning of array.

Notes

See numpy.fft for definitions and conventions used.

Zero-padding, analogously with ifft, is performed by appending zeros to the input along the specified dimen-
sion. Although this is the common approach, it might lead to surprising results. If another form of zero padding
is desired, it must be performed before ifftn is called.

Examples

>>> a = np.eye(4)
>>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,))
array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],

[ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])

Create and plot an image with band-limited frequency content:

4.11. Discrete Fourier Transform (numpy.fft) 555



NumPy Reference, Release 1.15.1

>>> import matplotlib.pyplot as plt
>>> n = np.zeros((200,200), dtype=complex)
>>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20)))
>>> im = np.fft.ifftn(n).real
>>> plt.imshow(im)
<matplotlib.image.AxesImage object at 0x...>
>>> plt.show()

0 50 100 150 200

0

25

50

75

100

125

150

175

200

4.11.2 Real FFTs

rfft(a[, n, axis, norm]) Compute the one-dimensional discrete Fourier Transform
for real input.

irfft(a[, n, axis, norm]) Compute the inverse of the n-point DFT for real input.
rfft2(a[, s, axes, norm]) Compute the 2-dimensional FFT of a real array.
irfft2(a[, s, axes, norm]) Compute the 2-dimensional inverse FFT of a real array.
rfftn(a[, s, axes, norm]) Compute the N-dimensional discrete Fourier Transform for

real input.
irfftn(a[, s, axes, norm]) Compute the inverse of the N-dimensional FFT of real in-

put.

numpy.fft.rfft(a, n=None, axis=-1, norm=None)
Compute the one-dimensional discrete Fourier Transform for real input.

This function computes the one-dimensional n-point discrete Fourier Transform (DFT) of a real-valued array by
means of an efficient algorithm called the Fast Fourier Transform (FFT).

Parameters

a [array_like] Input array

n [int, optional] Number of points along transformation axis in the input to use. If n is smaller
than the length of the input, the input is cropped. If it is larger, the input is padded with
zeros. If n is not given, the length of the input along the axis specified by axis is used.

556 Chapter 4. Routines



NumPy Reference, Release 1.15.1

axis [int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified. If n is even, the length of the transformed axis
is (n/2)+1. If n is odd, the length is (n+1)/2.

Raises

IndexError If axis is larger than the last axis of a.

See also:

numpy.fft For definition of the DFT and conventions used.

irfft The inverse of rfft.

fft The one-dimensional FFT of general (complex) input.

fftn The n-dimensional FFT.

rfftn The n-dimensional FFT of real input.

Notes

When the DFT is computed for purely real input, the output is Hermitian-symmetric, i.e. the negative frequency
terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency
terms are therefore redundant. This function does not compute the negative frequency terms, and the length of
the transformed axis of the output is therefore n//2 + 1.

When A = rfft(a) and fs is the sampling frequency, A[0] contains the zero-frequency term 0*fs, which is
real due to Hermitian symmetry.

If n is even, A[-1] contains the term representing both positive and negative Nyquist frequency (+fs/2 and
-fs/2), and must also be purely real. If n is odd, there is no term at fs/2; A[-1] contains the largest positive
frequency (fs/2*(n-1)/n), and is complex in the general case.

If the input a contains an imaginary part, it is silently discarded.

Examples

>>> np.fft.fft([0, 1, 0, 0])
array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j])
>>> np.fft.rfft([0, 1, 0, 0])
array([ 1.+0.j, 0.-1.j, -1.+0.j])

Notice how the final element of the fft output is the complex conjugate of the second element, for real input.
For rfft, this symmetry is exploited to compute only the non-negative frequency terms.

numpy.fft.irfft(a, n=None, axis=-1, norm=None)
Compute the inverse of the n-point DFT for real input.

This function computes the inverse of the one-dimensional n-point discrete Fourier Transform of real input
computed by rfft. In other words, irfft(rfft(a), len(a)) == a to within numerical accuracy.
(See Notes below for why len(a) is necessary here.)

4.11. Discrete Fourier Transform (numpy.fft) 557



NumPy Reference, Release 1.15.1

The input is expected to be in the form returned by rfft, i.e. the real zero-frequency term followed by the
complex positive frequency terms in order of increasing frequency. Since the discrete Fourier Transform of
real input is Hermitian-symmetric, the negative frequency terms are taken to be the complex conjugates of the
corresponding positive frequency terms.

Parameters

a [array_like] The input array.

n [int, optional] Length of the transformed axis of the output. For n output points, n//2+1
input points are necessary. If the input is longer than this, it is cropped. If it is shorter than
this, it is padded with zeros. If n is not given, it is determined from the length of the input
along the axis specified by axis.

axis [int, optional] Axis over which to compute the inverse FFT. If not given, the last axis is
used.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [ndarray] The truncated or zero-padded input, transformed along the axis indicated by axis,
or the last one if axis is not specified. The length of the transformed axis is n, or, if n is not
given, 2*(m-1) where m is the length of the transformed axis of the input. To get an odd
number of output points, n must be specified.

Raises

IndexError If axis is larger than the last axis of a.

See also:

numpy.fft For definition of the DFT and conventions used.

rfft The one-dimensional FFT of real input, of which irfft is inverse.

fft The one-dimensional FFT.

irfft2 The inverse of the two-dimensional FFT of real input.

irfftn The inverse of the n-dimensional FFT of real input.

Notes

Returns the real valued n-point inverse discrete Fourier transform of a, where a contains the non-negative fre-
quency terms of a Hermitian-symmetric sequence. n is the length of the result, not the input.

If you specify an n such that a must be zero-padded or truncated, the extra/removed values will be
added/removed at high frequencies. One can thus resample a series to m points via Fourier interpolation by:
a_resamp = irfft(rfft(a), m).

Examples

>>> np.fft.ifft([1, -1j, -1, 1j])
array([ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j])
>>> np.fft.irfft([1, -1j, -1])
array([ 0., 1., 0., 0.])

558 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notice how the last term in the input to the ordinary ifft is the complex conjugate of the second term, and the
output has zero imaginary part everywhere. When calling irfft, the negative frequencies are not specified,
and the output array is purely real.

numpy.fft.rfft2(a, s=None, axes=(-2, -1), norm=None)
Compute the 2-dimensional FFT of a real array.

Parameters

a [array] Input array, taken to be real.

s [sequence of ints, optional] Shape of the FFT.

axes [sequence of ints, optional] Axes over which to compute the FFT.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [ndarray] The result of the real 2-D FFT.

See also:

rfftn Compute the N-dimensional discrete Fourier Transform for real input.

Notes

This is really just rfftn with different default behavior. For more details see rfftn.

numpy.fft.irfft2(a, s=None, axes=(-2, -1), norm=None)
Compute the 2-dimensional inverse FFT of a real array.

Parameters

a [array_like] The input array

s [sequence of ints, optional] Shape of the inverse FFT.

axes [sequence of ints, optional] The axes over which to compute the inverse fft. Default is the
last two axes.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [ndarray] The result of the inverse real 2-D FFT.

See also:

irfftn Compute the inverse of the N-dimensional FFT of real input.

Notes

This is really irfftn with different defaults. For more details see irfftn.

4.11. Discrete Fourier Transform (numpy.fft) 559



NumPy Reference, Release 1.15.1

numpy.fft.rfftn(a, s=None, axes=None, norm=None)
Compute the N-dimensional discrete Fourier Transform for real input.

This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-
dimensional real array by means of the Fast Fourier Transform (FFT). By default, all axes are transformed,
with the real transform performed over the last axis, while the remaining transforms are complex.

Parameters

a [array_like] Input array, taken to be real.

s [sequence of ints, optional] Shape (length along each transformed axis) to use from the input.
(s[0] refers to axis 0, s[1] to axis 1, etc.). The final element of s corresponds to n for
rfft(x, n), while for the remaining axes, it corresponds to n for fft(x, n). Along
any axis, if the given shape is smaller than that of the input, the input is cropped. If it is
larger, the input is padded with zeros. if s is not given, the shape of the input along the axes
specified by axes is used.

axes [sequence of ints, optional] Axes over which to compute the FFT. If not given, the last
len(s) axes are used, or all axes if s is also not specified.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s and a, as explained in the parameters section above. The
length of the last axis transformed will be s[-1]//2+1, while the remaining transformed
axes will have lengths according to s, or unchanged from the input.

Raises

ValueError If s and axes have different length.

IndexError If an element of axes is larger than than the number of axes of a.

See also:

irfftn The inverse of rfftn, i.e. the inverse of the n-dimensional FFT of real input.

fft The one-dimensional FFT, with definitions and conventions used.

rfft The one-dimensional FFT of real input.

fftn The n-dimensional FFT.

rfft2 The two-dimensional FFT of real input.

Notes

The transform for real input is performed over the last transformation axis, as by rfft, then the transform over
the remaining axes is performed as by fftn. The order of the output is as for rfft for the final transformation
axis, and as for fftn for the remaining transformation axes.

See fft for details, definitions and conventions used.

560 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> a = np.ones((2, 2, 2))
>>> np.fft.rfftn(a)
array([[[ 8.+0.j, 0.+0.j],

[ 0.+0.j, 0.+0.j]],
[[ 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j]]])

>>> np.fft.rfftn(a, axes=(2, 0))
array([[[ 4.+0.j, 0.+0.j],

[ 4.+0.j, 0.+0.j]],
[[ 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j]]])

numpy.fft.irfftn(a, s=None, axes=None, norm=None)
Compute the inverse of the N-dimensional FFT of real input.

This function computes the inverse of the N-dimensional discrete Fourier Transform for real input over any
number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words,
irfftn(rfftn(a), a.shape) == a to within numerical accuracy. (The a.shape is necessary like
len(a) is for irfft, and for the same reason.)

The input should be ordered in the same way as is returned by rfftn, i.e. as for irfft for the final transfor-
mation axis, and as for ifftn along all the other axes.

Parameters

a [array_like] Input array.

s [sequence of ints, optional] Shape (length of each transformed axis) of the output (s[0] refers
to axis 0, s[1] to axis 1, etc.). s is also the number of input points used along this axis,
except for the last axis, where s[-1]//2+1 points of the input are used. Along any axis,
if the shape indicated by s is smaller than that of the input, the input is cropped. If it is
larger, the input is padded with zeros. If s is not given, the shape of the input along the axes
specified by axes is used.

axes [sequence of ints, optional] Axes over which to compute the inverse FFT. If not given, the
last len(s) axes are used, or all axes if s is also not specified. Repeated indices in axes means
that the inverse transform over that axis is performed multiple times.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [ndarray] The truncated or zero-padded input, transformed along the axes indicated by axes,
or by a combination of s or a, as explained in the parameters section above. The length of
each transformed axis is as given by the corresponding element of s, or the length of the
input in every axis except for the last one if s is not given. In the final transformed axis
the length of the output when s is not given is 2*(m-1) where m is the length of the final
transformed axis of the input. To get an odd number of output points in the final axis, s must
be specified.

Raises

ValueError If s and axes have different length.

IndexError If an element of axes is larger than than the number of axes of a.

4.11. Discrete Fourier Transform (numpy.fft) 561



NumPy Reference, Release 1.15.1

See also:

rfftn The forward n-dimensional FFT of real input, of which ifftn is the inverse.

fft The one-dimensional FFT, with definitions and conventions used.

irfft The inverse of the one-dimensional FFT of real input.

irfft2 The inverse of the two-dimensional FFT of real input.

Notes

See fft for definitions and conventions used.

See rfft for definitions and conventions used for real input.

Examples

>>> a = np.zeros((3, 2, 2))
>>> a[0, 0, 0] = 3 * 2 * 2
>>> np.fft.irfftn(a)
array([[[ 1., 1.],

[ 1., 1.]],
[[ 1., 1.],
[ 1., 1.]],

[[ 1., 1.],
[ 1., 1.]]])

4.11.3 Hermitian FFTs

hfft(a[, n, axis, norm]) Compute the FFT of a signal that has Hermitian symmetry,
i.e., a real spectrum.

ihfft(a[, n, axis, norm]) Compute the inverse FFT of a signal that has Hermitian
symmetry.

numpy.fft.hfft(a, n=None, axis=-1, norm=None)
Compute the FFT of a signal that has Hermitian symmetry, i.e., a real spectrum.

Parameters

a [array_like] The input array.

n [int, optional] Length of the transformed axis of the output. For n output points, n//2 + 1
input points are necessary. If the input is longer than this, it is cropped. If it is shorter than
this, it is padded with zeros. If n is not given, it is determined from the length of the input
along the axis specified by axis.

axis [int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

norm [{None, “ortho”}, optional] Normalization mode (see numpy.fft). Default is None.

New in version 1.10.0.

Returns

562 Chapter 4. Routines



NumPy Reference, Release 1.15.1

out [ndarray] The truncated or zero-padded input, transformed along the axis indicated by axis,
or the last one if axis is not specified. The length of the transformed axis is n, or, if n is not
given, 2*m - 2 where m is the length of the transformed axis of the input. To get an odd
number of output points, n must be specified, for instance as 2*m - 1 in the typical case,

Raises

IndexError If axis is larger than the last axis of a.

See also:

rfft Compute the one-dimensional FFT for real input.

ihfft The inverse of hfft.

Notes

hfft/ihfft are a pair analogous to rfft/irfft, but for the opposite case: here the signal has Hermitian
symmetry in the time domain and is real in the frequency domain. So here it’s hfft for which you must supply
the length of the result if it is to be odd.

• even: ihfft(hfft(a, 2*len(a) - 2) == a, within roundoff error,

• odd: ihfft(hfft(a, 2*len(a) - 1) == a, within roundoff error.

Examples

>>> signal = np.array([1, 2, 3, 4, 3, 2])
>>> np.fft.fft(signal)
array([ 15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j])
>>> np.fft.hfft(signal[:4]) # Input first half of signal
array([ 15., -4., 0., -1., 0., -4.])
>>> np.fft.hfft(signal, 6) # Input entire signal and truncate
array([ 15., -4., 0., -1., 0., -4.])

>>> signal = np.array([[1, 1.j], [-1.j, 2]])
>>> np.conj(signal.T) - signal # check Hermitian symmetry
array([[ 0.-0.j, 0.+0.j],

[ 0.+0.j, 0.-0.j]])
>>> freq_spectrum = np.fft.hfft(signal)
>>> freq_spectrum
array([[ 1., 1.],

[ 2., -2.]])

numpy.fft.ihfft(a, n=None, axis=-1, norm=None)
Compute the inverse FFT of a signal that has Hermitian symmetry.

Parameters

a [array_like] Input array.

n [int, optional] Length of the inverse FFT, the number of points along transformation axis in
the input to use. If n is smaller than the length of the input, the input is cropped. If it is
larger, the input is padded with zeros. If n is not given, the length of the input along the axis
specified by axis is used.

axis [int, optional] Axis over which to compute the inverse FFT. If not given, the last axis is
used.

4.11. Discrete Fourier Transform (numpy.fft) 563



NumPy Reference, Release 1.15.1

norm [{None, “ortho”}, optional] Normalization mode (see numpy.fft). Default is None.

New in version 1.10.0.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified. The length of the transformed axis is n//2
+ 1.

See also:

hfft, irfft

Notes

hfft/ihfft are a pair analogous to rfft/irfft, but for the opposite case: here the signal has Hermitian
symmetry in the time domain and is real in the frequency domain. So here it’s hfft for which you must supply
the length of the result if it is to be odd:

• even: ihfft(hfft(a, 2*len(a) - 2) == a, within roundoff error,

• odd: ihfft(hfft(a, 2*len(a) - 1) == a, within roundoff error.

Examples

>>> spectrum = np.array([ 15, -4, 0, -1, 0, -4])
>>> np.fft.ifft(spectrum)
array([ 1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j])
>>> np.fft.ihfft(spectrum)
array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j])

4.11.4 Helper routines

fftfreq(n[, d]) Return the Discrete Fourier Transform sample frequencies.
rfftfreq(n[, d]) Return the Discrete Fourier Transform sample frequencies

(for usage with rfft, irfft).
fftshift(x[, axes]) Shift the zero-frequency component to the center of the

spectrum.
ifftshift(x[, axes]) The inverse of fftshift.

numpy.fft.fftfreq(n, d=1.0)
Return the Discrete Fourier Transform sample frequencies.

The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero
at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd

Parameters

564 Chapter 4. Routines



NumPy Reference, Release 1.15.1

n [int] Window length.

d [scalar, optional] Sample spacing (inverse of the sampling rate). Defaults to 1.

Returns

f [ndarray] Array of length n containing the sample frequencies.

Examples

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
array([ 0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])

numpy.fft.rfftfreq(n, d=1.0)
Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).

The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero
at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd

Unlike fftfreq (but like scipy.fftpack.rfftfreq) the Nyquist frequency component is considered
to be positive.

Parameters

n [int] Window length.

d [scalar, optional] Sample spacing (inverse of the sampling rate). Defaults to 1.

Returns

f [ndarray] Array of length n//2 + 1 containing the sample frequencies.

Examples

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
>>> fourier = np.fft.rfft(signal)
>>> n = signal.size
>>> sample_rate = 100
>>> freq = np.fft.fftfreq(n, d=1./sample_rate)
>>> freq
array([ 0., 10., 20., 30., 40., -50., -40., -30., -20., -10.])
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
>>> freq
array([ 0., 10., 20., 30., 40., 50.])

numpy.fft.fftshift(x, axes=None)
Shift the zero-frequency component to the center of the spectrum.

4.11. Discrete Fourier Transform (numpy.fft) 565

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.rfftfreq.html#scipy.fftpack.rfftfreq


NumPy Reference, Release 1.15.1

This function swaps half-spaces for all axes listed (defaults to all). Note that y[0] is the Nyquist component
only if len(x) is even.

Parameters

x [array_like] Input array.

axes [int or shape tuple, optional] Axes over which to shift. Default is None, which shifts all
axes.

Returns

y [ndarray] The shifted array.

See also:

ifftshift The inverse of fftshift.

Examples

>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([ 0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])

Shift the zero-frequency component only along the second axis:

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],

[ 3., 4., -4.],
[-3., -2., -1.]])

>>> np.fft.fftshift(freqs, axes=(1,))
array([[ 2., 0., 1.],

[-4., 3., 4.],
[-1., -3., -2.]])

numpy.fft.ifftshift(x, axes=None)
The inverse of fftshift. Although identical for even-length x, the functions differ by one sample for odd-
length x.

Parameters

x [array_like] Input array.

axes [int or shape tuple, optional] Axes over which to calculate. Defaults to None, which shifts
all axes.

Returns

y [ndarray] The shifted array.

See also:

fftshift Shift zero-frequency component to the center of the spectrum.

566 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],

[ 3., 4., -4.],
[-3., -2., -1.]])

>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[ 0., 1., 2.],

[ 3., 4., -4.],
[-3., -2., -1.]])

4.11.5 Background information

Fourier analysis is fundamentally a method for expressing a function as a sum of periodic components, and for re-
covering the function from those components. When both the function and its Fourier transform are replaced with
discretized counterparts, it is called the discrete Fourier transform (DFT). The DFT has become a mainstay of numeri-
cal computing in part because of a very fast algorithm for computing it, called the Fast Fourier Transform (FFT), which
was known to Gauss (1805) and was brought to light in its current form by Cooley and Tukey [Rfb1dc64dd6a5-CT].
Press et al. [Rfb1dc64dd6a5-NR] provide an accessible introduction to Fourier analysis and its applications.

Because the discrete Fourier transform separates its input into components that contribute at discrete frequencies, it
has a great number of applications in digital signal processing, e.g., for filtering, and in this context the discretized
input to the transform is customarily referred to as a signal, which exists in the time domain. The output is called a
spectrum or transform and exists in the frequency domain.

4.11.6 Implementation details

There are many ways to define the DFT, varying in the sign of the exponent, normalization, etc. In this implementation,
the DFT is defined as

𝐴𝑘 =

𝑛−1∑︁
𝑚=0

𝑎𝑚 exp

{︂
−2𝜋𝑖

𝑚𝑘

𝑛

}︂
𝑘 = 0, . . . , 𝑛− 1.

The DFT is in general defined for complex inputs and outputs, and a single-frequency component at linear frequency
𝑓 is represented by a complex exponential 𝑎𝑚 = exp{2𝜋𝑖 𝑓𝑚∆𝑡}, where ∆𝑡 is the sampling interval.

The values in the result follow so-called “standard” order: If A = fft(a, n), then A[0] contains the zero-
frequency term (the sum of the signal), which is always purely real for real inputs. Then A[1:n/2] contains the
positive-frequency terms, and A[n/2+1:] contains the negative-frequency terms, in order of decreasingly negative
frequency. For an even number of input points, A[n/2] represents both positive and negative Nyquist frequency,
and is also purely real for real input. For an odd number of input points, A[(n-1)/2] contains the largest positive
frequency, while A[(n+1)/2] contains the largest negative frequency. The routine np.fft.fftfreq(n) returns
an array giving the frequencies of corresponding elements in the output. The routine np.fft.fftshift(A) shifts
transforms and their frequencies to put the zero-frequency components in the middle, and np.fft.ifftshift(A)
undoes that shift.

When the input a is a time-domain signal and A = fft(a), np.abs(A) is its amplitude spectrum and np.
abs(A)**2 is its power spectrum. The phase spectrum is obtained by np.angle(A).

The inverse DFT is defined as

𝑎𝑚 =
1

𝑛

𝑛−1∑︁
𝑘=0

𝐴𝑘 exp

{︂
2𝜋𝑖

𝑚𝑘

𝑛

}︂
𝑚 = 0, . . . , 𝑛− 1.

It differs from the forward transform by the sign of the exponential argument and the default normalization by 1/𝑛.

4.11. Discrete Fourier Transform (numpy.fft) 567



NumPy Reference, Release 1.15.1

4.11.7 Normalization

The default normalization has the direct transforms unscaled and the inverse transforms are scaled by 1/𝑛. It is
possible to obtain unitary transforms by setting the keyword argument norm to "ortho" (default is None) so that
both direct and inverse transforms will be scaled by 1/

√
𝑛.

4.11.8 Real and Hermitian transforms

When the input is purely real, its transform is Hermitian, i.e., the component at frequency 𝑓𝑘 is the complex conjugate
of the component at frequency −𝑓𝑘, which means that for real inputs there is no information in the negative frequency
components that is not already available from the positive frequency components. The family of rfft functions is
designed to operate on real inputs, and exploits this symmetry by computing only the positive frequency components,
up to and including the Nyquist frequency. Thus, n input points produce n/2+1 complex output points. The inverses
of this family assumes the same symmetry of its input, and for an output of n points uses n/2+1 input points.

Correspondingly, when the spectrum is purely real, the signal is Hermitian. The hfft family of functions exploits
this symmetry by using n/2+1 complex points in the input (time) domain for n real points in the frequency domain.

In higher dimensions, FFTs are used, e.g., for image analysis and filtering. The computational efficiency of the FFT
means that it can also be a faster way to compute large convolutions, using the property that a convolution in the time
domain is equivalent to a point-by-point multiplication in the frequency domain.

4.11.9 Higher dimensions

In two dimensions, the DFT is defined as

𝐴𝑘𝑙 =

𝑀−1∑︁
𝑚=0

𝑁−1∑︁
𝑛=0

𝑎𝑚𝑛 exp

{︂
−2𝜋𝑖

(︂
𝑚𝑘

𝑀
+

𝑛𝑙

𝑁

)︂}︂
𝑘 = 0, . . . ,𝑀 − 1; 𝑙 = 0, . . . , 𝑁 − 1,

which extends in the obvious way to higher dimensions, and the inverses in higher dimensions also extend in the same
way.

4.11.10 References

4.11.11 Examples

For examples, see the various functions.

4.12 Financial functions

4.12.1 Simple financial functions

fv(rate, nper, pmt, pv[, when]) Compute the future value.
pv(rate, nper, pmt[, fv, when]) Compute the present value.
npv(rate, values) Returns the NPV (Net Present Value) of a cash flow series.
pmt(rate, nper, pv[, fv, when]) Compute the payment against loan principal plus interest.
ppmt(rate, per, nper, pv[, fv, when]) Compute the payment against loan principal.
ipmt(rate, per, nper, pv[, fv, when]) Compute the interest portion of a payment.

Continued on next page

568 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Table 42 – continued from previous page
irr(values) Return the Internal Rate of Return (IRR).
mirr(values, finance_rate, reinvest_rate) Modified internal rate of return.
nper(rate, pmt, pv[, fv, when]) Compute the number of periodic payments.
rate(nper, pmt, pv, fv[, when, guess, tol, . . . ]) Compute the rate of interest per period.

numpy.fv(rate, nper, pmt, pv, when=’end’)
Compute the future value.

Given:

• a present value, pv

• an interest rate compounded once per period, of which there are

• nper total

• a (fixed) payment, pmt, paid either

• at the beginning (when = {‘begin’, 1}) or the end (when = {‘end’, 0}) of each period

Return: the value at the end of the nper periods

Parameters

rate [scalar or array_like of shape(M, )] Rate of interest as decimal (not per cent) per period

nper [scalar or array_like of shape(M, )] Number of compounding periods

pmt [scalar or array_like of shape(M, )] Payment

pv [scalar or array_like of shape(M, )] Present value

when [{{‘begin’, 1}, {‘end’, 0}}, {string, int}, optional] When payments are due (‘begin’ (1)
or ‘end’ (0)). Defaults to {‘end’, 0}.

Returns

out [ndarray] Future values. If all input is scalar, returns a scalar float. If any input is array_like,
returns future values for each input element. If multiple inputs are array_like, they all must
have the same shape.

Notes

The future value is computed by solving the equation:

fv +
pv*(1+rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0

or, when rate == 0:

fv + pv + pmt * nper == 0

References

[WRW]

4.12. Financial functions 569



NumPy Reference, Release 1.15.1

Examples

What is the future value after 10 years of saving $100 now, with an additional monthly savings of $100. Assume
the interest rate is 5% (annually) compounded monthly?

>>> np.fv(0.05/12, 10*12, -100, -100)
15692.928894335748

By convention, the negative sign represents cash flow out (i.e. money not available today). Thus, saving $100 a
month at 5% annual interest leads to $15,692.93 available to spend in 10 years.

If any input is array_like, returns an array of equal shape. Let’s compare different interest rates from the example
above.

>>> a = np.array((0.05, 0.06, 0.07))/12
>>> np.fv(a, 10*12, -100, -100)
array([ 15692.92889434, 16569.87435405, 17509.44688102])

numpy.pv(rate, nper, pmt, fv=0, when=’end’)
Compute the present value.

Given:

• a future value, fv

• an interest rate compounded once per period, of which there are

• nper total

• a (fixed) payment, pmt, paid either

• at the beginning (when = {‘begin’, 1}) or the end (when = {‘end’, 0}) of each period

Return: the value now

Parameters

rate [array_like] Rate of interest (per period)

nper [array_like] Number of compounding periods

pmt [array_like] Payment

fv [array_like, optional] Future value

when [{{‘begin’, 1}, {‘end’, 0}}, {string, int}, optional] When payments are due (‘begin’ (1)
or ‘end’ (0))

Returns

out [ndarray, float] Present value of a series of payments or investments.

Notes

The present value is computed by solving the equation:

fv +
pv*(1 + rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) = 0

or, when rate = 0:

570 Chapter 4. Routines



NumPy Reference, Release 1.15.1

fv + pv + pmt * nper = 0

for pv , which is then returned.

References

[WRW]

Examples

What is the present value (e.g., the initial investment) of an investment that needs to total $15692.93 after 10
years of saving $100 every month? Assume the interest rate is 5% (annually) compounded monthly.

>>> np.pv(0.05/12, 10*12, -100, 15692.93)
-100.00067131625819

By convention, the negative sign represents cash flow out (i.e., money not available today). Thus, to end up with
$15,692.93 in 10 years saving $100 a month at 5% annual interest, one’s initial deposit should also be $100.

If any input is array_like, pv returns an array of equal shape. Let’s compare different interest rates in the
example above:

>>> a = np.array((0.05, 0.04, 0.03))/12
>>> np.pv(a, 10*12, -100, 15692.93)
array([ -100.00067132, -649.26771385, -1273.78633713])

So, to end up with the same $15692.93 under the same $100 per month “savings plan,” for annual interest rates
of 4% and 3%, one would need initial investments of $649.27 and $1273.79, respectively.

numpy.npv(rate, values)
Returns the NPV (Net Present Value) of a cash flow series.

Parameters

rate [scalar] The discount rate.

values [array_like, shape(M, )] The values of the time series of cash flows. The (fixed) time
interval between cash flow “events” must be the same as that for which rate is given (i.e.,
if rate is per year, then precisely a year is understood to elapse between each cash flow
event). By convention, investments or “deposits” are negative, income or “withdrawals”
are positive; values must begin with the initial investment, thus values[0] will typically be
negative.

Returns

out [float] The NPV of the input cash flow series values at the discount rate.

Notes

Returns the result of: [G]

𝑀−1∑︁
𝑡=0

𝑣𝑎𝑙𝑢𝑒𝑠𝑡
(1 + 𝑟𝑎𝑡𝑒)𝑡

4.12. Financial functions 571



NumPy Reference, Release 1.15.1

References

[G]

Examples

>>> np.npv(0.281,[-100, 39, 59, 55, 20])
-0.0084785916384548798

(Compare with the Example given for numpy.lib.financial.irr)

numpy.pmt(rate, nper, pv, fv=0, when=’end’)
Compute the payment against loan principal plus interest.

Given:

• a present value, pv (e.g., an amount borrowed)

• a future value, fv (e.g., 0)

• an interest rate compounded once per period, of which there are

• nper total

• and (optional) specification of whether payment is made at the beginning (when = {‘begin’, 1}) or the
end (when = {‘end’, 0}) of each period

Return: the (fixed) periodic payment.

Parameters

rate [array_like] Rate of interest (per period)

nper [array_like] Number of compounding periods

pv [array_like] Present value

fv [array_like, optional] Future value (default = 0)

when [{{‘begin’, 1}, {‘end’, 0}}, {string, int}] When payments are due (‘begin’ (1) or ‘end’
(0))

Returns

out [ndarray] Payment against loan plus interest. If all input is scalar, returns a scalar float.
If any input is array_like, returns payment for each input element. If multiple inputs are
array_like, they all must have the same shape.

Notes

The payment is computed by solving the equation:

fv +
pv*(1 + rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0

or, when rate == 0:

fv + pv + pmt * nper == 0

572 Chapter 4. Routines



NumPy Reference, Release 1.15.1

for pmt.

Note that computing a monthly mortgage payment is only one use for this function. For example, pmt returns the
periodic deposit one must make to achieve a specified future balance given an initial deposit, a fixed, periodically
compounded interest rate, and the total number of periods.

References

[WRW]

Examples

What is the monthly payment needed to pay off a $200,000 loan in 15 years at an annual interest rate of 7.5%?

>>> np.pmt(0.075/12, 12*15, 200000)
-1854.0247200054619

In order to pay-off (i.e., have a future-value of 0) the $200,000 obtained today, a monthly payment of $1,854.02
would be required. Note that this example illustrates usage of fv having a default value of 0.

numpy.ppmt(rate, per, nper, pv, fv=0, when=’end’)
Compute the payment against loan principal.

Parameters

rate [array_like] Rate of interest (per period)

per [array_like, int] Amount paid against the loan changes. The per is the period of interest.

nper [array_like] Number of compounding periods

pv [array_like] Present value

fv [array_like, optional] Future value

when [{{‘begin’, 1}, {‘end’, 0}}, {string, int}] When payments are due (‘begin’ (1) or ‘end’
(0))

See also:

pmt, pv , ipmt

numpy.ipmt(rate, per, nper, pv, fv=0, when=’end’)
Compute the interest portion of a payment.

Parameters

rate [scalar or array_like of shape(M, )] Rate of interest as decimal (not per cent) per period

per [scalar or array_like of shape(M, )] Interest paid against the loan changes during the life or
the loan. The per is the payment period to calculate the interest amount.

nper [scalar or array_like of shape(M, )] Number of compounding periods

pv [scalar or array_like of shape(M, )] Present value

fv [scalar or array_like of shape(M, ), optional] Future value

when [{{‘begin’, 1}, {‘end’, 0}}, {string, int}, optional] When payments are due (‘begin’ (1)
or ‘end’ (0)). Defaults to {‘end’, 0}.

Returns

4.12. Financial functions 573



NumPy Reference, Release 1.15.1

out [ndarray] Interest portion of payment. If all input is scalar, returns a scalar float. If any
input is array_like, returns interest payment for each input element. If multiple inputs are
array_like, they all must have the same shape.

See also:

ppmt, pmt, pv

Notes

The total payment is made up of payment against principal plus interest.

pmt = ppmt + ipmt

Examples

What is the amortization schedule for a 1 year loan of $2500 at 8.24% interest per year compounded monthly?

>>> principal = 2500.00

The ‘per’ variable represents the periods of the loan. Remember that financial equations start the period count
at 1!

>>> per = np.arange(1*12) + 1
>>> ipmt = np.ipmt(0.0824/12, per, 1*12, principal)
>>> ppmt = np.ppmt(0.0824/12, per, 1*12, principal)

Each element of the sum of the ‘ipmt’ and ‘ppmt’ arrays should equal ‘pmt’.

>>> pmt = np.pmt(0.0824/12, 1*12, principal)
>>> np.allclose(ipmt + ppmt, pmt)
True

>>> fmt = '{0:2d} {1:8.2f} {2:8.2f} {3:8.2f}'
>>> for payment in per:
... index = payment - 1
... principal = principal + ppmt[index]
... print(fmt.format(payment, ppmt[index], ipmt[index], principal))
1 -200.58 -17.17 2299.42
2 -201.96 -15.79 2097.46
3 -203.35 -14.40 1894.11
4 -204.74 -13.01 1689.37
5 -206.15 -11.60 1483.22
6 -207.56 -10.18 1275.66
7 -208.99 -8.76 1066.67
8 -210.42 -7.32 856.25
9 -211.87 -5.88 644.38
10 -213.32 -4.42 431.05
11 -214.79 -2.96 216.26
12 -216.26 -1.49 -0.00

>>> interestpd = np.sum(ipmt)
>>> np.round(interestpd, 2)
-112.98

574 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.irr(values)
Return the Internal Rate of Return (IRR).

This is the “average” periodically compounded rate of return that gives a net present value of 0.0; for a more
complete explanation, see Notes below.

decimal.Decimal type is not supported.

Parameters

values [array_like, shape(N,)] Input cash flows per time period. By convention, net “deposits”
are negative and net “withdrawals” are positive. Thus, for example, at least the first element
of values, which represents the initial investment, will typically be negative.

Returns

out [float] Internal Rate of Return for periodic input values.

Notes

The IRR is perhaps best understood through an example (illustrated using np.irr in the Examples section below).
Suppose one invests 100 units and then makes the following withdrawals at regular (fixed) intervals: 39, 59, 55,
20. Assuming the ending value is 0, one’s 100 unit investment yields 173 units; however, due to the combi-
nation of compounding and the periodic withdrawals, the “average” rate of return is neither simply 0.73/4 nor
(1.73)^0.25-1. Rather, it is the solution (for 𝑟) of the equation:

−100 +
39

1 + 𝑟
+

59

(1 + 𝑟)2
+

55

(1 + 𝑟)3
+

20

(1 + 𝑟)4
= 0

In general, for values = [𝑣0, 𝑣1, ...𝑣𝑀 ], irr is the solution of the equation: [G]

𝑀∑︁
𝑡=0

𝑣𝑡
(1 + 𝑖𝑟𝑟)𝑡

= 0

References

[G]

Examples

>>> round(irr([-100, 39, 59, 55, 20]), 5)
0.28095
>>> round(irr([-100, 0, 0, 74]), 5)
-0.0955
>>> round(irr([-100, 100, 0, -7]), 5)
-0.0833
>>> round(irr([-100, 100, 0, 7]), 5)
0.06206
>>> round(irr([-5, 10.5, 1, -8, 1]), 5)
0.0886

(Compare with the Example given for numpy.lib.financial.npv)

numpy.mirr(values, finance_rate, reinvest_rate)
Modified internal rate of return.

4.12. Financial functions 575

https://docs.python.org/dev/library/decimal.html#decimal.Decimal


NumPy Reference, Release 1.15.1

Parameters

values [array_like] Cash flows (must contain at least one positive and one negative value) or
nan is returned. The first value is considered a sunk cost at time zero.

finance_rate [scalar] Interest rate paid on the cash flows

reinvest_rate [scalar] Interest rate received on the cash flows upon reinvestment

Returns

out [float] Modified internal rate of return

numpy.nper(rate, pmt, pv, fv=0, when=’end’)
Compute the number of periodic payments.

decimal.Decimal type is not supported.

Parameters

rate [array_like] Rate of interest (per period)

pmt [array_like] Payment

pv [array_like] Present value

fv [array_like, optional] Future value

when [{{‘begin’, 1}, {‘end’, 0}}, {string, int}, optional] When payments are due (‘begin’ (1)
or ‘end’ (0))

Notes

The number of periods nper is computed by solving the equation:

fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate*((1+rate)**nper-1) = 0

but if rate = 0 then:

fv + pv + pmt*nper = 0

Examples

If you only had $150/month to pay towards the loan, how long would it take to pay-off a loan of $8,000 at 7%
annual interest?

>>> print(round(np.nper(0.07/12, -150, 8000), 5))
64.07335

So, over 64 months would be required to pay off the loan.

The same analysis could be done with several different interest rates and/or payments and/or total amounts to
produce an entire table.

>>> np.nper(*(np.ogrid[0.07/12: 0.08/12: 0.01/12,
... -150 : -99 : 50 ,
... 8000 : 9001 : 1000]))
array([[[ 64.07334877, 74.06368256],

[ 108.07548412, 127.99022654]],

(continues on next page)

576 Chapter 4. Routines

https://docs.python.org/dev/library/decimal.html#decimal.Decimal


NumPy Reference, Release 1.15.1

(continued from previous page)

[[ 66.12443902, 76.87897353],
[ 114.70165583, 137.90124779]]])

numpy.rate(nper, pmt, pv, fv, when=’end’, guess=None, tol=None, maxiter=100)
Compute the rate of interest per period.

Parameters

nper [array_like] Number of compounding periods

pmt [array_like] Payment

pv [array_like] Present value

fv [array_like] Future value

when [{{‘begin’, 1}, {‘end’, 0}}, {string, int}, optional] When payments are due (‘begin’ (1)
or ‘end’ (0))

guess [Number, optional] Starting guess for solving the rate of interest, default 0.1

tol [Number, optional] Required tolerance for the solution, default 1e-6

maxiter [int, optional] Maximum iterations in finding the solution

Notes

The rate of interest is computed by iteratively solving the (non-linear) equation:

fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

for rate.

References

Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Appli-
cations (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica,
MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=
office-formula OpenDocument-formula-20090508.odt

4.13 Functional programming

apply_along_axis(func1d, axis, arr, *args, . . . ) Apply a function to 1-D slices along the given axis.
apply_over_axes(func, a, axes) Apply a function repeatedly over multiple axes.
vectorize(pyfunc[, otypes, doc, excluded, . . . ]) Generalized function class.
frompyfunc(func, nin, nout) Takes an arbitrary Python function and returns a NumPy

ufunc.
piecewise(x, condlist, funclist, *args, **kw) Evaluate a piecewise-defined function.

numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)
Apply a function to 1-D slices along the given axis.

4.13. Functional programming 577

http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula


NumPy Reference, Release 1.15.1

Execute func1d(a, *args) where func1d operates on 1-D arrays and a is a 1-D slice of arr along axis.

This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of ii, jj, and
kk to a tuple of indices:

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):

for kk in ndindex(Nk):
f = func1d(arr[ii + s_[:,] + kk])
Nj = f.shape
for jj in ndindex(Nj):

out[ii + jj + kk] = f[jj]

Equivalently, eliminating the inner loop, this can be expressed as:

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):

for kk in ndindex(Nk):
out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk])

Parameters

func1d [function (M,) -> (Nj. . . )] This function should accept 1-D arrays. It is applied to 1-D
slices of arr along the specified axis.

axis [integer] Axis along which arr is sliced.

arr [ndarray (Ni. . . , M, Nk. . . )] Input array.

args [any] Additional arguments to func1d.

kwargs [any] Additional named arguments to func1d.

New in version 1.9.0.

Returns

out [ndarray (Ni. . . , Nj. . . , Nk. . . )] The output array. The shape of out is identical to the
shape of arr, except along the axis dimension. This axis is removed, and replaced with new
dimensions equal to the shape of the return value of func1d. So if func1d returns a scalar
out will have one fewer dimensions than arr.

See also:

apply_over_axes Apply a function repeatedly over multiple axes.

Examples

>>> def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
array([ 4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
array([ 2., 5., 8.])

For a function that returns a 1D array, the number of dimensions in outarr is the same as arr.

578 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
>>> np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],

[3, 4, 9],
[2, 5, 6]])

For a function that returns a higher dimensional array, those dimensions are inserted in place of the axis dimen-
sion.

>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(np.diag, -1, b)
array([[[1, 0, 0],

[0, 2, 0],
[0, 0, 3]],

[[4, 0, 0],
[0, 5, 0],
[0, 0, 6]],

[[7, 0, 0],
[0, 8, 0],
[0, 0, 9]]])

numpy.apply_over_axes(func, a, axes)
Apply a function repeatedly over multiple axes.

func is called as res = func(a, axis), where axis is the first element of axes. The result res of the function call must
have either the same dimensions as a or one less dimension. If res has one less dimension than a, a dimension
is inserted before axis. The call to func is then repeated for each axis in axes, with res as the first argument.

Parameters

func [function] This function must take two arguments, func(a, axis).

a [array_like] Input array.

axes [array_like] Axes over which func is applied; the elements must be integers.

Returns

apply_over_axis [ndarray] The output array. The number of dimensions is the same as a, but
the shape can be different. This depends on whether func changes the shape of its output
with respect to its input.

See also:

apply_along_axis Apply a function to 1-D slices of an array along the given axis.

Notes

This function is equivalent to tuple axis arguments to reorderable ufuncs with keepdims=True. Tuple axis
arguments to ufuncs have been available since version 1.7.0.

Examples

>>> a = np.arange(24).reshape(2,3,4)
>>> a
array([[[ 0, 1, 2, 3],

(continues on next page)

4.13. Functional programming 579



NumPy Reference, Release 1.15.1

(continued from previous page)

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

Sum over axes 0 and 2. The result has same number of dimensions as the original array:

>>> np.apply_over_axes(np.sum, a, [0,2])
array([[[ 60],

[ 92],
[124]]])

Tuple axis arguments to ufuncs are equivalent:

>>> np.sum(a, axis=(0,2), keepdims=True)
array([[[ 60],

[ 92],
[124]]])

class numpy.vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False, signa-
ture=None)

Generalized function class.

Define a vectorized function which takes a nested sequence of objects or numpy arrays as inputs and returns an
single or tuple of numpy array as output. The vectorized function evaluates pyfunc over successive tuples of the
input arrays like the python map function, except it uses the broadcasting rules of numpy.

The data type of the output of vectorized is determined by calling the function with the first element of the input.
This can be avoided by specifying the otypes argument.

Parameters

pyfunc [callable] A python function or method.

otypes [str or list of dtypes, optional] The output data type. It must be specified as either a
string of typecode characters or a list of data type specifiers. There should be one data type
specifier for each output.

doc [str, optional] The docstring for the function. If None, the docstring will be the pyfunc.
__doc__.

excluded [set, optional] Set of strings or integers representing the positional or keyword argu-
ments for which the function will not be vectorized. These will be passed directly to pyfunc
unmodified.

New in version 1.7.0.

cache [bool, optional] If True, then cache the first function call that determines the number of
outputs if otypes is not provided.

New in version 1.7.0.

signature [string, optional] Generalized universal function signature, e.g., (m,n),(n)->(m)
for vectorized matrix-vector multiplication. If provided, pyfunc will be called with (and
expected to return) arrays with shapes given by the size of corresponding core dimensions.
By default, pyfunc is assumed to take scalars as input and output.

New in version 1.12.0.

Returns

580 Chapter 4. Routines



NumPy Reference, Release 1.15.1

vectorized [callable] Vectorized function.

See also:

frompyfunc Takes an arbitrary Python function and returns a ufunc

Notes

The vectorize function is provided primarily for convenience, not for performance. The implementation is
essentially a for loop.

If otypes is not specified, then a call to the function with the first argument will be used to determine the number
of outputs. The results of this call will be cached if cache is True to prevent calling the function twice. However,
to implement the cache, the original function must be wrapped which will slow down subsequent calls, so only
do this if your function is expensive.

The new keyword argument interface and excluded argument support further degrades performance.

References

[1]

Examples

>>> def myfunc(a, b):
... "Return a-b if a>b, otherwise return a+b"
... if a > b:
... return a - b
... else:
... return a + b

>>> vfunc = np.vectorize(myfunc)
>>> vfunc([1, 2, 3, 4], 2)
array([3, 4, 1, 2])

The docstring is taken from the input function to vectorize unless it is specified:

>>> vfunc.__doc__
'Return a-b if a>b, otherwise return a+b'
>>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`')
>>> vfunc.__doc__
'Vectorized `myfunc`'

The output type is determined by evaluating the first element of the input, unless it is specified:

>>> out = vfunc([1, 2, 3, 4], 2)
>>> type(out[0])
<type 'numpy.int32'>
>>> vfunc = np.vectorize(myfunc, otypes=[float])
>>> out = vfunc([1, 2, 3, 4], 2)
>>> type(out[0])
<type 'numpy.float64'>

4.13. Functional programming 581



NumPy Reference, Release 1.15.1

The excluded argument can be used to prevent vectorizing over certain arguments. This can be useful for array-
like arguments of a fixed length such as the coefficients for a polynomial as in polyval:

>>> def mypolyval(p, x):
... _p = list(p)
... res = _p.pop(0)
... while _p:
... res = res*x + _p.pop(0)
... return res
>>> vpolyval = np.vectorize(mypolyval, excluded=['p'])
>>> vpolyval(p=[1, 2, 3], x=[0, 1])
array([3, 6])

Positional arguments may also be excluded by specifying their position:

>>> vpolyval.excluded.add(0)
>>> vpolyval([1, 2, 3], x=[0, 1])
array([3, 6])

The signature argument allows for vectorizing functions that act on non-scalar arrays of fixed length. For
example, you can use it for a vectorized calculation of Pearson correlation coefficient and its p-value:

>>> import scipy.stats
>>> pearsonr = np.vectorize(scipy.stats.pearsonr,
... signature='(n),(n)->(),()')
>>> pearsonr([[0, 1, 2, 3]], [[1, 2, 3, 4], [4, 3, 2, 1]])
(array([ 1., -1.]), array([ 0., 0.]))

Or for a vectorized convolution:

>>> convolve = np.vectorize(np.convolve, signature='(n),(m)->(k)')
>>> convolve(np.eye(4), [1, 2, 1])
array([[ 1., 2., 1., 0., 0., 0.],

[ 0., 1., 2., 1., 0., 0.],
[ 0., 0., 1., 2., 1., 0.],
[ 0., 0., 0., 1., 2., 1.]])

Methods

__call__(*args, **kwargs) Return arrays with the results of pyfunc broadcast (vec-
torized) over args and kwargs not in excluded.

vectorize.__call__(*args, **kwargs)
Return arrays with the results of pyfunc broadcast (vectorized) over args and kwargs not in excluded.

numpy.frompyfunc(func, nin, nout)
Takes an arbitrary Python function and returns a NumPy ufunc.

Can be used, for example, to add broadcasting to a built-in Python function (see Examples section).

Parameters

func [Python function object] An arbitrary Python function.

nin [int] The number of input arguments.

nout [int] The number of objects returned by func.

582 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns

out [ufunc] Returns a NumPy universal function (ufunc) object.

See also:

vectorize evaluates pyfunc over input arrays using broadcasting rules of numpy

Notes

The returned ufunc always returns PyObject arrays.

Examples

Use frompyfunc to add broadcasting to the Python function oct:

>>> oct_array = np.frompyfunc(oct, 1, 1)
>>> oct_array(np.array((10, 30, 100)))
array([012, 036, 0144], dtype=object)
>>> np.array((oct(10), oct(30), oct(100))) # for comparison
array(['012', '036', '0144'],

dtype='|S4')

numpy.piecewise(x, condlist, funclist, *args, **kw)
Evaluate a piecewise-defined function.

Given a set of conditions and corresponding functions, evaluate each function on the input data wherever its
condition is true.

Parameters

x [ndarray or scalar] The input domain.

condlist [list of bool arrays or bool scalars] Each boolean array corresponds to a function in
funclist. Wherever condlist[i] is True, funclist[i](x) is used as the output value.

Each boolean array in condlist selects a piece of x, and should therefore be of the same shape
as x.

The length of condlist must correspond to that of funclist. If one extra function is given, i.e.
if len(funclist) == len(condlist) + 1, then that extra function is the default
value, used wherever all conditions are false.

funclist [list of callables, f(x,*args,**kw), or scalars] Each function is evaluated over x wher-
ever its corresponding condition is True. It should take a 1d array as input and give an 1d
array or a scalar value as output. If, instead of a callable, a scalar is provided then a constant
function (lambda x: scalar) is assumed.

args [tuple, optional] Any further arguments given to piecewise are passed to the functions
upon execution, i.e., if called piecewise(..., ..., 1, 'a'), then each function
is called as f(x, 1, 'a').

kw [dict, optional] Keyword arguments used in calling piecewise are passed to the functions
upon execution, i.e., if called piecewise(..., ..., alpha=1), then each function
is called as f(x, alpha=1).

Returns

4.13. Functional programming 583



NumPy Reference, Release 1.15.1

out [ndarray] The output is the same shape and type as x and is found by calling the functions
in funclist on the appropriate portions of x, as defined by the boolean arrays in condlist.
Portions not covered by any condition have a default value of 0.

See also:

choose, select, where

Notes

This is similar to choose or select, except that functions are evaluated on elements of x that satisfy the corre-
sponding condition from condlist.

The result is:

|--
|funclist[0](x[condlist[0]])

out = |funclist[1](x[condlist[1]])
|...
|funclist[n2](x[condlist[n2]])
|--

Examples

Define the sigma function, which is -1 for x < 0 and +1 for x >= 0.

>>> x = np.linspace(-2.5, 2.5, 6)
>>> np.piecewise(x, [x < 0, x >= 0], [-1, 1])
array([-1., -1., -1., 1., 1., 1.])

Define the absolute value, which is -x for x <0 and x for x >= 0.

>>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x])
array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5])

Apply the same function to a scalar value.

>>> y = -2
>>> np.piecewise(y, [y < 0, y >= 0], [lambda x: -x, lambda x: x])
array(2)

4.14 NumPy-specific help functions

4.14.1 Finding help

lookfor(what[, module, import_modules, . . . ]) Do a keyword search on docstrings.

numpy.lookfor(what, module=None, import_modules=True, regenerate=False, output=None)
Do a keyword search on docstrings.

A list of objects that matched the search is displayed, sorted by relevance. All given keywords need to be found
in the docstring for it to be returned as a result, but the order does not matter.

584 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Parameters

what [str] String containing words to look for.

module [str or list, optional] Name of module(s) whose docstrings to go through.

import_modules [bool, optional] Whether to import sub-modules in packages. Default is True.

regenerate [bool, optional] Whether to re-generate the docstring cache. Default is False.

output [file-like, optional] File-like object to write the output to. If omitted, use a pager.

See also:

source, info

Notes

Relevance is determined only roughly, by checking if the keywords occur in the function name, at the start of a
docstring, etc.

Examples

>>> np.lookfor('binary representation')
Search results for 'binary representation'
------------------------------------------
numpy.binary_repr

Return the binary representation of the input number as a string.
numpy.core.setup_common.long_double_representation

Given a binary dump as given by GNU od -b, look for long double
numpy.base_repr

Return a string representation of a number in the given base system.
...

4.14.2 Reading help

info([object, maxwidth, output, toplevel]) Get help information for a function, class, or module.
source(object[, output]) Print or write to a file the source code for a NumPy object.

numpy.info(object=None, maxwidth=76, output=<_io.TextIOWrapper name=’<stdout>’ mode=’w’
encoding=’ANSI_X3.4-1968’>, toplevel=’numpy’)

Get help information for a function, class, or module.

Parameters

object [object or str, optional] Input object or name to get information about. If object is
a numpy object, its docstring is given. If it is a string, available modules are searched for
matching objects. If None, information about info itself is returned.

maxwidth [int, optional] Printing width.

output [file like object, optional] File like object that the output is written to, default is stdout.
The object has to be opened in ‘w’ or ‘a’ mode.

toplevel [str, optional] Start search at this level.

See also:

4.14. NumPy-specific help functions 585

https://docs.python.org/dev/library/functions.html#object


NumPy Reference, Release 1.15.1

source, lookfor

Notes

When used interactively with an object, np.info(obj) is equivalent to help(obj) on the Python prompt
or obj? on the IPython prompt.

Examples

>>> np.info(np.polyval)
polyval(p, x)

Evaluate the polynomial p at x.
...

When using a string for object it is possible to get multiple results.

>>> np.info('fft')

*** Found in numpy ***
Core FFT routines
...

*** Found in numpy.fft ***
fft(a, n=None, axis=-1)
...

*** Repeat reference found in numpy.fft.fftpack ***
*** Total of 3 references found. ***

numpy.source(object, output=<_io.TextIOWrapper name=’<stdout>’ mode=’w’ encoding=’ANSI_X3.4-
1968’>)

Print or write to a file the source code for a NumPy object.

The source code is only returned for objects written in Python. Many functions and classes are defined in C and
will therefore not return useful information.

Parameters

object [numpy object] Input object. This can be any object (function, class, module, . . . ).

output [file object, optional] If output not supplied then source code is printed to screen
(sys.stdout). File object must be created with either write ‘w’ or append ‘a’ modes.

See also:

lookfor, info

Examples

>>> np.source(np.interp)
In file: /usr/lib/python2.6/dist-packages/numpy/lib/function_base.py
def interp(x, xp, fp, left=None, right=None):

""".... (full docstring printed)"""
if isinstance(x, (float, int, number)):

return compiled_interp([x], xp, fp, left, right).item()
else:

return compiled_interp(x, xp, fp, left, right)

The source code is only returned for objects written in Python.

586 Chapter 4. Routines

https://docs.python.org/dev/library/functions.html#object


NumPy Reference, Release 1.15.1

>>> np.source(np.array)
Not available for this object.

4.15 Indexing routines

See also:

Indexing

4.15.1 Generating index arrays

c_ Translates slice objects to concatenation along the second
axis.

r_ Translates slice objects to concatenation along the first axis.
s_ A nicer way to build up index tuples for arrays.
nonzero(a) Return the indices of the elements that are non-zero.
where(condition, [x, y]) Return elements, either from x or y, depending on condi-

tion.
indices(dimensions[, dtype]) Return an array representing the indices of a grid.
ix_(*args) Construct an open mesh from multiple sequences.
ogrid nd_grid instance which returns an open multi-dimensional

“meshgrid”.
ravel_multi_index(multi_index, dims[, mode, . . . ]) Converts a tuple of index arrays into an array of flat indices,

applying boundary modes to the multi-index.
unravel_index(indices, dims[, order]) Converts a flat index or array of flat indices into a tuple of

coordinate arrays.
diag_indices(n[, ndim]) Return the indices to access the main diagonal of an array.
diag_indices_from(arr) Return the indices to access the main diagonal of an n-

dimensional array.
mask_indices(n, mask_func[, k]) Return the indices to access (n, n) arrays, given a masking

function.
tril_indices(n[, k, m]) Return the indices for the lower-triangle of an (n, m) array.
tril_indices_from(arr[, k]) Return the indices for the lower-triangle of arr.
triu_indices(n[, k, m]) Return the indices for the upper-triangle of an (n, m) array.
triu_indices_from(arr[, k]) Return the indices for the upper-triangle of arr.

numpy.c_ = <numpy.lib.index_tricks.CClass object>
Translates slice objects to concatenation along the second axis.

This is short-hand for np.r_['-1,2,0', index expression], which is useful because of its common
occurrence. In particular, arrays will be stacked along their last axis after being upgraded to at least 2-D with
1’s post-pended to the shape (column vectors made out of 1-D arrays).

See also:

column_stack Stack 1-D arrays as columns into a 2-D array.

r_ For more detailed documentation.

4.15. Indexing routines 587



NumPy Reference, Release 1.15.1

Examples

>>> np.c_[np.array([1,2,3]), np.array([4,5,6])]
array([[1, 4],

[2, 5],
[3, 6]])

>>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]
array([[1, 2, 3, 0, 0, 4, 5, 6]])

numpy.r_ = <numpy.lib.index_tricks.RClass object>
Translates slice objects to concatenation along the first axis.

This is a simple way to build up arrays quickly. There are two use cases.

1. If the index expression contains comma separated arrays, then stack them along their first axis.

2. If the index expression contains slice notation or scalars then create a 1-D array with a range indicated by
the slice notation.

If slice notation is used, the syntax start:stop:step is equivalent to np.arange(start, stop,
step) inside of the brackets. However, if step is an imaginary number (i.e. 100j) then its integer
portion is interpreted as a number-of-points desired and the start and stop are inclusive. In other words
start:stop:stepj is interpreted as np.linspace(start, stop, step, endpoint=1) inside
of the brackets. After expansion of slice notation, all comma separated sequences are concatenated together.

Optional character strings placed as the first element of the index expression can be used to change the output.
The strings ‘r’ or ‘c’ result in matrix output. If the result is 1-D and ‘r’ is specified a 1 x N (row) matrix is
produced. If the result is 1-D and ‘c’ is specified, then a N x 1 (column) matrix is produced. If the result is 2-D
then both provide the same matrix result.

A string integer specifies which axis to stack multiple comma separated arrays along. A string of two comma-
separated integers allows indication of the minimum number of dimensions to force each entry into as the second
integer (the axis to concatenate along is still the first integer).

A string with three comma-separated integers allows specification of the axis to concatenate along, the minimum
number of dimensions to force the entries to, and which axis should contain the start of the arrays which are less
than the specified number of dimensions. In other words the third integer allows you to specify where the 1’s
should be placed in the shape of the arrays that have their shapes upgraded. By default, they are placed in the
front of the shape tuple. The third argument allows you to specify where the start of the array should be instead.
Thus, a third argument of ‘0’ would place the 1’s at the end of the array shape. Negative integers specify where
in the new shape tuple the last dimension of upgraded arrays should be placed, so the default is ‘-1’.

Parameters

Not a function, so takes no parameters

Returns

A concatenated ndarray or matrix.

See also:

concatenate Join a sequence of arrays along an existing axis.

c_ Translates slice objects to concatenation along the second axis.

588 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])]
array([1, 2, 3, 0, 0, 4, 5, 6])
>>> np.r_[-1:1:6j, [0]*3, 5, 6]
array([-1. , -0.6, -0.2, 0.2, 0.6, 1. , 0. , 0. , 0. , 5. , 6. ])

String integers specify the axis to concatenate along or the minimum number of dimensions to force entries into.

>>> a = np.array([[0, 1, 2], [3, 4, 5]])
>>> np.r_['-1', a, a] # concatenate along last axis
array([[0, 1, 2, 0, 1, 2],

[3, 4, 5, 3, 4, 5]])
>>> np.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, dim>=2
array([[1, 2, 3],

[4, 5, 6]])

>>> np.r_['0,2,0', [1,2,3], [4,5,6]]
array([[1],

[2],
[3],
[4],
[5],
[6]])

>>> np.r_['1,2,0', [1,2,3], [4,5,6]]
array([[1, 4],

[2, 5],
[3, 6]])

Using ‘r’ or ‘c’ as a first string argument creates a matrix.

>>> np.r_['r',[1,2,3], [4,5,6]]
matrix([[1, 2, 3, 4, 5, 6]])

numpy.s_ = <numpy.lib.index_tricks.IndexExpression object>
A nicer way to build up index tuples for arrays.

Note: Use one of the two predefined instances index_exp or s_ rather than directly using IndexExpression.

For any index combination, including slicing and axis insertion, a[indices] is the same as a[np.
index_exp[indices]] for any array a. However, np.index_exp[indices] can be used anywhere
in Python code and returns a tuple of slice objects that can be used in the construction of complex index expres-
sions.

Parameters

maketuple [bool] If True, always returns a tuple.

See also:

index_exp Predefined instance that always returns a tuple: index_exp = IndexExpression(maketuple=True).

s_ Predefined instance without tuple conversion: s_ = IndexExpression(maketuple=False).

4.15. Indexing routines 589



NumPy Reference, Release 1.15.1

Notes

You can do all this with slice() plus a few special objects, but there’s a lot to remember and this version is simpler
because it uses the standard array indexing syntax.

Examples

>>> np.s_[2::2]
slice(2, None, 2)
>>> np.index_exp[2::2]
(slice(2, None, 2),)

>>> np.array([0, 1, 2, 3, 4])[np.s_[2::2]]
array([2, 4])

numpy.nonzero(a)
Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a, containing the indices of the non-zero elements in that
dimension. The values in a are always tested and returned in row-major, C-style order. The corresponding
non-zero values can be obtained with:

a[nonzero(a)]

To group the indices by element, rather than dimension, use:

transpose(nonzero(a))

The result of this is always a 2-D array, with a row for each non-zero element.

Parameters

a [array_like] Input array.

Returns

tuple_of_arrays [tuple] Indices of elements that are non-zero.

See also:

flatnonzero Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero Equivalent ndarray method.

count_nonzero Counts the number of non-zero elements in the input array.

Examples

>>> x = np.array([[1,0,0], [0,2,0], [1,1,0]])
>>> x
array([[1, 0, 0],

[0, 2, 0],
[1, 1, 0]])

>>> np.nonzero(x)
(array([0, 1, 2, 2]), array([0, 1, 0, 1]))

590 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> x[np.nonzero(x)]
array([1, 2, 1, 1])
>>> np.transpose(np.nonzero(x))
array([[0, 0],

[1, 1],
[2, 0],
[2, 1])

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the indices of the
a where the condition is true.

>>> a = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
array([[False, False, False],

[ True, True, True],
[ True, True, True]])

>>> np.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the boolean array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

numpy.where(condition[, x, y])
Return elements, either from x or y, depending on condition.

If only condition is given, return condition.nonzero().

Parameters

condition [array_like, bool] When True, yield x, otherwise yield y.

x, y [array_like, optional] Values from which to choose. x, y and condition need to be broad-
castable to some shape.

Returns

out [ndarray or tuple of ndarrays] If both x and y are specified, the output array contains ele-
ments of x where condition is True, and elements from y elsewhere.

If only condition is given, return the tuple condition.nonzero(), the indices where
condition is True.

See also:

nonzero, choose

Notes

If x and y are given and input arrays are 1-D, where is equivalent to:

[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

4.15. Indexing routines 591



NumPy Reference, Release 1.15.1

Examples

>>> np.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]])
array([[1, 8],

[3, 4]])

>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))

>>> x = np.arange(9.).reshape(3, 3)
>>> np.where( x > 5 )
(array([2, 2, 2]), array([0, 1, 2]))
>>> x[np.where( x > 3.0 )] # Note: result is 1D.
array([ 4., 5., 6., 7., 8.])
>>> np.where(x < 5, x, -1) # Note: broadcasting.
array([[ 0., 1., 2.],

[ 3., 4., -1.],
[-1., -1., -1.]])

Find the indices of elements of x that are in goodvalues.

>>> goodvalues = [3, 4, 7]
>>> ix = np.isin(x, goodvalues)
>>> ix
array([[False, False, False],

[ True, True, False],
[False, True, False]])

>>> np.where(ix)
(array([1, 1, 2]), array([0, 1, 1]))

numpy.indices(dimensions, dtype=<class ’int’>)
Return an array representing the indices of a grid.

Compute an array where the subarrays contain index values 0,1,. . . varying only along the corresponding axis.

Parameters

dimensions [sequence of ints] The shape of the grid.

dtype [dtype, optional] Data type of the result.

Returns

grid [ndarray] The array of grid indices, grid.shape = (len(dimensions),) +
tuple(dimensions).

See also:

mgrid, meshgrid

Notes

The output shape is obtained by prepending the number of dimensions in front of the tuple of dimensions, i.e. if
dimensions is a tuple (r0, ..., rN-1) of length N, the output shape is (N,r0,...,rN-1).

The subarrays grid[k] contains the N-D array of indices along the k-th axis. Explicitly:

592 Chapter 4. Routines



NumPy Reference, Release 1.15.1

grid[k,i0,i1,...,iN-1] = ik

Examples

>>> grid = np.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array([[0, 0, 0],

[1, 1, 1]])
>>> grid[1] # column indices
array([[0, 1, 2],

[0, 1, 2]])

The indices can be used as an index into an array.

>>> x = np.arange(20).reshape(5, 4)
>>> row, col = np.indices((2, 3))
>>> x[row, col]
array([[0, 1, 2],

[4, 5, 6]])

Note that it would be more straightforward in the above example to extract the required elements directly with
x[:2, :3].

numpy.ix_(*args)
Construct an open mesh from multiple sequences.

This function takes N 1-D sequences and returns N outputs with N dimensions each, such that the shape is 1 in
all but one dimension and the dimension with the non-unit shape value cycles through all N dimensions.

Using ix_ one can quickly construct index arrays that will index the cross product. a[np.ix_([1,3],[2,
5])] returns the array [[a[1,2] a[1,5]], [a[3,2] a[3,5]]].

Parameters

args [1-D sequences] Each sequence should be of integer or boolean type. Boolean sequences
will be interpreted as boolean masks for the corresponding dimension (equivalent to passing
in np.nonzero(boolean_sequence)).

Returns

out [tuple of ndarrays] N arrays with N dimensions each, with N the number of input sequences.
Together these arrays form an open mesh.

See also:

ogrid, mgrid, meshgrid

Examples

>>> a = np.arange(10).reshape(2, 5)
>>> a
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])
>>> ixgrid = np.ix_([0, 1], [2, 4])

(continues on next page)

4.15. Indexing routines 593



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> ixgrid
(array([[0],

[1]]), array([[2, 4]]))
>>> ixgrid[0].shape, ixgrid[1].shape
((2, 1), (1, 2))
>>> a[ixgrid]
array([[2, 4],

[7, 9]])

>>> ixgrid = np.ix_([True, True], [2, 4])
>>> a[ixgrid]
array([[2, 4],

[7, 9]])
>>> ixgrid = np.ix_([True, True], [False, False, True, False, True])
>>> a[ixgrid]
array([[2, 4],

[7, 9]])

numpy.ravel_multi_index(multi_index, dims, mode=’raise’, order=’C’)
Converts a tuple of index arrays into an array of flat indices, applying boundary modes to the multi-index.

Parameters

multi_index [tuple of array_like] A tuple of integer arrays, one array for each dimension.

dims [tuple of ints] The shape of array into which the indices from multi_index apply.

mode [{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices are handled. Can
specify either one mode or a tuple of modes, one mode per index.

• ‘raise’ – raise an error (default)

• ‘wrap’ – wrap around

• ‘clip’ – clip to the range

In ‘clip’ mode, a negative index which would normally wrap will clip to 0 instead.

order [{‘C’, ‘F’}, optional] Determines whether the multi-index should be viewed as indexing
in row-major (C-style) or column-major (Fortran-style) order.

Returns

raveled_indices [ndarray] An array of indices into the flattened version of an array of dimen-
sions dims.

See also:

unravel_index

Notes

New in version 1.6.0.

Examples

594 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> arr = np.array([[3,6,6],[4,5,1]])
>>> np.ravel_multi_index(arr, (7,6))
array([22, 41, 37])
>>> np.ravel_multi_index(arr, (7,6), order='F')
array([31, 41, 13])
>>> np.ravel_multi_index(arr, (4,6), mode='clip')
array([22, 23, 19])
>>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap'))
array([12, 13, 13])

>>> np.ravel_multi_index((3,1,4,1), (6,7,8,9))
1621

numpy.unravel_index(indices, dims, order=’C’)
Converts a flat index or array of flat indices into a tuple of coordinate arrays.

Parameters

indices [array_like] An integer array whose elements are indices into the flattened version of
an array of dimensions dims. Before version 1.6.0, this function accepted just one index
value.

dims [tuple of ints] The shape of the array to use for unraveling indices.

order [{‘C’, ‘F’}, optional] Determines whether the indices should be viewed as indexing in
row-major (C-style) or column-major (Fortran-style) order.

New in version 1.6.0.

Returns

unraveled_coords [tuple of ndarray] Each array in the tuple has the same shape as the
indices array.

See also:

ravel_multi_index

Examples

>>> np.unravel_index([22, 41, 37], (7,6))
(array([3, 6, 6]), array([4, 5, 1]))
>>> np.unravel_index([31, 41, 13], (7,6), order='F')
(array([3, 6, 6]), array([4, 5, 1]))

>>> np.unravel_index(1621, (6,7,8,9))
(3, 1, 4, 1)

numpy.diag_indices(n, ndim=2)
Return the indices to access the main diagonal of an array.

This returns a tuple of indices that can be used to access the main diagonal of an array a with a.ndim >= 2
dimensions and shape (n, n, . . . , n). For a.ndim = 2 this is the usual diagonal, for a.ndim > 2 this is the
set of indices to access a[i, i, ..., i] for i = [0..n-1].

Parameters

n [int] The size, along each dimension, of the arrays for which the returned indices can be used.

4.15. Indexing routines 595



NumPy Reference, Release 1.15.1

ndim [int, optional] The number of dimensions.

See also:

diag_indices_from

Notes

New in version 1.4.0.

Examples

Create a set of indices to access the diagonal of a (4, 4) array:

>>> di = np.diag_indices(4)
>>> di
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))
>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])

>>> a[di] = 100
>>> a
array([[100, 1, 2, 3],

[ 4, 100, 6, 7],
[ 8, 9, 100, 11],
[ 12, 13, 14, 100]])

Now, we create indices to manipulate a 3-D array:

>>> d3 = np.diag_indices(2, 3)
>>> d3
(array([0, 1]), array([0, 1]), array([0, 1]))

And use it to set the diagonal of an array of zeros to 1:

>>> a = np.zeros((2, 2, 2), dtype=int)
>>> a[d3] = 1
>>> a
array([[[1, 0],

[0, 0]],
[[0, 0],
[0, 1]]])

numpy.diag_indices_from(arr)
Return the indices to access the main diagonal of an n-dimensional array.

See diag_indices for full details.

Parameters

arr [array, at least 2-D]

See also:

diag_indices

596 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

New in version 1.4.0.

numpy.mask_indices(n, mask_func, k=0)
Return the indices to access (n, n) arrays, given a masking function.

Assume mask_func is a function that, for a square array a of size (n, n) with a possible offset argument k,
when called as mask_func(a, k) returns a new array with zeros in certain locations (functions like triu
or tril do precisely this). Then this function returns the indices where the non-zero values would be located.

Parameters

n [int] The returned indices will be valid to access arrays of shape (n, n).

mask_func [callable] A function whose call signature is similar to that of triu, tril. That
is, mask_func(x, k) returns a boolean array, shaped like x. k is an optional argument
to the function.

k [scalar] An optional argument which is passed through to mask_func. Functions like triu,
tril take a second argument that is interpreted as an offset.

Returns

indices [tuple of arrays.] The n arrays of indices corresponding to the locations where
mask_func(np.ones((n, n)), k) is True.

See also:

triu, tril, triu_indices, tril_indices

Notes

New in version 1.4.0.

Examples

These are the indices that would allow you to access the upper triangular part of any 3x3 array:

>>> iu = np.mask_indices(3, np.triu)

For example, if a is a 3x3 array:

>>> a = np.arange(9).reshape(3, 3)
>>> a
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> a[iu]
array([0, 1, 2, 4, 5, 8])

An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right
of the main one:

>>> iu1 = np.mask_indices(3, np.triu, 1)

with which we now extract only three elements:

4.15. Indexing routines 597



NumPy Reference, Release 1.15.1

>>> a[iu1]
array([1, 2, 5])

numpy.tril_indices(n, k=0, m=None)
Return the indices for the lower-triangle of an (n, m) array.

Parameters

n [int] The row dimension of the arrays for which the returned indices will be valid.

k [int, optional] Diagonal offset (see tril for details).

m [int, optional] New in version 1.9.0.

The column dimension of the arrays for which the returned arrays will be valid. By default
m is taken equal to n.

Returns

inds [tuple of arrays] The indices for the triangle. The returned tuple contains two arrays, each
with the indices along one dimension of the array.

See also:

triu_indices similar function, for upper-triangular.

mask_indices generic function accepting an arbitrary mask function.

tril, triu

Notes

New in version 1.4.0.

Examples

Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main
diagonal, and one starting two diagonals further right:

>>> il1 = np.tril_indices(4)
>>> il2 = np.tril_indices(4, 2)

Here is how they can be used with a sample array:

>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])

Both for indexing:

>>> a[il1]
array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15])

And for assigning values:

598 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> a[il1] = -1
>>> a
array([[-1, 1, 2, 3],

[-1, -1, 6, 7],
[-1, -1, -1, 11],
[-1, -1, -1, -1]])

These cover almost the whole array (two diagonals right of the main one):

>>> a[il2] = -10
>>> a
array([[-10, -10, -10, 3],

[-10, -10, -10, -10],
[-10, -10, -10, -10],
[-10, -10, -10, -10]])

numpy.tril_indices_from(arr, k=0)
Return the indices for the lower-triangle of arr.

See tril_indices for full details.

Parameters

arr [array_like] The indices will be valid for square arrays whose dimensions are the same as
arr.

k [int, optional] Diagonal offset (see tril for details).

See also:

tril_indices, tril

Notes

New in version 1.4.0.

numpy.triu_indices(n, k=0, m=None)
Return the indices for the upper-triangle of an (n, m) array.

Parameters

n [int] The size of the arrays for which the returned indices will be valid.

k [int, optional] Diagonal offset (see triu for details).

m [int, optional] New in version 1.9.0.

The column dimension of the arrays for which the returned arrays will be valid. By default
m is taken equal to n.

Returns

inds [tuple, shape(2) of ndarrays, shape(n)] The indices for the triangle. The returned tuple
contains two arrays, each with the indices along one dimension of the array. Can be used to
slice a ndarray of shape(n, n).

See also:

tril_indices similar function, for lower-triangular.

mask_indices generic function accepting an arbitrary mask function.

4.15. Indexing routines 599



NumPy Reference, Release 1.15.1

triu, tril

Notes

New in version 1.4.0.

Examples

Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main
diagonal, and one starting two diagonals further right:

>>> iu1 = np.triu_indices(4)
>>> iu2 = np.triu_indices(4, 2)

Here is how they can be used with a sample array:

>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])

Both for indexing:

>>> a[iu1]
array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15])

And for assigning values:

>>> a[iu1] = -1
>>> a
array([[-1, -1, -1, -1],

[ 4, -1, -1, -1],
[ 8, 9, -1, -1],
[12, 13, 14, -1]])

These cover only a small part of the whole array (two diagonals right of the main one):

>>> a[iu2] = -10
>>> a
array([[ -1, -1, -10, -10],

[ 4, -1, -1, -10],
[ 8, 9, -1, -1],
[ 12, 13, 14, -1]])

numpy.triu_indices_from(arr, k=0)
Return the indices for the upper-triangle of arr.

See triu_indices for full details.

Parameters

arr [ndarray, shape(N, N)] The indices will be valid for square arrays.

k [int, optional] Diagonal offset (see triu for details).

600 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns

triu_indices_from [tuple, shape(2) of ndarray, shape(N)] Indices for the upper-triangle of arr.

See also:

triu_indices, triu

Notes

New in version 1.4.0.

4.15.2 Indexing-like operations

take(a, indices[, axis, out, mode]) Take elements from an array along an axis.
take_along_axis(arr, indices, axis) Take values from the input array by matching 1d index and

data slices.
choose(a, choices[, out, mode]) Construct an array from an index array and a set of arrays

to choose from.
compress(condition, a[, axis, out]) Return selected slices of an array along given axis.
diag(v[, k]) Extract a diagonal or construct a diagonal array.
diagonal(a[, offset, axis1, axis2]) Return specified diagonals.
select(condlist, choicelist[, default]) Return an array drawn from elements in choicelist, depend-

ing on conditions.
lib.stride_tricks.as_strided(x[, shape, . . . ]) Create a view into the array with the given shape and

strides.

numpy.take(a, indices, axis=None, out=None, mode=’raise’)
Take elements from an array along an axis.

When axis is not None, this function does the same thing as “fancy” indexing (indexing arrays using arrays);
however, it can be easier to use if you need elements along a given axis. A call such as np.take(arr,
indices, axis=3) is equivalent to arr[:,:,:,indices,...].

Explained without fancy indexing, this is equivalent to the following use of ndindex, which sets each of ii,
jj, and kk to a tuple of indices:

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
Nj = indices.shape
for ii in ndindex(Ni):

for jj in ndindex(Nj):
for kk in ndindex(Nk):

out[ii + jj + kk] = a[ii + (indices[jj],) + kk]

Parameters

a [array_like (Ni. . . , M, Nk. . . )] The source array.

indices [array_like (Nj. . . )] The indices of the values to extract.

New in version 1.8.0.

Also allow scalars for indices.

axis [int, optional] The axis over which to select values. By default, the flattened input array is
used.

4.15. Indexing routines 601



NumPy Reference, Release 1.15.1

out [ndarray, optional (Ni. . . , Nj. . . , Nk. . . )] If provided, the result will be placed in this array.
It should be of the appropriate shape and dtype.

mode [{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices will behave.

• ‘raise’ – raise an error (default)

• ‘wrap’ – wrap around

• ‘clip’ – clip to the range

‘clip’ mode means that all indices that are too large are replaced by the index that addresses
the last element along that axis. Note that this disables indexing with negative numbers.

Returns

out [ndarray (Ni. . . , Nj. . . , Nk. . . )] The returned array has the same type as a.

See also:

compress Take elements using a boolean mask

ndarray.take equivalent method

take_along_axis Take elements by matching the array and the index arrays

Notes

By eliminating the inner loop in the description above, and using s_ to build simple slice objects, take can be
expressed in terms of applying fancy indexing to each 1-d slice:

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):

for kk in ndindex(Nj):
out[ii + s_[...,] + kk] = a[ii + s_[:,] + kk][indices]

For this reason, it is equivalent to (but faster than) the following use of apply_along_axis:

out = np.apply_along_axis(lambda a_1d: a_1d[indices], axis, a)

Examples

>>> a = [4, 3, 5, 7, 6, 8]
>>> indices = [0, 1, 4]
>>> np.take(a, indices)
array([4, 3, 6])

In this example if a is an ndarray, “fancy” indexing can be used.

>>> a = np.array(a)
>>> a[indices]
array([4, 3, 6])

If indices is not one dimensional, the output also has these dimensions.

602 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> np.take(a, [[0, 1], [2, 3]])
array([[4, 3],

[5, 7]])

numpy.take_along_axis(arr, indices, axis)
Take values from the input array by matching 1d index and data slices.

This iterates over matching 1d slices oriented along the specified axis in the index and data arrays, and uses the
former to look up values in the latter. These slices can be different lengths.

Functions returning an index along an axis, like argsort and argpartition, produce suitable indices for
this function.

New in version 1.15.0.

Parameters

arr: ndarray (Ni. . . , M, Nk. . . ) Source array

indices: ndarray (Ni. . . , J, Nk. . . ) Indices to take along each 1d slice of arr. This must match
the dimension of arr, but dimensions Ni and Nj only need to broadcast against arr.

axis: int The axis to take 1d slices along. If axis is None, the input array is treated as if it had
first been flattened to 1d, for consistency with sort and argsort.

Returns

out: ndarray (Ni. . . , J, Nk. . . ) The indexed result.

See also:

take Take along an axis, using the same indices for every 1d slice

put_along_axis Put values into the destination array by matching 1d index and data slices

Notes

This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of ii and kk to
a tuple of indices:

Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
J = indices.shape[axis] # Need not equal M
out = np.empty(Nk + (J,) + Nk)

for ii in ndindex(Ni):
for kk in ndindex(Nk):

a_1d = a [ii + s_[:,] + kk]
indices_1d = indices[ii + s_[:,] + kk]
out_1d = out [ii + s_[:,] + kk]
for j in range(J):

out_1d[j] = a_1d[indices_1d[j]]

Equivalently, eliminating the inner loop, the last two lines would be:

out_1d[:] = a_1d[indices_1d]

4.15. Indexing routines 603



NumPy Reference, Release 1.15.1

Examples

For this sample array

>>> a = np.array([[10, 30, 20], [60, 40, 50]])

We can sort either by using sort directly, or argsort and this function

>>> np.sort(a, axis=1)
array([[10, 20, 30],

[40, 50, 60]])
>>> ai = np.argsort(a, axis=1); ai
array([[0, 2, 1],

[1, 2, 0]], dtype=int64)
>>> np.take_along_axis(a, ai, axis=1)
array([[10, 20, 30],

[40, 50, 60]])

The same works for max and min, if you expand the dimensions:

>>> np.expand_dims(np.max(a, axis=1), axis=1)
array([[30],

[60]])
>>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1)
>>> ai
array([[1],

[0], dtype=int64)
>>> np.take_along_axis(a, ai, axis=1)
array([[30],

[60]])

If we want to get the max and min at the same time, we can stack the indices first

>>> ai_min = np.expand_dims(np.argmin(a, axis=1), axis=1)
>>> ai_max = np.expand_dims(np.argmax(a, axis=1), axis=1)
>>> ai = np.concatenate([ai_min, ai_max], axis=axis)
>> ai
array([[0, 1],

[1, 0]], dtype=int64)
>>> np.take_along_axis(a, ai, axis=1)
array([[10, 30],

[40, 60]])

numpy.choose(a, choices, out=None, mode=’raise’)
Construct an array from an index array and a set of arrays to choose from.

First of all, if confused or uncertain, definitely look at the Examples - in its full generality, this function is less
simple than it might seem from the following code description (below ndi = numpy.lib.index_tricks):

np.choose(a,c) == np.array([c[a[I]][I] for I in ndi.ndindex(a.shape)]).

But this omits some subtleties. Here is a fully general summary:

Given an “index” array (a) of integers and a sequence of n arrays (choices), a and each choice array are first
broadcast, as necessary, to arrays of a common shape; calling these Ba and Bchoices[i], i = 0,. . . ,n-1 we have
that, necessarily, Ba.shape == Bchoices[i].shape for each i. Then, a new array with shape Ba.
shape is created as follows:

604 Chapter 4. Routines



NumPy Reference, Release 1.15.1

• if mode=raise (the default), then, first of all, each element of a (and thus Ba) must be in the range [0,
n-1]; now, suppose that i (in that range) is the value at the (j0, j1, . . . , jm) position in Ba - then the value at
the same position in the new array is the value in Bchoices[i] at that same position;

• if mode=wrap, values in a (and thus Ba) may be any (signed) integer; modular arithmetic is used to map
integers outside the range [0, n-1] back into that range; and then the new array is constructed as above;

• if mode=clip, values in a (and thus Ba) may be any (signed) integer; negative integers are mapped to 0;
values greater than n-1 are mapped to n-1; and then the new array is constructed as above.

Parameters

a [int array] This array must contain integers in [0, n-1], where n is the number of choices,
unless mode=wrap or mode=clip, in which cases any integers are permissible.

choices [sequence of arrays] Choice arrays. a and all of the choices must be broadcastable to the
same shape. If choices is itself an array (not recommended), then its outermost dimension
(i.e., the one corresponding to choices.shape[0]) is taken as defining the “sequence”.

out [array, optional] If provided, the result will be inserted into this array. It should be of the
appropriate shape and dtype.

mode [{‘raise’ (default), ‘wrap’, ‘clip’}, optional] Specifies how indices outside [0, n-1] will
be treated:

• ‘raise’ : an exception is raised

• ‘wrap’ : value becomes value mod n

• ‘clip’ : values < 0 are mapped to 0, values > n-1 are mapped to n-1

Returns

merged_array [array] The merged result.

Raises

ValueError: shape mismatch If a and each choice array are not all broadcastable to the same
shape.

See also:

ndarray.choose equivalent method

Notes

To reduce the chance of misinterpretation, even though the following “abuse” is nominally supported, choices
should neither be, nor be thought of as, a single array, i.e., the outermost sequence-like container should be
either a list or a tuple.

Examples

>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
... [20, 21, 22, 23], [30, 31, 32, 33]]
>>> np.choose([2, 3, 1, 0], choices
... # the first element of the result will be the first element of the
... # third (2+1) "array" in choices, namely, 20; the second element
... # will be the second element of the fourth (3+1) choice array, i.e.,

(continues on next page)

4.15. Indexing routines 605



NumPy Reference, Release 1.15.1

(continued from previous page)

... # 31, etc.

... )
array([20, 31, 12, 3])
>>> np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1)
array([20, 31, 12, 3])
>>> # because there are 4 choice arrays
>>> np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4)
array([20, 1, 12, 3])
>>> # i.e., 0

A couple examples illustrating how choose broadcasts:

>>> a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]
>>> choices = [-10, 10]
>>> np.choose(a, choices)
array([[ 10, -10, 10],

[-10, 10, -10],
[ 10, -10, 10]])

>>> # With thanks to Anne Archibald
>>> a = np.array([0, 1]).reshape((2,1,1))
>>> c1 = np.array([1, 2, 3]).reshape((1,3,1))
>>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))
>>> np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2
array([[[ 1, 1, 1, 1, 1],

[ 2, 2, 2, 2, 2],
[ 3, 3, 3, 3, 3]],

[[-1, -2, -3, -4, -5],
[-1, -2, -3, -4, -5],
[-1, -2, -3, -4, -5]]])

numpy.compress(condition, a, axis=None, out=None)
Return selected slices of an array along given axis.

When working along a given axis, a slice along that axis is returned in output for each index where condition
evaluates to True. When working on a 1-D array, compress is equivalent to extract.

Parameters

condition [1-D array of bools] Array that selects which entries to return. If len(condition) is
less than the size of a along the given axis, then output is truncated to the length of the
condition array.

a [array_like] Array from which to extract a part.

axis [int, optional] Axis along which to take slices. If None (default), work on the flattened
array.

out [ndarray, optional] Output array. Its type is preserved and it must be of the right shape to
hold the output.

Returns

compressed_array [ndarray] A copy of a without the slices along axis for which condition is
false.

See also:

take, choose, diag, diagonal, select

606 Chapter 4. Routines



NumPy Reference, Release 1.15.1

ndarray.compress Equivalent method in ndarray

np.extract Equivalent method when working on 1-D arrays

numpy.doc.ufuncs Section “Output arguments”

Examples

>>> a = np.array([[1, 2], [3, 4], [5, 6]])
>>> a
array([[1, 2],

[3, 4],
[5, 6]])

>>> np.compress([0, 1], a, axis=0)
array([[3, 4]])
>>> np.compress([False, True, True], a, axis=0)
array([[3, 4],

[5, 6]])
>>> np.compress([False, True], a, axis=1)
array([[2],

[4],
[6]])

Working on the flattened array does not return slices along an axis but selects elements.

>>> np.compress([False, True], a)
array([2])

numpy.diagonal(a, offset=0, axis1=0, axis2=1)
Return specified diagonals.

If a is 2-D, returns the diagonal of a with the given offset, i.e., the collection of elements of the form a[i,
i+offset]. If a has more than two dimensions, then the axes specified by axis1 and axis2 are used to
determine the 2-D sub-array whose diagonal is returned. The shape of the resulting array can be determined by
removing axis1 and axis2 and appending an index to the right equal to the size of the resulting diagonals.

In versions of NumPy prior to 1.7, this function always returned a new, independent array containing a copy of
the values in the diagonal.

In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal, but depending on this fact is deprecated.
Writing to the resulting array continues to work as it used to, but a FutureWarning is issued.

Starting in NumPy 1.9 it returns a read-only view on the original array. Attempting to write to the resulting
array will produce an error.

In some future release, it will return a read/write view and writing to the returned array will alter your original
array. The returned array will have the same type as the input array.

If you don’t write to the array returned by this function, then you can just ignore all of the above.

If you depend on the current behavior, then we suggest copying the returned array explicitly, i.e., use np.
diagonal(a).copy() instead of just np.diagonal(a). This will work with both past and future ver-
sions of NumPy.

Parameters

a [array_like] Array from which the diagonals are taken.

offset [int, optional] Offset of the diagonal from the main diagonal. Can be positive or negative.
Defaults to main diagonal (0).

4.15. Indexing routines 607



NumPy Reference, Release 1.15.1

axis1 [int, optional] Axis to be used as the first axis of the 2-D sub-arrays from which the
diagonals should be taken. Defaults to first axis (0).

axis2 [int, optional] Axis to be used as the second axis of the 2-D sub-arrays from which the
diagonals should be taken. Defaults to second axis (1).

Returns

array_of_diagonals [ndarray] If a is 2-D, then a 1-D array containing the diagonal and of the
same type as a is returned unless a is a matrix, in which case a 1-D array rather than a
(2-D) matrix is returned in order to maintain backward compatibility.

If a.ndim > 2, then the dimensions specified by axis1 and axis2 are removed, and a new
axis inserted at the end corresponding to the diagonal.

Raises

ValueError If the dimension of a is less than 2.

See also:

diag MATLAB work-a-like for 1-D and 2-D arrays.

diagflat Create diagonal arrays.

trace Sum along diagonals.

Examples

>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],

[2, 3]])
>>> a.diagonal()
array([0, 3])
>>> a.diagonal(1)
array([1])

A 3-D example:

>>> a = np.arange(8).reshape(2,2,2); a
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> a.diagonal(0, # Main diagonals of two arrays created by skipping
... 0, # across the outer(left)-most axis last and
... 1) # the "middle" (row) axis first.
array([[0, 6],

[1, 7]])

The sub-arrays whose main diagonals we just obtained; note that each corresponds to fixing the right-most
(column) axis, and that the diagonals are “packed” in rows.

>>> a[:,:,0] # main diagonal is [0 6]
array([[0, 2],

[4, 6]])
>>> a[:,:,1] # main diagonal is [1 7]

(continues on next page)

608 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

array([[1, 3],
[5, 7]])

numpy.select(condlist, choicelist, default=0)
Return an array drawn from elements in choicelist, depending on conditions.

Parameters

condlist [list of bool ndarrays] The list of conditions which determine from which array in
choicelist the output elements are taken. When multiple conditions are satisfied, the first
one encountered in condlist is used.

choicelist [list of ndarrays] The list of arrays from which the output elements are taken. It has
to be of the same length as condlist.

default [scalar, optional] The element inserted in output when all conditions evaluate to False.

Returns

output [ndarray] The output at position m is the m-th element of the array in choicelist where
the m-th element of the corresponding array in condlist is True.

See also:

where Return elements from one of two arrays depending on condition.

take, choose, compress, diag, diagonal

Examples

>>> x = np.arange(10)
>>> condlist = [x<3, x>5]
>>> choicelist = [x, x**2]
>>> np.select(condlist, choicelist)
array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81])

numpy.lib.stride_tricks.as_strided(x, shape=None, strides=None, subok=False, write-
able=True)

Create a view into the array with the given shape and strides.

Warning: This function has to be used with extreme care, see notes.

Parameters

x [ndarray] Array to create a new.

shape [sequence of int, optional] The shape of the new array. Defaults to x.shape.

strides [sequence of int, optional] The strides of the new array. Defaults to x.strides.

subok [bool, optional] New in version 1.10.

If True, subclasses are preserved.

writeable [bool, optional] New in version 1.12.

If set to False, the returned array will always be readonly. Otherwise it will be writable if
the original array was. It is advisable to set this to False if possible (see Notes).

4.15. Indexing routines 609



NumPy Reference, Release 1.15.1

Returns

view [ndarray]

See also:

broadcast_to broadcast an array to a given shape.

reshape reshape an array.

Notes

as_strided creates a view into the array given the exact strides and shape. This means it manipulates the
internal data structure of ndarray and, if done incorrectly, the array elements can point to invalid memory and can
corrupt results or crash your program. It is advisable to always use the original x.strides when calculating
new strides to avoid reliance on a contiguous memory layout.

Furthermore, arrays created with this function often contain self overlapping memory, so that two elements
are identical. Vectorized write operations on such arrays will typically be unpredictable. They may even give
different results for small, large, or transposed arrays. Since writing to these arrays has to be tested and done
with great care, you may want to use writeable=False to avoid accidental write operations.

For these reasons it is advisable to avoid as_strided when possible.

4.15.3 Inserting data into arrays

place(arr, mask, vals) Change elements of an array based on conditional and input
values.

put(a, ind, v[, mode]) Replaces specified elements of an array with given values.
put_along_axis(arr, indices, values, axis) Put values into the destination array by matching 1d index

and data slices.
putmask(a, mask, values) Changes elements of an array based on conditional and in-

put values.
fill_diagonal(a, val[, wrap]) Fill the main diagonal of the given array of any dimension-

ality.

numpy.place(arr, mask, vals)
Change elements of an array based on conditional and input values.

Similar to np.copyto(arr, vals, where=mask), the difference is that place uses the first N ele-
ments of vals, where N is the number of True values in mask, while copyto uses the elements where mask is
True.

Note that extract does the exact opposite of place.

Parameters

arr [ndarray] Array to put data into.

mask [array_like] Boolean mask array. Must have the same size as a.

vals [1-D sequence] Values to put into a. Only the first N elements are used, where N is the
number of True values in mask. If vals is smaller than N, it will be repeated, and if elements
of a are to be masked, this sequence must be non-empty.

See also:

610 Chapter 4. Routines



NumPy Reference, Release 1.15.1

copyto, put, take, extract

Examples

>>> arr = np.arange(6).reshape(2, 3)
>>> np.place(arr, arr>2, [44, 55])
>>> arr
array([[ 0, 1, 2],

[44, 55, 44]])

numpy.put(a, ind, v, mode=’raise’)
Replaces specified elements of an array with given values.

The indexing works on the flattened target array. put is roughly equivalent to:

a.flat[ind] = v

Parameters

a [ndarray] Target array.

ind [array_like] Target indices, interpreted as integers.

v [array_like] Values to place in a at target indices. If v is shorter than ind it will be repeated as
necessary.

mode [{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices will behave.

• ‘raise’ – raise an error (default)

• ‘wrap’ – wrap around

• ‘clip’ – clip to the range

‘clip’ mode means that all indices that are too large are replaced by the index that addresses
the last element along that axis. Note that this disables indexing with negative numbers.

See also:

putmask, place

put_along_axis Put elements by matching the array and the index arrays

Examples

>>> a = np.arange(5)
>>> np.put(a, [0, 2], [-44, -55])
>>> a
array([-44, 1, -55, 3, 4])

>>> a = np.arange(5)
>>> np.put(a, 22, -5, mode='clip')
>>> a
array([ 0, 1, 2, 3, -5])

numpy.put_along_axis(arr, indices, values, axis)
Put values into the destination array by matching 1d index and data slices.

4.15. Indexing routines 611



NumPy Reference, Release 1.15.1

This iterates over matching 1d slices oriented along the specified axis in the index and data arrays, and uses the
former to place values into the latter. These slices can be different lengths.

Functions returning an index along an axis, like argsort and argpartition, produce suitable indices for
this function.

New in version 1.15.0.

Parameters

arr: ndarray (Ni. . . , M, Nk. . . ) Destination array.

indices: ndarray (Ni. . . , J, Nk. . . ) Indices to change along each 1d slice of arr. This must
match the dimension of arr, but dimensions in Ni and Nj may be 1 to broadcast against arr.

values: array_like (Ni. . . , J, Nk. . . ) values to insert at those indices. Its shape and dimension
are broadcast to match that of indices.

axis: int The axis to take 1d slices along. If axis is None, the destination array is treated as if a
flattened 1d view had been created of it.

See also:

take_along_axis Take values from the input array by matching 1d index and data slices

Notes

This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of ii and kk to
a tuple of indices:

Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
J = indices.shape[axis] # Need not equal M

for ii in ndindex(Ni):
for kk in ndindex(Nk):

a_1d = a [ii + s_[:,] + kk]
indices_1d = indices[ii + s_[:,] + kk]
values_1d = values [ii + s_[:,] + kk]
for j in range(J):

a_1d[indices_1d[j]] = values_1d[j]

Equivalently, eliminating the inner loop, the last two lines would be:

a_1d[indices_1d] = values_1d

Examples

For this sample array

>>> a = np.array([[10, 30, 20], [60, 40, 50]])

We can replace the maximum values with:

>>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1)
>>> ai
array([[1],

[0]], dtype=int64)

(continues on next page)

612 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> np.put_along_axis(a, ai, 99, axis=1)
>>> a
array([[10, 99, 20],

[99, 40, 50]])

numpy.putmask(a, mask, values)
Changes elements of an array based on conditional and input values.

Sets a.flat[n] = values[n] for each n where mask.flat[n]==True.

If values is not the same size as a and mask then it will repeat. This gives behavior different from a[mask] =
values.

Parameters

a [array_like] Target array.

mask [array_like] Boolean mask array. It has to be the same shape as a.

values [array_like] Values to put into a where mask is True. If values is smaller than a it will
be repeated.

See also:

place, put, take, copyto

Examples

>>> x = np.arange(6).reshape(2, 3)
>>> np.putmask(x, x>2, x**2)
>>> x
array([[ 0, 1, 2],

[ 9, 16, 25]])

If values is smaller than a it is repeated:

>>> x = np.arange(5)
>>> np.putmask(x, x>1, [-33, -44])
>>> x
array([ 0, 1, -33, -44, -33])

numpy.fill_diagonal(a, val, wrap=False)
Fill the main diagonal of the given array of any dimensionality.

For an array a with a.ndim >= 2, the diagonal is the list of locations with indices a[i, ..., i] all
identical. This function modifies the input array in-place, it does not return a value.

Parameters

a [array, at least 2-D.] Array whose diagonal is to be filled, it gets modified in-place.

val [scalar] Value to be written on the diagonal, its type must be compatible with that of the
array a.

wrap [bool] For tall matrices in NumPy version up to 1.6.2, the diagonal “wrapped” after N
columns. You can have this behavior with this option. This affects only tall matrices.

See also:

diag_indices, diag_indices_from

4.15. Indexing routines 613



NumPy Reference, Release 1.15.1

Notes

New in version 1.4.0.

This functionality can be obtained via diag_indices, but internally this version uses a much faster imple-
mentation that never constructs the indices and uses simple slicing.

Examples

>>> a = np.zeros((3, 3), int)
>>> np.fill_diagonal(a, 5)
>>> a
array([[5, 0, 0],

[0, 5, 0],
[0, 0, 5]])

The same function can operate on a 4-D array:

>>> a = np.zeros((3, 3, 3, 3), int)
>>> np.fill_diagonal(a, 4)

We only show a few blocks for clarity:

>>> a[0, 0]
array([[4, 0, 0],

[0, 0, 0],
[0, 0, 0]])

>>> a[1, 1]
array([[0, 0, 0],

[0, 4, 0],
[0, 0, 0]])

>>> a[2, 2]
array([[0, 0, 0],

[0, 0, 0],
[0, 0, 4]])

The wrap option affects only tall matrices:

>>> # tall matrices no wrap
>>> a = np.zeros((5, 3),int)
>>> fill_diagonal(a, 4)
>>> a
array([[4, 0, 0],

[0, 4, 0],
[0, 0, 4],
[0, 0, 0],
[0, 0, 0]])

>>> # tall matrices wrap
>>> a = np.zeros((5, 3),int)
>>> fill_diagonal(a, 4, wrap=True)
>>> a
array([[4, 0, 0],

[0, 4, 0],
[0, 0, 4],

(continues on next page)

614 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

[0, 0, 0],
[4, 0, 0]])

>>> # wide matrices
>>> a = np.zeros((3, 5),int)
>>> fill_diagonal(a, 4, wrap=True)
>>> a
array([[4, 0, 0, 0, 0],

[0, 4, 0, 0, 0],
[0, 0, 4, 0, 0]])

4.15.4 Iterating over arrays

nditer Efficient multi-dimensional iterator object to iterate over
arrays.

ndenumerate(arr) Multidimensional index iterator.
ndindex(*shape) An N-dimensional iterator object to index arrays.
nested_iters Create nditers for use in nested loops
flatiter Flat iterator object to iterate over arrays.
lib.Arrayterator(var[, buf_size]) Buffered iterator for big arrays.

class numpy.nditer
Efficient multi-dimensional iterator object to iterate over arrays. To get started using this object, see the intro-
ductory guide to array iteration.

Parameters

op [ndarray or sequence of array_like] The array(s) to iterate over.

flags [sequence of str, optional] Flags to control the behavior of the iterator.

• “buffered” enables buffering when required.

• “c_index” causes a C-order index to be tracked.

• “f_index” causes a Fortran-order index to be tracked.

• “multi_index” causes a multi-index, or a tuple of indices with one per iteration dimension,
to be tracked.

• “common_dtype” causes all the operands to be converted to a common data type, with
copying or buffering as necessary.

• “copy_if_overlap” causes the iterator to determine if read operands have overlap with
write operands, and make temporary copies as necessary to avoid overlap. False positives
(needless copying) are possible in some cases.

• “delay_bufalloc” delays allocation of the buffers until a reset() call is made. Allows
“allocate” operands to be initialized before their values are copied into the buffers.

• “external_loop” causes the values given to be one-dimensional arrays with multiple values
instead of zero-dimensional arrays.

• “grow_inner” allows the value array sizes to be made larger than the buffer size when
both “buffered” and “external_loop” is used.

• “ranged” allows the iterator to be restricted to a sub-range of the iterindex values.

4.15. Indexing routines 615



NumPy Reference, Release 1.15.1

• “refs_ok” enables iteration of reference types, such as object arrays.

• “reduce_ok” enables iteration of “readwrite” operands which are broadcasted, also known
as reduction operands.

• “zerosize_ok” allows itersize to be zero.

op_flags [list of list of str, optional] This is a list of flags for each operand. At minimum, one
of “readonly”, “readwrite”, or “writeonly” must be specified.

• “readonly” indicates the operand will only be read from.

• “readwrite” indicates the operand will be read from and written to.

• “writeonly” indicates the operand will only be written to.

• “no_broadcast” prevents the operand from being broadcasted.

• “contig” forces the operand data to be contiguous.

• “aligned” forces the operand data to be aligned.

• “nbo” forces the operand data to be in native byte order.

• “copy” allows a temporary read-only copy if required.

• “updateifcopy” allows a temporary read-write copy if required.

• “allocate” causes the array to be allocated if it is None in the op parameter.

• “no_subtype” prevents an “allocate” operand from using a subtype.

• “arraymask” indicates that this operand is the mask to use for selecting elements when
writing to operands with the ‘writemasked’ flag set. The iterator does not enforce this,
but when writing from a buffer back to the array, it only copies those elements indicated
by this mask.

• ‘writemasked’ indicates that only elements where the chosen ‘arraymask’ operand is True
will be written to.

• “overlap_assume_elementwise” can be used to mark operands that are accessed only in
the iterator order, to allow less conservative copying when “copy_if_overlap” is present.

op_dtypes [dtype or tuple of dtype(s), optional] The required data type(s) of the operands. If
copying or buffering is enabled, the data will be converted to/from their original types.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the iteration order. ‘C’ means C order, ‘F’ means
Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order other-
wise, and ‘K’ means as close to the order the array elements appear in memory as possible.
This also affects the element memory order of “allocate” operands, as they are allocated to
be compatible with iteration order. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur when making a copy or buffering. Setting this to ‘unsafe’ is not recom-
mended, as it can adversely affect accumulations.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

616 Chapter 4. Routines



NumPy Reference, Release 1.15.1

op_axes [list of list of ints, optional] If provided, is a list of ints or None for each operands. The
list of axes for an operand is a mapping from the dimensions of the iterator to the dimensions
of the operand. A value of -1 can be placed for entries, causing that dimension to be treated
as “newaxis”.

itershape [tuple of ints, optional] The desired shape of the iterator. This allows “allocate”
operands with a dimension mapped by op_axes not corresponding to a dimension of a dif-
ferent operand to get a value not equal to 1 for that dimension.

buffersize [int, optional] When buffering is enabled, controls the size of the temporary buffers.
Set to 0 for the default value.

Notes

nditer supersedes flatiter. The iterator implementation behind nditer is also exposed by the NumPy
C API.

The Python exposure supplies two iteration interfaces, one which follows the Python iterator protocol, and
another which mirrors the C-style do-while pattern. The native Python approach is better in most cases, but if
you need the iterator’s coordinates or index, use the C-style pattern.

Examples

Here is how we might write an iter_add function, using the Python iterator protocol:

def iter_add_py(x, y, out=None):
addop = np.add
it = np.nditer([x, y, out], [],

[['readonly'], ['readonly'], ['writeonly','allocate']])
with it:

for (a, b, c) in it:
addop(a, b, out=c)

return it.operands[2]

Here is the same function, but following the C-style pattern:

def iter_add(x, y, out=None):
addop = np.add

it = np.nditer([x, y, out], [],
[['readonly'], ['readonly'], ['writeonly','allocate']])

with it:
while not it.finished:

addop(it[0], it[1], out=it[2])
it.iternext()

return it.operands[2]

Here is an example outer product function:

def outer_it(x, y, out=None):
mulop = np.multiply

it = np.nditer([x, y, out], ['external_loop'],
[['readonly'], ['readonly'], ['writeonly', 'allocate']],

(continues on next page)

4.15. Indexing routines 617



NumPy Reference, Release 1.15.1

(continued from previous page)

op_axes=[list(range(x.ndim)) + [-1] * y.ndim,
[-1] * x.ndim + list(range(y.ndim)),
None])

with it:
for (a, b, c) in it:

mulop(a, b, out=c)
return it.operands[2]

>>> a = np.arange(2)+1
>>> b = np.arange(3)+1
>>> outer_it(a,b)
array([[1, 2, 3],

[2, 4, 6]])

Here is an example function which operates like a “lambda” ufunc:

def luf(lamdaexpr, *args, **kwargs):
"luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe',

→˓buffersize=0)"
nargs = len(args)
op = (kwargs.get('out',None),) + args
it = np.nditer(op, ['buffered','external_loop'],

[['writeonly','allocate','no_broadcast']] +
[['readonly','nbo','aligned']]*nargs,

order=kwargs.get('order','K'),
casting=kwargs.get('casting','safe'),
buffersize=kwargs.get('buffersize',0))

while not it.finished:
it[0] = lamdaexpr(*it[1:])
it.iternext()
return it.operands[0]

>>> a = np.arange(5)
>>> b = np.ones(5)
>>> luf(lambda i,j:i*i + j/2, a, b)
array([ 0.5, 1.5, 4.5, 9.5, 16.5])

If operand flags “writeonly” or “readwrite” are used the operands may be views into the original data with the
WRITEBACKIFCOPY flag. In this case nditer must be used as a context manager or the nditer.close method
must be called before using the result. The temporary data will be written back to the original data when the
__exit__ function is called but not before:

>>> a = np.arange(6, dtype='i4')[::-2]
>>> with nditer(a, [],
... [['writeonly', 'updateifcopy']],
... casting='unsafe',
... op_dtypes=[np.dtype('f4')]) as i:
... x = i.operands[0]
... x[:] = [-1, -2, -3]
... # a still unchanged here
>>> a, x
array([-1, -2, -3]), array([-1, -2, -3])

It is important to note that once the iterator is exited, dangling references (like x in the example) may or may
not share data with the original data a. If writeback semantics were active, i.e. if x.base.flags.writebackifcopy is
True, then exiting the iterator will sever the connection between x and a, writing to x will no longer write to a.
If writeback semantics are not active, then x.data will still point at some part of a.data, and writing to one will

618 Chapter 4. Routines



NumPy Reference, Release 1.15.1

affect the other.

Attributes

dtypes [tuple of dtype(s)] The data types of the values provided in value. This may be dif-
ferent from the operand data types if buffering is enabled. Valid only before the iterator is
closed.

finished [bool] Whether the iteration over the operands is finished or not.

has_delayed_bufalloc [bool] If True, the iterator was created with the “delay_bufalloc” flag,
and no reset() function was called on it yet.

has_index [bool] If True, the iterator was created with either the “c_index” or the “f_index”
flag, and the property index can be used to retrieve it.

has_multi_index [bool] If True, the iterator was created with the “multi_index” flag, and the
property multi_index can be used to retrieve it.

index When the “c_index” or “f_index” flag was used, this property provides access to the
index. Raises a ValueError if accessed and has_index is False.

iterationneedsapi [bool] Whether iteration requires access to the Python API, for example if
one of the operands is an object array.

iterindex [int] An index which matches the order of iteration.

itersize [int] Size of the iterator.

itviews Structured view(s) of operands in memory, matching the reordered and optimized
iterator access pattern. Valid only before the iterator is closed.

multi_index When the “multi_index” flag was used, this property provides access to the index.
Raises a ValueError if accessed accessed and has_multi_index is False.

ndim [int] The iterator’s dimension.

nop [int] The number of iterator operands.

operands [tuple of operand(s)] operands[Slice]

shape [tuple of ints] Shape tuple, the shape of the iterator.

value Value of operands at current iteration. Normally, this is a tuple of array scalars, but if
the flag “external_loop” is used, it is a tuple of one dimensional arrays.

Methods

close() Resolve all writeback semantics in writeable operands.
copy() Get a copy of the iterator in its current state.
debug_print() Print the current state of the nditer instance and de-

bug info to stdout.
enable_external_loop() When the “external_loop” was not used during con-

struction, but is desired, this modifies the iterator to be-
have as if the flag was specified.

iternext() Check whether iterations are left, and perform a single
internal iteration without returning the result.

remove_axis(i) Removes axis i from the iterator.
Continued on next page

4.15. Indexing routines 619



NumPy Reference, Release 1.15.1

Table 51 – continued from previous page
remove_multi_index() When the “multi_index” flag was specified, this re-

moves it, allowing the internal iteration structure to be
optimized further.

reset() Reset the iterator to its initial state.

nditer.close()
Resolve all writeback semantics in writeable operands.

See also:

Modifying Array Values

nditer.copy()
Get a copy of the iterator in its current state.

Examples

>>> x = np.arange(10)
>>> y = x + 1
>>> it = np.nditer([x, y])
>>> it.next()
(array(0), array(1))
>>> it2 = it.copy()
>>> it2.next()
(array(1), array(2))

nditer.debug_print()
Print the current state of the nditer instance and debug info to stdout.

nditer.enable_external_loop()
When the “external_loop” was not used during construction, but is desired, this modifies the iterator to
behave as if the flag was specified.

nditer.iternext()
Check whether iterations are left, and perform a single internal iteration without returning the result. Used
in the C-style pattern do-while pattern. For an example, see nditer.

Returns

iternext [bool] Whether or not there are iterations left.

nditer.remove_axis(i)
Removes axis i from the iterator. Requires that the flag “multi_index” be enabled.

nditer.remove_multi_index()
When the “multi_index” flag was specified, this removes it, allowing the internal iteration structure to be
optimized further.

nditer.reset()
Reset the iterator to its initial state.

class numpy.ndindex(*shape)
An N-dimensional iterator object to index arrays.

Given the shape of an array, an ndindex instance iterates over the N-dimensional index of the array. At each
iteration a tuple of indices is returned, the last dimension is iterated over first.

Parameters

620 Chapter 4. Routines



NumPy Reference, Release 1.15.1

‘*args‘ [ints] The size of each dimension of the array.

See also:

ndenumerate, flatiter

Examples

>>> for index in np.ndindex(3, 2, 1):
... print(index)
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)

Methods

ndincr() Increment the multi-dimensional index by one.
next() Standard iterator method, updates the index and returns

the index tuple.

ndindex.ndincr()
Increment the multi-dimensional index by one.

This method is for backward compatibility only: do not use.

ndindex.next()
Standard iterator method, updates the index and returns the index tuple.

Returns

val [tuple of ints] Returns a tuple containing the indices of the current iteration.

numpy.nested_iters()
Create nditers for use in nested loops

Create a tuple of nditer objects which iterate in nested loops over different axes of the op argument. The first
iterator is used in the outermost loop, the last in the innermost loop. Advancing one will change the subsequent
iterators to point at its new element.

Parameters

op [ndarray or sequence of array_like] The array(s) to iterate over.

axes [list of list of int] Each item is used as an “op_axes” argument to an nditer

flags, op_flags, op_dtypes, order, casting, buffersize (optional) See nditer parameters of
the same name

Returns

iters [tuple of nditer] An nditer for each item in axes, outermost first

See also:

nditer

4.15. Indexing routines 621



NumPy Reference, Release 1.15.1

Examples

Basic usage. Note how y is the “flattened” version of [a[:, 0, :], a[:, 1, 0], a[:, 2, :]] since we specified the first
iter’s axes as [1]

>>> a = np.arange(12).reshape(2, 3, 2)
>>> i, j = np.nested_iters(a, [[1], [0, 2]], flags=["multi_index"])
>>> for x in i:
... print(i.multi_index)
... for y in j:
... print('', j.multi_index, y)

(0,) (0, 0) 0 (0, 1) 1 (1, 0) 6 (1, 1) 7

(1,) (0, 0) 2 (0, 1) 3 (1, 0) 8 (1, 1) 9

(2,) (0, 0) 4 (0, 1) 5 (1, 0) 10 (1, 1) 11

class numpy.flatiter
Flat iterator object to iterate over arrays.

A flatiter iterator is returned by x.flat for any array x. It allows iterating over the array as if it were a
1-D array, either in a for-loop or by calling its next method.

Iteration is done in row-major, C-style order (the last index varying the fastest). The iterator can also be indexed
using basic slicing or advanced indexing.

See also:

ndarray.flat Return a flat iterator over an array.

ndarray.flatten Returns a flattened copy of an array.

Notes

A flatiter iterator can not be constructed directly from Python code by calling the flatiter constructor.

Examples

>>> x = np.arange(6).reshape(2, 3)
>>> fl = x.flat
>>> type(fl)
<type 'numpy.flatiter'>
>>> for item in fl:
... print(item)
...
0
1
2
3
4
5

>>> fl[2:4]
array([2, 3])

622 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Attributes

base A reference to the array that is iterated over.

>>> x = np.arange(5)
>>> fl = x.flat
>>> fl.base is x
True

coords An N-dimensional tuple of current coordinates.

index Current flat index into the array.

>>> x = np.arange(6).reshape(2, 3)
>>> fl = x.flat
>>> fl.index
0
>>> fl.next()
0
>>> fl.index
1

Methods

copy() Get a copy of the iterator as a 1-D array.

flatiter.copy()
Get a copy of the iterator as a 1-D array.

Examples

>>> x = np.arange(6).reshape(2, 3)
>>> x
array([[0, 1, 2],

[3, 4, 5]])
>>> fl = x.flat
>>> fl.copy()
array([0, 1, 2, 3, 4, 5])

class numpy.lib.Arrayterator(var, buf_size=None)
Buffered iterator for big arrays.

Arrayterator creates a buffered iterator for reading big arrays in small contiguous blocks. The class is
useful for objects stored in the file system. It allows iteration over the object without reading everything in
memory; instead, small blocks are read and iterated over.

Arrayterator can be used with any object that supports multidimensional slices. This includes NumPy
arrays, but also variables from Scientific.IO.NetCDF or pynetcdf for example.

Parameters

var [array_like] The object to iterate over.

buf_size [int, optional] The buffer size. If buf_size is supplied, the maximum amount of data
that will be read into memory is buf_size elements. Default is None, which will read as
many element as possible into memory.

4.15. Indexing routines 623



NumPy Reference, Release 1.15.1

See also:

ndenumerate Multidimensional array iterator.

flatiter Flat array iterator.

memmap Create a memory-map to an array stored in a binary file on disk.

Notes

The algorithm works by first finding a “running dimension”, along which the blocks will be extracted. Given
an array of dimensions (d1, d2, ..., dn), e.g. if buf_size is smaller than d1, the first dimension will
be used. If, on the other hand, d1 < buf_size < d1*d2 the second dimension will be used, and so on.
Blocks are extracted along this dimension, and when the last block is returned the process continues from the
next dimension, until all elements have been read.

Examples

>>> a = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6)
>>> a_itor = np.lib.Arrayterator(a, 2)
>>> a_itor.shape
(3, 4, 5, 6)

Now we can iterate over a_itor, and it will return arrays of size two. Since buf_size was smaller than any
dimension, the first dimension will be iterated over first:

>>> for subarr in a_itor:
... if not subarr.all():
... print(subarr, subarr.shape)
...
[[[[0 1]]]] (1, 1, 1, 2)

Attributes

var

buf_size

start

stop

step

shape The shape of the array to be iterated over.

flat A 1-D flat iterator for Arrayterator objects.

4.16 Input and output

4.16.1 NumPy binary files (NPY, NPZ)

624 Chapter 4. Routines



NumPy Reference, Release 1.15.1

load(file[, mmap_mode, allow_pickle, . . . ]) Load arrays or pickled objects from .npy, .npz or pick-
led files.

save(file, arr[, allow_pickle, fix_imports]) Save an array to a binary file in NumPy .npy format.
savez(file, *args, **kwds) Save several arrays into a single file in uncompressed .npz

format.
savez_compressed(file, *args, **kwds) Save several arrays into a single file in compressed .npz

format.

numpy.load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding=’ASCII’)
Load arrays or pickled objects from .npy, .npz or pickled files.

Parameters

file [file-like object, string, or pathlib.Path] The file to read. File-like objects must support the
seek() and read() methods. Pickled files require that the file-like object support the
readline() method as well.

mmap_mode [{None, ‘r+’, ‘r’, ‘w+’, ‘c’}, optional] If not None, then memory-map the file,
using the given mode (see numpy.memmap for a detailed description of the modes). A
memory-mapped array is kept on disk. However, it can be accessed and sliced like any
ndarray. Memory mapping is especially useful for accessing small fragments of large files
without reading the entire file into memory.

allow_pickle [bool, optional] Allow loading pickled object arrays stored in npy files. Reasons
for disallowing pickles include security, as loading pickled data can execute arbitrary code.
If pickles are disallowed, loading object arrays will fail. Default: True

fix_imports [bool, optional] Only useful when loading Python 2 generated pickled files on
Python 3, which includes npy/npz files containing object arrays. If fix_imports is True,
pickle will try to map the old Python 2 names to the new names used in Python 3.

encoding [str, optional] What encoding to use when reading Python 2 strings. Only useful
when loading Python 2 generated pickled files in Python 3, which includes npy/npz files
containing object arrays. Values other than ‘latin1’, ‘ASCII’, and ‘bytes’ are not allowed, as
they can corrupt numerical data. Default: ‘ASCII’

Returns

result [array, tuple, dict, etc.] Data stored in the file. For .npz files, the returned instance of
NpzFile class must be closed to avoid leaking file descriptors.

Raises

IOError If the input file does not exist or cannot be read.

ValueError The file contains an object array, but allow_pickle=False given.

See also:

save, savez, savez_compressed, loadtxt

memmap Create a memory-map to an array stored in a file on disk.

lib.format.open_memmap Create or load a memory-mapped .npy file.

Notes

• If the file contains pickle data, then whatever object is stored in the pickle is returned.

• If the file is a .npy file, then a single array is returned.

4.16. Input and output 625



NumPy Reference, Release 1.15.1

• If the file is a .npz file, then a dictionary-like object is returned, containing {filename: array}
key-value pairs, one for each file in the archive.

• If the file is a .npz file, the returned value supports the context manager protocol in a similar fashion to
the open function:

with load('foo.npz') as data:
a = data['a']

The underlying file descriptor is closed when exiting the ‘with’ block.

Examples

Store data to disk, and load it again:

>>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]]))
>>> np.load('/tmp/123.npy')
array([[1, 2, 3],

[4, 5, 6]])

Store compressed data to disk, and load it again:

>>> a=np.array([[1, 2, 3], [4, 5, 6]])
>>> b=np.array([1, 2])
>>> np.savez('/tmp/123.npz', a=a, b=b)
>>> data = np.load('/tmp/123.npz')
>>> data['a']
array([[1, 2, 3],

[4, 5, 6]])
>>> data['b']
array([1, 2])
>>> data.close()

Mem-map the stored array, and then access the second row directly from disk:

>>> X = np.load('/tmp/123.npy', mmap_mode='r')
>>> X[1, :]
memmap([4, 5, 6])

numpy.save(file, arr, allow_pickle=True, fix_imports=True)
Save an array to a binary file in NumPy .npy format.

Parameters

file [file, str, or pathlib.Path] File or filename to which the data is saved. If file is a file-object,
then the filename is unchanged. If file is a string or Path, a .npy extension will be appended
to the file name if it does not already have one.

arr [array_like] Array data to be saved.

allow_pickle [bool, optional] Allow saving object arrays using Python pickles. Reasons for
disallowing pickles include security (loading pickled data can execute arbitrary code) and
portability (pickled objects may not be loadable on different Python installations, for exam-
ple if the stored objects require libraries that are not available, and not all pickled data is
compatible between Python 2 and Python 3). Default: True

fix_imports [bool, optional] Only useful in forcing objects in object arrays on Python 3 to be
pickled in a Python 2 compatible way. If fix_imports is True, pickle will try to map the new

626 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Python 3 names to the old module names used in Python 2, so that the pickle data stream is
readable with Python 2.

See also:

savez Save several arrays into a .npz archive

savetxt, load

Notes

For a description of the .npy format, see numpy.lib.format.

Examples

>>> from tempfile import TemporaryFile
>>> outfile = TemporaryFile()

>>> x = np.arange(10)
>>> np.save(outfile, x)

>>> outfile.seek(0) # Only needed here to simulate closing & reopening file
>>> np.load(outfile)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

numpy.savez(file, *args, **kwds)
Save several arrays into a single file in uncompressed .npz format.

If arguments are passed in with no keywords, the corresponding variable names, in the .npz file, are ‘arr_0’,
‘arr_1’, etc. If keyword arguments are given, the corresponding variable names, in the .npz file will match the
keyword names.

Parameters

file [str or file] Either the file name (string) or an open file (file-like object) where the data will
be saved. If file is a string or a Path, the .npz extension will be appended to the file name
if it is not already there.

args [Arguments, optional] Arrays to save to the file. Since it is not possible for Python to
know the names of the arrays outside savez, the arrays will be saved with names “arr_0”,
“arr_1”, and so on. These arguments can be any expression.

kwds [Keyword arguments, optional] Arrays to save to the file. Arrays will be saved in the file
with the keyword names.

Returns

None

See also:

save Save a single array to a binary file in NumPy format.

savetxt Save an array to a file as plain text.

savez_compressed Save several arrays into a compressed .npz archive

4.16. Input and output 627



NumPy Reference, Release 1.15.1

Notes

The .npz file format is a zipped archive of files named after the variables they contain. The archive is not
compressed and each file in the archive contains one variable in .npy format. For a description of the .npy
format, see numpy.lib.format.

When opening the saved .npz file with load a NpzFile object is returned. This is a dictionary-like object
which can be queried for its list of arrays (with the .files attribute), and for the arrays themselves.

Examples

>>> from tempfile import TemporaryFile
>>> outfile = TemporaryFile()
>>> x = np.arange(10)
>>> y = np.sin(x)

Using savez with *args, the arrays are saved with default names.

>>> np.savez(outfile, x, y)
>>> outfile.seek(0) # Only needed here to simulate closing & reopening file
>>> npzfile = np.load(outfile)
>>> npzfile.files
['arr_1', 'arr_0']
>>> npzfile['arr_0']
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Using savez with **kwds, the arrays are saved with the keyword names.

>>> outfile = TemporaryFile()
>>> np.savez(outfile, x=x, y=y)
>>> outfile.seek(0)
>>> npzfile = np.load(outfile)
>>> npzfile.files
['y', 'x']
>>> npzfile['x']
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

numpy.savez_compressed(file, *args, **kwds)
Save several arrays into a single file in compressed .npz format.

If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with
no keywords, then stored file names are arr_0, arr_1, etc.

Parameters

file [str or file] Either the file name (string) or an open file (file-like object) where the data will
be saved. If file is a string or a Path, the .npz extension will be appended to the file name
if it is not already there.

args [Arguments, optional] Arrays to save to the file. Since it is not possible for Python to
know the names of the arrays outside savez, the arrays will be saved with names “arr_0”,
“arr_1”, and so on. These arguments can be any expression.

kwds [Keyword arguments, optional] Arrays to save to the file. Arrays will be saved in the file
with the keyword names.

Returns

628 Chapter 4. Routines



NumPy Reference, Release 1.15.1

None

See also:

numpy.save Save a single array to a binary file in NumPy format.

numpy.savetxt Save an array to a file as plain text.

numpy.savez Save several arrays into an uncompressed .npz file format

numpy.load Load the files created by savez_compressed.

Notes

The .npz file format is a zipped archive of files named after the variables they contain. The archive is com-
pressed with zipfile.ZIP_DEFLATED and each file in the archive contains one variable in .npy format.
For a description of the .npy format, see numpy.lib.format.

When opening the saved .npz file with load a NpzFile object is returned. This is a dictionary-like object
which can be queried for its list of arrays (with the .files attribute), and for the arrays themselves.

Examples

>>> test_array = np.random.rand(3, 2)
>>> test_vector = np.random.rand(4)
>>> np.savez_compressed('/tmp/123', a=test_array, b=test_vector)
>>> loaded = np.load('/tmp/123.npz')
>>> print(np.array_equal(test_array, loaded['a']))
True
>>> print(np.array_equal(test_vector, loaded['b']))
True

The format of these binary file types is documented in numpy.lib.format

4.16.2 Text files

loadtxt(fname[, dtype, comments, delimiter, . . . ]) Load data from a text file.
savetxt(fname, X[, fmt, delimiter, newline, . . . ]) Save an array to a text file.
genfromtxt(fname[, dtype, comments, . . . ]) Load data from a text file, with missing values handled as

specified.
fromregex(file, regexp, dtype[, encoding]) Construct an array from a text file, using regular expression

parsing.
fromstring(string[, dtype, count, sep]) A new 1-D array initialized from text data in a string.
ndarray.tofile(fid[, sep, format]) Write array to a file as text or binary (default).
ndarray.tolist() Return the array as a (possibly nested) list.

numpy.savetxt(fname, X, fmt=’%.18e’, delimiter=’ ’, newline=’\n’, header=”, footer=”, comments=’# ’,
encoding=None)

Save an array to a text file.

Parameters

fname [filename or file handle] If the filename ends in .gz, the file is automatically saved in
compressed gzip format. loadtxt understands gzipped files transparently.

4.16. Input and output 629



NumPy Reference, Release 1.15.1

X [1D or 2D array_like] Data to be saved to a text file.

fmt [str or sequence of strs, optional] A single format (%10.5f), a sequence of formats, or a
multi-format string, e.g. ‘Iteration %d – %10.5f’, in which case delimiter is ignored. For
complex X, the legal options for fmt are:

• a single specifier, fmt=’%.4e’, resulting in numbers formatted like ‘ (%s+%sj)’ % (fmt,
fmt)

• a full string specifying every real and imaginary part, e.g. ‘ %.4e %+.4ej %.4e %+.4ej
%.4e %+.4ej’ for 3 columns

• a list of specifiers, one per column - in this case, the real and imaginary part must have
separate specifiers, e.g. [‘%.3e + %.3ej’, ‘(%.15e%+.15ej)’] for 2 columns

delimiter [str, optional] String or character separating columns.

newline [str, optional] String or character separating lines.

New in version 1.5.0.

header [str, optional] String that will be written at the beginning of the file.

New in version 1.7.0.

footer [str, optional] String that will be written at the end of the file.

New in version 1.7.0.

comments [str, optional] String that will be prepended to the header and footer strings, to
mark them as comments. Default: ‘# ‘, as expected by e.g. numpy.loadtxt.

New in version 1.7.0.

encoding [{None, str}, optional] Encoding used to encode the outputfile. Does not apply to
output streams. If the encoding is something other than ‘bytes’ or ‘latin1’ you will not be
able to load the file in NumPy versions < 1.14. Default is ‘latin1’.

New in version 1.14.0.

See also:

save Save an array to a binary file in NumPy .npy format

savez Save several arrays into an uncompressed .npz archive

savez_compressed Save several arrays into a compressed .npz archive

Notes

Further explanation of the fmt parameter (%[flag]width[.precision]specifier):

flags: - : left justify

+ : Forces to precede result with + or -.

0 : Left pad the number with zeros instead of space (see width).

width: Minimum number of characters to be printed. The value is not truncated if it has more characters.

precision:

• For integer specifiers (eg. d,i,o,x), the minimum number of digits.

• For e, E and f specifiers, the number of digits to print after the decimal point.

630 Chapter 4. Routines



NumPy Reference, Release 1.15.1

• For g and G, the maximum number of significant digits.

• For s, the maximum number of characters.

specifiers: c : character

d or i : signed decimal integer

e or E : scientific notation with e or E.

f : decimal floating point

g,G : use the shorter of e,E or f

o : signed octal

s : string of characters

u : unsigned decimal integer

x,X : unsigned hexadecimal integer

This explanation of fmt is not complete, for an exhaustive specification see [1].

References

[1]

Examples

>>> x = y = z = np.arange(0.0,5.0,1.0)
>>> np.savetxt('test.out', x, delimiter=',') # X is an array
>>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays
>>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation

numpy.genfromtxt(fname, dtype=<class ’float’>, comments=’#’, delimiter=None, skip_header=0,
skip_footer=0, converters=None, missing_values=None, filling_values=None, usec-
ols=None, names=None, excludelist=None, deletechars=None, replace_space=’_’,
autostrip=False, case_sensitive=True, defaultfmt=’f%i’, unpack=None, use-
mask=False, loose=True, invalid_raise=True, max_rows=None, encoding=’bytes’)

Load data from a text file, with missing values handled as specified.

Each line past the first skip_header lines is split at the delimiter character, and characters following the comments
character are discarded.

Parameters

fname [file, str, pathlib.Path, list of str, generator] File, filename, list, or generator to read. If
the filename extension is gz or bz2, the file is first decompressed. Note that generators must
return byte strings in Python 3k. The strings in a list or produced by a generator are treated
as lines.

dtype [dtype, optional] Data type of the resulting array. If None, the dtypes will be determined
by the contents of each column, individually.

comments [str, optional] The character used to indicate the start of a comment. All the charac-
ters occurring on a line after a comment are discarded

delimiter [str, int, or sequence, optional] The string used to separate values. By default, any
consecutive whitespaces act as delimiter. An integer or sequence of integers can also be
provided as width(s) of each field.

4.16. Input and output 631

https://docs.python.org/dev/library/bz2.html#module-bz2


NumPy Reference, Release 1.15.1

skiprows [int, optional] skiprows was removed in numpy 1.10. Please use skip_header instead.

skip_header [int, optional] The number of lines to skip at the beginning of the file.

skip_footer [int, optional] The number of lines to skip at the end of the file.

converters [variable, optional] The set of functions that convert the data of a column to a value.
The converters can also be used to provide a default value for missing data: converters
= {3: lambda s: float(s or 0)}.

missing [variable, optional] missing was removed in numpy 1.10. Please use missing_values
instead.

missing_values [variable, optional] The set of strings corresponding to missing data.

filling_values [variable, optional] The set of values to be used as default when the data are
missing.

usecols [sequence, optional] Which columns to read, with 0 being the first. For example,
usecols = (1, 4, 5) will extract the 2nd, 5th and 6th columns.

names [{None, True, str, sequence}, optional] If names is True, the field names are read from
the first line after the first skip_header lines. This line can optionally be proceeded by a
comment delimiter. If names is a sequence or a single-string of comma-separated names,
the names will be used to define the field names in a structured dtype. If names is None, the
names of the dtype fields will be used, if any.

excludelist [sequence, optional] A list of names to exclude. This list is appended to the default
list [‘return’,’file’,’print’]. Excluded names are appended an underscore: for example, file
would become file_.

deletechars [str, optional] A string combining invalid characters that must be deleted from the
names.

defaultfmt [str, optional] A format used to define default field names, such as “f%i” or
“f_%02i”.

autostrip [bool, optional] Whether to automatically strip white spaces from the variables.

replace_space [char, optional] Character(s) used in replacement of white spaces in the variables
names. By default, use a ‘_’.

case_sensitive [{True, False, ‘upper’, ‘lower’}, optional] If True, field names are case sensitive.
If False or ‘upper’, field names are converted to upper case. If ‘lower’, field names are
converted to lower case.

unpack [bool, optional] If True, the returned array is transposed, so that arguments may be
unpacked using x, y, z = loadtxt(...)

usemask [bool, optional] If True, return a masked array. If False, return a regular array.

loose [bool, optional] If True, do not raise errors for invalid values.

invalid_raise [bool, optional] If True, an exception is raised if an inconsistency is detected in
the number of columns. If False, a warning is emitted and the offending lines are skipped.

max_rows [int, optional] The maximum number of rows to read. Must not be used with
skip_footer at the same time. If given, the value must be at least 1. Default is to read
the entire file.

New in version 1.10.0.

encoding [str, optional] Encoding used to decode the inputfile. Does not apply when fname
is a file object. The special value ‘bytes’ enables backward compatibility workarounds

632 Chapter 4. Routines



NumPy Reference, Release 1.15.1

that ensure that you receive byte arrays when possible and passes latin1 encoded strings
to converters. Override this value to receive unicode arrays and pass strings as input to
converters. If set to None the system default is used. The default value is ‘bytes’.

New in version 1.14.0.

Returns

out [ndarray] Data read from the text file. If usemask is True, this is a masked array.

See also:

numpy.loadtxt equivalent function when no data is missing.

Notes

• When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any
missing data between two fields.

• When the variables are named (either by a flexible dtype or with names, there must not be any header in
the file (else a ValueError exception is raised).

• Individual values are not stripped of spaces by default. When using a custom converter, make sure the
function does remove spaces.

References

[1]

Examples

>>> from io import StringIO
>>> import numpy as np

Comma delimited file with mixed dtype

>>> s = StringIO(u"1,1.3,abcde")
>>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'),
... ('mystring','S5')], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),

dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])

Using dtype = None

>>> s.seek(0) # needed for StringIO example only
>>> data = np.genfromtxt(s, dtype=None,
... names = ['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),

dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])

Specifying dtype and names

4.16. Input and output 633



NumPy Reference, Release 1.15.1

>>> s.seek(0)
>>> data = np.genfromtxt(s, dtype="i8,f8,S5",
... names=['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),

dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])

An example with fixed-width columns

>>> s = StringIO(u"11.3abcde")
>>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'],
... delimiter=[1,3,5])
>>> data
array((1, 1.3, 'abcde'),

dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')])

numpy.fromregex(file, regexp, dtype, encoding=None)
Construct an array from a text file, using regular expression parsing.

The returned array is always a structured array, and is constructed from all matches of the regular expression in
the file. Groups in the regular expression are converted to fields of the structured array.

Parameters

file [str or file] File name or file object to read.

regexp [str or regexp] Regular expression used to parse the file. Groups in the regular expres-
sion correspond to fields in the dtype.

dtype [dtype or list of dtypes] Dtype for the structured array.

encoding [str, optional] Encoding used to decode the inputfile. Does not apply to input streams.

New in version 1.14.0.

Returns

output [ndarray] The output array, containing the part of the content of file that was matched
by regexp. output is always a structured array.

Raises

TypeError When dtype is not a valid dtype for a structured array.

See also:

fromstring, loadtxt

Notes

Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and
field name. For details see doc.structured_arrays.

Examples

>>> f = open('test.dat', 'w')
>>> f.write("1312 foo\n1534 bar\n444 qux")
>>> f.close()

634 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> regexp = r"(\d+)\s+(...)" # match [digits, whitespace, anything]
>>> output = np.fromregex('test.dat', regexp,
... [('num', np.int64), ('key', 'S3')])
>>> output
array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')],

dtype=[('num', '<i8'), ('key', '|S3')])
>>> output['num']
array([1312, 1534, 444], dtype=int64)

4.16.3 Raw binary files

fromfile(file[, dtype, count, sep]) Construct an array from data in a text or binary file.
ndarray.tofile(fid[, sep, format]) Write array to a file as text or binary (default).

4.16.4 String formatting

array2string(a[, max_line_width, precision, . . . ]) Return a string representation of an array.
array_repr(arr[, max_line_width, precision, . . . ]) Return the string representation of an array.
array_str(a[, max_line_width, precision, . . . ]) Return a string representation of the data in an array.
format_float_positional(x[, precision, . . . ]) Format a floating-point scalar as a decimal string in posi-

tional notation.
format_float_scientific(x[, precision, . . . ]) Format a floating-point scalar as a decimal string in scien-

tific notation.

numpy.array2string(a, max_line_width=None, precision=None, suppress_small=None, separator=’ ’,
prefix=”, style=<no value>, formatter=None, threshold=None, edgeitems=None,
sign=None, floatmode=None, suffix=”, **kwarg)

Return a string representation of an array.

Parameters

a [array_like] Input array.

max_line_width [int, optional] The maximum number of columns the string should span. New-
line characters splits the string appropriately after array elements.

precision [int or None, optional] Floating point precision. Default is the current printing preci-
sion (usually 8), which can be altered using set_printoptions.

suppress_small [bool, optional] Represent very small numbers as zero. A number is “very
small” if it is smaller than the current printing precision.

separator [str, optional] Inserted between elements.

prefix [str, optional]

suffix: str, optional The length of the prefix and suffix strings are used to respectively align and
wrap the output. An array is typically printed as:

prefix + array2string(a) + suffix

The output is left-padded by the length of the prefix string, and wrapping is forced at the
column max_line_width - len(suffix).

style [_NoValue, optional] Has no effect, do not use.

4.16. Input and output 635



NumPy Reference, Release 1.15.1

Deprecated since version 1.14.0.

formatter [dict of callables, optional] If not None, the keys should indicate the type(s) that the
respective formatting function applies to. Callables should return a string. Types that are
not specified (by their corresponding keys) are handled by the default formatters. Individual
types for which a formatter can be set are:

• ‘bool’

• ‘int’

• ‘timedelta’ : a numpy.timedelta64

• ‘datetime’ : a numpy.datetime64

• ‘float’

• ‘longfloat’ : 128-bit floats

• ‘complexfloat’

• ‘longcomplexfloat’ : composed of two 128-bit floats

• ‘void’ : type numpy.void

• ‘numpystr’ : types numpy.string_ and numpy.unicode_

• ‘str’ : all other strings

Other keys that can be used to set a group of types at once are:

• ‘all’ : sets all types

• ‘int_kind’ : sets ‘int’

• ‘float_kind’ : sets ‘float’ and ‘longfloat’

• ‘complex_kind’ : sets ‘complexfloat’ and ‘longcomplexfloat’

• ‘str_kind’ : sets ‘str’ and ‘numpystr’

threshold [int, optional] Total number of array elements which trigger summarization rather
than full repr.

edgeitems [int, optional] Number of array items in summary at beginning and end of each
dimension.

sign [string, either ‘-‘, ‘+’, or ‘ ‘, optional] Controls printing of the sign of floating-point types.
If ‘+’, always print the sign of positive values. If ‘ ‘, always prints a space (whitespace
character) in the sign position of positive values. If ‘-‘, omit the sign character of positive
values.

floatmode [str, optional] Controls the interpretation of the precision option for floating-point
types. Can take the following values:

• ‘fixed’: Always print exactly precision fractional digits, even if this would print more or
fewer digits than necessary to specify the value uniquely.

• ‘unique’: Print the minimum number of fractional digits necessary to represent each value
uniquely. Different elements may have a different number of digits. The value of the
precision option is ignored.

• ‘maxprec’: Print at most precision fractional digits, but if an element can be uniquely
represented with fewer digits only print it with that many.

636 Chapter 4. Routines



NumPy Reference, Release 1.15.1

• ‘maxprec_equal’: Print at most precision fractional digits, but if every element in the
array can be uniquely represented with an equal number of fewer digits, use that many
digits for all elements.

legacy [string or False, optional] If set to the string ‘1.13’ enables 1.13 legacy printing mode.
This approximates numpy 1.13 print output by including a space in the sign position of floats
and different behavior for 0d arrays. If set to False, disables legacy mode. Unrecognized
strings will be ignored with a warning for forward compatibility.

New in version 1.14.0.

Returns

array_str [str] String representation of the array.

Raises

TypeError if a callable in formatter does not return a string.

See also:

array_str, array_repr, set_printoptions, get_printoptions

Notes

If a formatter is specified for a certain type, the precision keyword is ignored for that type.

This is a very flexible function; array_repr and array_str are using array2string internally so
keywords with the same name should work identically in all three functions.

Examples

>>> x = np.array([1e-16,1,2,3])
>>> print(np.array2string(x, precision=2, separator=',',
... suppress_small=True))
[ 0., 1., 2., 3.]

>>> x = np.arange(3.)
>>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x})
'[0.00 1.00 2.00]'

>>> x = np.arange(3)
>>> np.array2string(x, formatter={'int':lambda x: hex(x)})
'[0x0L 0x1L 0x2L]'

numpy.array_repr(arr, max_line_width=None, precision=None, suppress_small=None)
Return the string representation of an array.

Parameters

arr [ndarray] Input array.

max_line_width [int, optional] The maximum number of columns the string should span. New-
line characters split the string appropriately after array elements.

precision [int, optional] Floating point precision. Default is the current printing precision (usu-
ally 8), which can be altered using set_printoptions.

4.16. Input and output 637

https://docs.python.org/dev/library/formatter.html#module-formatter


NumPy Reference, Release 1.15.1

suppress_small [bool, optional] Represent very small numbers as zero, default is False. Very
small is defined by precision, if the precision is 8 then numbers smaller than 5e-9 are repre-
sented as zero.

Returns

string [str] The string representation of an array.

See also:

array_str, array2string, set_printoptions

Examples

>>> np.array_repr(np.array([1,2]))
'array([1, 2])'
>>> np.array_repr(np.ma.array([0.]))
'MaskedArray([ 0.])'
>>> np.array_repr(np.array([], np.int32))
'array([], dtype=int32)'

>>> x = np.array([1e-6, 4e-7, 2, 3])
>>> np.array_repr(x, precision=6, suppress_small=True)
'array([ 0.000001, 0. , 2. , 3. ])'

numpy.array_str(a, max_line_width=None, precision=None, suppress_small=None)
Return a string representation of the data in an array.

The data in the array is returned as a single string. This function is similar to array_repr, the difference
being that array_repr also returns information on the kind of array and its data type.

Parameters

a [ndarray] Input array.

max_line_width [int, optional] Inserts newlines if text is longer than max_line_width. The
default is, indirectly, 75.

precision [int, optional] Floating point precision. Default is the current printing precision (usu-
ally 8), which can be altered using set_printoptions.

suppress_small [bool, optional] Represent numbers “very close” to zero as zero; default is
False. Very close is defined by precision: if the precision is 8, e.g., numbers smaller (in
absolute value) than 5e-9 are represented as zero.

See also:

array2string, array_repr, set_printoptions

Examples

>>> np.array_str(np.arange(3))
'[0 1 2]'

numpy.format_float_positional(x, precision=None, unique=True, fractional=True, trim=’k’,
sign=False, pad_left=None, pad_right=None)

Format a floating-point scalar as a decimal string in positional notation.

638 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Provides control over rounding, trimming and padding. Uses and assumes IEEE unbiased rounding. Uses the
“Dragon4” algorithm.

Parameters

x [python float or numpy floating scalar] Value to format.

precision [non-negative integer or None, optional] Maximum number of digits to print. May
be None if unique is True, but must be an integer if unique is False.

unique [boolean, optional] If True, use a digit-generation strategy which gives the shortest rep-
resentation which uniquely identifies the floating-point number from other values of the
same type, by judicious rounding. If precision was omitted, print out all necessary dig-
its, otherwise digit generation is cut off after precision digits and the remaining value is
rounded. If False, digits are generated as if printing an infinite-precision value and stopping
after precision digits, rounding the remaining value.

fractional [boolean, optional] If True, the cutoff of precision digits refers to the total number of
digits after the decimal point, including leading zeros. If False, precision refers to the total
number of significant digits, before or after the decimal point, ignoring leading zeros.

trim [one of ‘k’, ‘.’, ‘0’, ‘-‘, optional] Controls post-processing trimming of trailing digits, as
follows:

• ‘k’ : keep trailing zeros, keep decimal point (no trimming)

• ‘.’ : trim all trailing zeros, leave decimal point

• ‘0’ : trim all but the zero before the decimal point. Insert the zero if it is missing.

• ‘-‘ : trim trailing zeros and any trailing decimal point

sign [boolean, optional] Whether to show the sign for positive values.

pad_left [non-negative integer, optional] Pad the left side of the string with whitespace until at
least that many characters are to the left of the decimal point.

pad_right [non-negative integer, optional] Pad the right side of the string with whitespace until
at least that many characters are to the right of the decimal point.

Returns

rep [string] The string representation of the floating point value

See also:

format_float_scientific

Examples

>>> np.format_float_positional(np.float32(np.pi))
'3.1415927'
>>> np.format_float_positional(np.float16(np.pi))
'3.14'
>>> np.format_float_positional(np.float16(0.3))
'0.3'
>>> np.format_float_positional(np.float16(0.3), unique=False, precision=10)
'0.3000488281'

numpy.format_float_scientific(x, precision=None, unique=True, trim=’k’, sign=False,
pad_left=None, exp_digits=None)

Format a floating-point scalar as a decimal string in scientific notation.

4.16. Input and output 639



NumPy Reference, Release 1.15.1

Provides control over rounding, trimming and padding. Uses and assumes IEEE unbiased rounding. Uses the
“Dragon4” algorithm.

Parameters

x [python float or numpy floating scalar] Value to format.

precision [non-negative integer or None, optional] Maximum number of digits to print. May
be None if unique is True, but must be an integer if unique is False.

unique [boolean, optional] If True, use a digit-generation strategy which gives the shortest rep-
resentation which uniquely identifies the floating-point number from other values of the
same type, by judicious rounding. If precision was omitted, print all necessary digits, oth-
erwise digit generation is cut off after precision digits and the remaining value is rounded.
If False, digits are generated as if printing an infinite-precision value and stopping after
precision digits, rounding the remaining value.

trim [one of ‘k’, ‘.’, ‘0’, ‘-‘, optional] Controls post-processing trimming of trailing digits, as
follows:

• ‘k’ : keep trailing zeros, keep decimal point (no trimming)

• ‘.’ : trim all trailing zeros, leave decimal point

• ‘0’ : trim all but the zero before the decimal point. Insert the zero if it is missing.

• ‘-‘ : trim trailing zeros and any trailing decimal point

sign [boolean, optional] Whether to show the sign for positive values.

pad_left [non-negative integer, optional] Pad the left side of the string with whitespace until at
least that many characters are to the left of the decimal point.

exp_digits [non-negative integer, optional] Pad the exponent with zeros until it contains at least
this many digits. If omitted, the exponent will be at least 2 digits.

Returns

rep [string] The string representation of the floating point value

See also:

format_float_positional

Examples

>>> np.format_float_scientific(np.float32(np.pi))
'3.1415927e+00'
>>> s = np.float32(1.23e24)
>>> np.format_float_scientific(s, unique=False, precision=15)
'1.230000071797338e+24'
>>> np.format_float_scientific(s, exp_digits=4)
'1.23e+0024'

4.16.5 Memory mapping files

memmap Create a memory-map to an array stored in a binary file on
disk.

640 Chapter 4. Routines



NumPy Reference, Release 1.15.1

4.16.6 Text formatting options

set_printoptions([precision, threshold, . . . ]) Set printing options.
get_printoptions() Return the current print options.
set_string_function(f[, repr]) Set a Python function to be used when pretty printing ar-

rays.
printoptions(*args, **kwargs) Context manager for setting print options.

numpy.set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, sup-
press=None, nanstr=None, infstr=None, formatter=None, sign=None, float-
mode=None, **kwarg)

Set printing options.

These options determine the way floating point numbers, arrays and other NumPy objects are displayed.

Parameters

precision [int or None, optional] Number of digits of precision for floating point output (default
8). May be None if floatmode is not fixed, to print as many digits as necessary to uniquely
specify the value.

threshold [int, optional] Total number of array elements which trigger summarization rather
than full repr (default 1000).

edgeitems [int, optional] Number of array items in summary at beginning and end of each
dimension (default 3).

linewidth [int, optional] The number of characters per line for the purpose of inserting line
breaks (default 75).

suppress [bool, optional] If True, always print floating point numbers using fixed point notation,
in which case numbers equal to zero in the current precision will print as zero. If False, then
scientific notation is used when absolute value of the smallest number is < 1e-4 or the ratio
of the maximum absolute value to the minimum is > 1e3. The default is False.

nanstr [str, optional] String representation of floating point not-a-number (default nan).

infstr [str, optional] String representation of floating point infinity (default inf).

sign [string, either ‘-‘, ‘+’, or ‘ ‘, optional] Controls printing of the sign of floating-point types.
If ‘+’, always print the sign of positive values. If ‘ ‘, always prints a space (whitespace
character) in the sign position of positive values. If ‘-‘, omit the sign character of positive
values. (default ‘-‘)

formatter [dict of callables, optional] If not None, the keys should indicate the type(s) that the
respective formatting function applies to. Callables should return a string. Types that are
not specified (by their corresponding keys) are handled by the default formatters. Individual
types for which a formatter can be set are:

• ‘bool’

• ‘int’

• ‘timedelta’ : a numpy.timedelta64

• ‘datetime’ : a numpy.datetime64

• ‘float’

• ‘longfloat’ : 128-bit floats

• ‘complexfloat’

4.16. Input and output 641



NumPy Reference, Release 1.15.1

• ‘longcomplexfloat’ : composed of two 128-bit floats

• ‘numpystr’ : types numpy.string_ and numpy.unicode_

• ‘object’ : np.object_ arrays

• ‘str’ : all other strings

Other keys that can be used to set a group of types at once are:

• ‘all’ : sets all types

• ‘int_kind’ : sets ‘int’

• ‘float_kind’ : sets ‘float’ and ‘longfloat’

• ‘complex_kind’ : sets ‘complexfloat’ and ‘longcomplexfloat’

• ‘str_kind’ : sets ‘str’ and ‘numpystr’

floatmode [str, optional] Controls the interpretation of the precision option for floating-point
types. Can take the following values:

• ‘fixed’: Always print exactly precision fractional digits, even if this would print more
or fewer digits than necessary to specify the value uniquely.

• ‘unique’: Print the minimum number of fractional digits necessary to represent
each value uniquely. Different elements may have a different number of digits. The
value of the precision option is ignored.

• ‘maxprec’: Print at most precision fractional digits, but if an element can be
uniquely represented with fewer digits only print it with that many.

• ‘maxprec_equal’: Print at most precision fractional digits, but if every element in the
array can be uniquely represented with an equal number of fewer digits, use that many
digits for all elements.

legacy [string or False, optional] If set to the string ‘1.13’ enables 1.13 legacy printing mode.
This approximates numpy 1.13 print output by including a space in the sign position of floats
and different behavior for 0d arrays. If set to False, disables legacy mode. Unrecognized
strings will be ignored with a warning for forward compatibility.

New in version 1.14.0.

See also:

get_printoptions, set_string_function, array2string

Notes

formatter is always reset with a call to set_printoptions.

Examples

Floating point precision can be set:

>>> np.set_printoptions(precision=4)
>>> print(np.array([1.123456789]))
[ 1.1235]

Long arrays can be summarised:

642 Chapter 4. Routines

https://docs.python.org/dev/library/formatter.html#module-formatter


NumPy Reference, Release 1.15.1

>>> np.set_printoptions(threshold=5)
>>> print(np.arange(10))
[0 1 2 ..., 7 8 9]

Small results can be suppressed:

>>> eps = np.finfo(float).eps
>>> x = np.arange(4.)
>>> x**2 - (x + eps)**2
array([ -4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00])
>>> np.set_printoptions(suppress=True)
>>> x**2 - (x + eps)**2
array([-0., -0., 0., 0.])

A custom formatter can be used to display array elements as desired:

>>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)})
>>> x = np.arange(3)
>>> x
array([int: 0, int: -1, int: -2])
>>> np.set_printoptions() # formatter gets reset
>>> x
array([0, 1, 2])

To put back the default options, you can use:

>>> np.set_printoptions(edgeitems=3,infstr='inf',
... linewidth=75, nanstr='nan', precision=8,
... suppress=False, threshold=1000, formatter=None)

numpy.get_printoptions()
Return the current print options.

Returns

print_opts [dict] Dictionary of current print options with keys

• precision : int

• threshold : int

• edgeitems : int

• linewidth : int

• suppress : bool

• nanstr : str

• infstr : str

• formatter : dict of callables

• sign : str

For a full description of these options, see set_printoptions.

See also:

set_printoptions, set_string_function

numpy.set_string_function(f, repr=True)
Set a Python function to be used when pretty printing arrays.

4.16. Input and output 643



NumPy Reference, Release 1.15.1

Parameters

f [function or None] Function to be used to pretty print arrays. The function should expect a
single array argument and return a string of the representation of the array. If None, the
function is reset to the default NumPy function to print arrays.

repr [bool, optional] If True (default), the function for pretty printing (__repr__) is set, if
False the function that returns the default string representation (__str__) is set.

See also:

set_printoptions, get_printoptions

Examples

>>> def pprint(arr):
... return 'HA! - What are you going to do now?'
...
>>> np.set_string_function(pprint)
>>> a = np.arange(10)
>>> a
HA! - What are you going to do now?
>>> print(a)
[0 1 2 3 4 5 6 7 8 9]

We can reset the function to the default:

>>> np.set_string_function(None)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

repr affects either pretty printing or normal string representation. Note that __repr__ is still affected by
setting __str__ because the width of each array element in the returned string becomes equal to the length of
the result of __str__().

>>> x = np.arange(4)
>>> np.set_string_function(lambda x:'random', repr=False)
>>> x.__str__()
'random'
>>> x.__repr__()
'array([ 0, 1, 2, 3])'

numpy.printoptions(*args, **kwargs)
Context manager for setting print options.

Set print options for the scope of the with block, and restore the old options at the end. See
set_printoptions for the full description of available options.

See also:

set_printoptions, get_printoptions

Examples

>>> with np.printoptions(precision=2):
... print(np.array([2.0])) / 3
[0.67]

644 Chapter 4. Routines



NumPy Reference, Release 1.15.1

The as-clause of the with-statement gives the current print options:

>>> with np.printoptions(precision=2) as opts:
... assert_equal(opts, np.get_printoptions())

4.16.7 Base-n representations

binary_repr(num[, width]) Return the binary representation of the input number as a
string.

base_repr(number[, base, padding]) Return a string representation of a number in the given base
system.

numpy.base_repr(number, base=2, padding=0)
Return a string representation of a number in the given base system.

Parameters

number [int] The value to convert. Positive and negative values are handled.

base [int, optional] Convert number to the base number system. The valid range is 2-36, the
default value is 2.

padding [int, optional] Number of zeros padded on the left. Default is 0 (no padding).

Returns

out [str] String representation of number in base system.

See also:

binary_repr Faster version of base_repr for base 2.

Examples

>>> np.base_repr(5)
'101'
>>> np.base_repr(6, 5)
'11'
>>> np.base_repr(7, base=5, padding=3)
'00012'

>>> np.base_repr(10, base=16)
'A'
>>> np.base_repr(32, base=16)
'20'

4.16.8 Data sources

DataSource([destpath]) A generic data source file (file, http, ftp, . . . ).

class numpy.DataSource(destpath=’.’)
A generic data source file (file, http, ftp, . . . ).

4.16. Input and output 645



NumPy Reference, Release 1.15.1

DataSources can be local files or remote files/URLs. The files may also be compressed or uncompressed.
DataSource hides some of the low-level details of downloading the file, allowing you to simply pass in a valid
file path (or URL) and obtain a file object.

Parameters

destpath [str or None, optional] Path to the directory where the source file gets downloaded to
for use. If destpath is None, a temporary directory will be created. The default path is the
current directory.

Notes

URLs require a scheme string (http://) to be used, without it they will fail:

>>> repos = DataSource()
>>> repos.exists('www.google.com/index.html')
False
>>> repos.exists('http://www.google.com/index.html')
True

Temporary directories are deleted when the DataSource is deleted.

Examples

>>> ds = DataSource('/home/guido')
>>> urlname = 'http://www.google.com/index.html'
>>> gfile = ds.open('http://www.google.com/index.html') # remote file
>>> ds.abspath(urlname)
'/home/guido/www.google.com/site/index.html'

>>> ds = DataSource(None) # use with temporary file
>>> ds.open('/home/guido/foobar.txt')
<open file '/home/guido.foobar.txt', mode 'r' at 0x91d4430>
>>> ds.abspath('/home/guido/foobar.txt')
'/tmp/tmpy4pgsP/home/guido/foobar.txt'

Methods

abspath(path) Return absolute path of file in the DataSource directory.
exists(path) Test if path exists.
open(path[, mode, encoding, newline]) Open and return file-like object.

DataSource.abspath(path)
Return absolute path of file in the DataSource directory.

If path is an URL, then abspath will return either the location the file exists locally or the location it
would exist when opened using the open method.

Parameters

path [str] Can be a local file or a remote URL.

Returns

646 Chapter 4. Routines



NumPy Reference, Release 1.15.1

out [str] Complete path, including the DataSource destination directory.

Notes

The functionality is based on os.path.abspath.

DataSource.exists(path)
Test if path exists.

Test if path exists as (and in this order):

• a local file.

• a remote URL that has been downloaded and stored locally in the DataSource directory.

• a remote URL that has not been downloaded, but is valid and accessible.

Parameters

path [str] Can be a local file or a remote URL.

Returns

out [bool] True if path exists.

Notes

When path is an URL, exists will return True if it’s either stored locally in the DataSource direc-
tory, or is a valid remote URL. DataSource does not discriminate between the two, the file is accessible
if it exists in either location.

DataSource.open(path, mode=’r’, encoding=None, newline=None)
Open and return file-like object.

If path is an URL, it will be downloaded, stored in the DataSource directory and opened from there.

Parameters

path [str] Local file path or URL to open.

mode [{‘r’, ‘w’, ‘a’}, optional] Mode to open path. Mode ‘r’ for reading, ‘w’ for writing,
‘a’ to append. Available modes depend on the type of object specified by path. Default
is ‘r’.

encoding [{None, str}, optional] Open text file with given encoding. The default encoding
will be what io.open uses.

newline [{None, str}, optional] Newline to use when reading text file.

Returns

out [file object] File object.

4.16.9 Binary Format Description

lib.format Binary serialization

Binary serialization

4.16. Input and output 647

https://docs.python.org/dev/library/os.path.html#os.path.abspath
https://docs.python.org/dev/library/io.html#io.open


NumPy Reference, Release 1.15.1

NPY format

A simple format for saving numpy arrays to disk with the full information about them.

The .npy format is the standard binary file format in NumPy for persisting a single arbitrary NumPy array on disk.
The format stores all of the shape and dtype information necessary to reconstruct the array correctly even on another
machine with a different architecture. The format is designed to be as simple as possible while achieving its limited
goals.

The .npz format is the standard format for persisting multiple NumPy arrays on disk. A .npz file is a zip file
containing multiple .npy files, one for each array.

Capabilities

• Can represent all NumPy arrays including nested record arrays and object arrays.

• Represents the data in its native binary form.

• Supports Fortran-contiguous arrays directly.

• Stores all of the necessary information to reconstruct the array including shape and dtype on a machine of
a different architecture. Both little-endian and big-endian arrays are supported, and a file with little-endian
numbers will yield a little-endian array on any machine reading the file. The types are described in terms of
their actual sizes. For example, if a machine with a 64-bit C “long int” writes out an array with “long ints”, a
reading machine with 32-bit C “long ints” will yield an array with 64-bit integers.

• Is straightforward to reverse engineer. Datasets often live longer than the programs that created them. A compe-
tent developer should be able to create a solution in their preferred programming language to read most .npy
files that he has been given without much documentation.

• Allows memory-mapping of the data. See open_memmep.

• Can be read from a filelike stream object instead of an actual file.

• Stores object arrays, i.e. arrays containing elements that are arbitrary Python objects. Files with object arrays
are not to be mmapable, but can be read and written to disk.

Limitations

• Arbitrary subclasses of numpy.ndarray are not completely preserved. Subclasses will be accepted for writing,
but only the array data will be written out. A regular numpy.ndarray object will be created upon reading the file.

Warning: Due to limitations in the interpretation of structured dtypes, dtypes with fields with empty names will
have the names replaced by ‘f0’, ‘f1’, etc. Such arrays will not round-trip through the format entirely accurately.
The data is intact; only the field names will differ. We are working on a fix for this. This fix will not require a
change in the file format. The arrays with such structures can still be saved and restored, and the correct dtype may
be restored by using the loadedarray.view(correct_dtype) method.

File extensions

We recommend using the .npy and .npz extensions for files saved in this format. This is by no means a requirement;
applications may wish to use these file formats but use an extension specific to the application. In the absence of an
obvious alternative, however, we suggest using .npy and .npz.

648 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Version numbering

The version numbering of these formats is independent of NumPy version numbering. If the format is upgraded, the
code in numpy.io will still be able to read and write Version 1.0 files.

Format Version 1.0

The first 6 bytes are a magic string: exactly \x93NUMPY.

The next 1 byte is an unsigned byte: the major version number of the file format, e.g. \x01.

The next 1 byte is an unsigned byte: the minor version number of the file format, e.g. \x00. Note: the version of the
file format is not tied to the version of the numpy package.

The next 2 bytes form a little-endian unsigned short int: the length of the header data HEADER_LEN.

The next HEADER_LEN bytes form the header data describing the array’s format. It is an ASCII string which
contains a Python literal expression of a dictionary. It is terminated by a newline (\n) and padded with spaces (\x20)
to make the total of len(magic string) + 2 + len(length) + HEADER_LEN be evenly divisible by 64
for alignment purposes.

The dictionary contains three keys:

“descr” [dtype.descr] An object that can be passed as an argument to the numpy.dtype constructor to
create the array’s dtype.

“fortran_order” [bool] Whether the array data is Fortran-contiguous or not. Since Fortran-contiguous
arrays are a common form of non-C-contiguity, we allow them to be written directly to disk for
efficiency.

“shape” [tuple of int] The shape of the array.

For repeatability and readability, the dictionary keys are sorted in alphabetic order. This is for convenience only. A
writer SHOULD implement this if possible. A reader MUST NOT depend on this.

Following the header comes the array data. If the dtype contains Python objects (i.e. dtype.hasobject is
True), then the data is a Python pickle of the array. Otherwise the data is the contiguous (either C- or Fortran-,
depending on fortran_order) bytes of the array. Consumers can figure out the number of bytes by multiplying
the number of elements given by the shape (noting that shape=()means there is 1 element) by dtype.itemsize.

Format Version 2.0

The version 1.0 format only allowed the array header to have a total size of 65535 bytes. This can be exceeded by
structured arrays with a large number of columns. The version 2.0 format extends the header size to 4 GiB. numpy.
save will automatically save in 2.0 format if the data requires it, else it will always use the more compatible 1.0
format.

The description of the fourth element of the header therefore has become: “The next 4 bytes form a little-endian
unsigned int: the length of the header data HEADER_LEN.”

Notes

The .npy format, including motivation for creating it and a comparison of alternatives, is described in the “npy-
format” NEP, however details have evolved with time and this document is more current.

4.16. Input and output 649

http://www.numpy.org/neps/nep-0001-npy-format.html
http://www.numpy.org/neps/nep-0001-npy-format.html


NumPy Reference, Release 1.15.1

4.17 Linear algebra (numpy.linalg)

4.17.1 Matrix and vector products

dot(a, b[, out]) Dot product of two arrays.
linalg.multi_dot(arrays) Compute the dot product of two or more arrays in a sin-

gle function call, while automatically selecting the fastest
evaluation order.

vdot(a, b) Return the dot product of two vectors.
inner(a, b) Inner product of two arrays.
outer(a, b[, out]) Compute the outer product of two vectors.
matmul(a, b[, out]) Matrix product of two arrays.
tensordot(a, b[, axes]) Compute tensor dot product along specified axes for arrays

>= 1-D.
einsum(subscripts, *operands[, out, dtype, . . . ]) Evaluates the Einstein summation convention on the

operands.
einsum_path(subscripts, *operands[, optimize]) Evaluates the lowest cost contraction order for an einsum

expression by considering the creation of intermediate ar-
rays.

linalg.matrix_power(a, n) Raise a square matrix to the (integer) power n.
kron(a, b) Kronecker product of two arrays.

numpy.dot(a, b, out=None)
Dot product of two arrays. Specifically,

• If both a and b are 1-D arrays, it is inner product of vectors (without complex conjugation).

• If both a and b are 2-D arrays, it is matrix multiplication, but using matmul or a @ b is preferred.

• If either a or b is 0-D (scalar), it is equivalent to multiply and using numpy.multiply(a, b) or
a * b is preferred.

• If a is an N-D array and b is a 1-D array, it is a sum product over the last axis of a and b.

• If a is an N-D array and b is an M-D array (where M>=2), it is a sum product over the last axis of a and
the second-to-last axis of b:

dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])

Parameters

a [array_like] First argument.

b [array_like] Second argument.

out [ndarray, optional] Output argument. This must have the exact kind that would be returned
if it was not used. In particular, it must have the right type, must be C-contiguous, and its
dtype must be the dtype that would be returned for dot(a,b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting to be
flexible.

Returns

output [ndarray] Returns the dot product of a and b. If a and b are both scalars or both 1-D
arrays then a scalar is returned; otherwise an array is returned. If out is given, then it is
returned.

650 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Raises

ValueError If the last dimension of a is not the same size as the second-to-last dimension of b.

See also:

vdot Complex-conjugating dot product.

tensordot Sum products over arbitrary axes.

einsum Einstein summation convention.

matmul ‘@’ operator as method with out parameter.

Examples

>>> np.dot(3, 4)
12

Neither argument is complex-conjugated:

>>> np.dot([2j, 3j], [2j, 3j])
(-13+0j)

For 2-D arrays it is the matrix product:

>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.dot(a, b)
array([[4, 1],

[2, 2]])

>>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]
499128
>>> sum(a[2,3,2,:] * b[1,2,:,2])
499128

numpy.linalg.multi_dot(arrays)
Compute the dot product of two or more arrays in a single function call, while automatically selecting the fastest
evaluation order.

multi_dot chains numpy.dot and uses optimal parenthesization of the matrices [1] [2]. Depending on the
shapes of the matrices, this can speed up the multiplication a lot.

If the first argument is 1-D it is treated as a row vector. If the last argument is 1-D it is treated as a column
vector. The other arguments must be 2-D.

Think of multi_dot as:

def multi_dot(arrays): return functools.reduce(np.dot, arrays)

Parameters

arrays [sequence of array_like] If the first argument is 1-D it is treated as row vector. If the last
argument is 1-D it is treated as column vector. The other arguments must be 2-D.

4.17. Linear algebra (numpy.linalg) 651



NumPy Reference, Release 1.15.1

Returns

output [ndarray] Returns the dot product of the supplied arrays.

See also:

dot dot multiplication with two arguments.

Notes

The cost for a matrix multiplication can be calculated with the following function:

def cost(A, B):
return A.shape[0] * A.shape[1] * B.shape[1]

Let’s assume we have three matrices 𝐴10𝑥100, 𝐵100𝑥5, 𝐶5𝑥50.

The costs for the two different parenthesizations are as follows:

cost((AB)C) = 10*100*5 + 10*5*50 = 5000 + 2500 = 7500
cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000

References

[1], [2]

Examples

multi_dot allows you to write:

>>> from numpy.linalg import multi_dot
>>> # Prepare some data
>>> A = np.random.random(10000, 100)
>>> B = np.random.random(100, 1000)
>>> C = np.random.random(1000, 5)
>>> D = np.random.random(5, 333)
>>> # the actual dot multiplication
>>> multi_dot([A, B, C, D])

instead of:

>>> np.dot(np.dot(np.dot(A, B), C), D)
>>> # or
>>> A.dot(B).dot(C).dot(D)

numpy.vdot(a, b)
Return the dot product of two vectors.

The vdot(a, b) function handles complex numbers differently than dot(a, b). If the first argument is complex the
complex conjugate of the first argument is used for the calculation of the dot product.

Note that vdot handles multidimensional arrays differently than dot: it does not perform a matrix product,
but flattens input arguments to 1-D vectors first. Consequently, it should only be used for vectors.

Parameters

652 Chapter 4. Routines



NumPy Reference, Release 1.15.1

a [array_like] If a is complex the complex conjugate is taken before calculation of the dot
product.

b [array_like] Second argument to the dot product.

Returns

output [ndarray] Dot product of a and b. Can be an int, float, or complex depending on the
types of a and b.

See also:

dot Return the dot product without using the complex conjugate of the first argument.

Examples

>>> a = np.array([1+2j,3+4j])
>>> b = np.array([5+6j,7+8j])
>>> np.vdot(a, b)
(70-8j)
>>> np.vdot(b, a)
(70+8j)

Note that higher-dimensional arrays are flattened!

>>> a = np.array([[1, 4], [5, 6]])
>>> b = np.array([[4, 1], [2, 2]])
>>> np.vdot(a, b)
30
>>> np.vdot(b, a)
30
>>> 1*4 + 4*1 + 5*2 + 6*2
30

numpy.inner(a, b)
Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum
product over the last axes.

Parameters

a, b [array_like] If a and b are nonscalar, their last dimensions must match.

Returns

out [ndarray] out.shape = a.shape[:-1] + b.shape[:-1]

Raises

ValueError If the last dimension of a and b has different size.

See also:

tensordot Sum products over arbitrary axes.

dot Generalised matrix product, using second last dimension of b.

einsum Einstein summation convention.

4.17. Linear algebra (numpy.linalg) 653



NumPy Reference, Release 1.15.1

Notes

For vectors (1-D arrays) it computes the ordinary inner-product:

np.inner(a, b) = sum(a[:]*b[:])

More generally, if ndim(a) = r > 0 and ndim(b) = s > 0:

np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))

or explicitly:

np.inner(a, b)[i0,...,ir-1,j0,...,js-1]
= sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:])

In addition a or b may be scalars, in which case:

np.inner(a,b) = a*b

Examples

Ordinary inner product for vectors:

>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2

A multidimensional example:

>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> np.inner(a, b)
array([[ 14, 38, 62],

[ 86, 110, 134]])

An example where b is a scalar:

>>> np.inner(np.eye(2), 7)
array([[ 7., 0.],

[ 0., 7.]])

numpy.outer(a, b, out=None)
Compute the outer product of two vectors.

Given two vectors, a = [a0, a1, ..., aM] and b = [b0, b1, ..., bN], the outer product [1]
is:

[[a0*b0 a0*b1 ... a0*bN ]
[a1*b0 .
[ ... .
[aM*b0 aM*bN ]]

Parameters

a [(M,) array_like] First input vector. Input is flattened if not already 1-dimensional.

654 Chapter 4. Routines



NumPy Reference, Release 1.15.1

b [(N,) array_like] Second input vector. Input is flattened if not already 1-dimensional.

out [(M, N) ndarray, optional] A location where the result is stored

New in version 1.9.0.

Returns

out [(M, N) ndarray] out[i, j] = a[i] * b[j]

See also:

inner

einsum einsum('i,j->ij', a.ravel(), b.ravel()) is the equivalent.

ufunc.outer A generalization to N dimensions and other operations. np.multiply.outer(a.
ravel(), b.ravel()) is the equivalent.

References

[1]

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],

[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.]])

>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[ 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],

[ 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
[ 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])

>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],

[-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
[-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
[-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
[-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([[a, aa, aaa],

[b, bb, bbb],
[c, cc, ccc]], dtype=object)

4.17. Linear algebra (numpy.linalg) 655



NumPy Reference, Release 1.15.1

numpy.matmul(a, b, out=None)
Matrix product of two arrays.

The behavior depends on the arguments in the following way.

• If both arguments are 2-D they are multiplied like conventional matrices.

• If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and
broadcast accordingly.

• If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix
multiplication the prepended 1 is removed.

• If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix
multiplication the appended 1 is removed.

Multiplication by a scalar is not allowed, use * instead. Note that multiplying a stack of matrices with a vector
will result in a stack of vectors, but matmul will not recognize it as such.

matmul differs from dot in two important ways.

• Multiplication by scalars is not allowed.

• Stacks of matrices are broadcast together as if the matrices were elements.

Warning: This function is preliminary and included in NumPy 1.10.0 for testing and documentation. Its
semantics will not change, but the number and order of the optional arguments will.

New in version 1.10.0.

Parameters

a [array_like] First argument.

b [array_like] Second argument.

out [ndarray, optional] Output argument. This must have the exact kind that would be returned
if it was not used. In particular, it must have the right type, must be C-contiguous, and its
dtype must be the dtype that would be returned for dot(a,b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting to be
flexible.

Returns

output [ndarray] Returns the dot product of a and b. If a and b are both 1-D arrays then a scalar
is returned; otherwise an array is returned. If out is given, then it is returned.

Raises

ValueError If the last dimension of a is not the same size as the second-to-last dimension of b.

If scalar value is passed.

See also:

vdot Complex-conjugating dot product.

tensordot Sum products over arbitrary axes.

einsum Einstein summation convention.

dot alternative matrix product with different broadcasting rules.

656 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

The matmul function implements the semantics of the @ operator introduced in Python 3.5 following PEP465.

Examples

For 2-D arrays it is the matrix product:

>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.matmul(a, b)
array([[4, 1],

[2, 2]])

For 2-D mixed with 1-D, the result is the usual.

>>> a = [[1, 0], [0, 1]]
>>> b = [1, 2]
>>> np.matmul(a, b)
array([1, 2])
>>> np.matmul(b, a)
array([1, 2])

Broadcasting is conventional for stacks of arrays

>>> a = np.arange(2*2*4).reshape((2,2,4))
>>> b = np.arange(2*2*4).reshape((2,4,2))
>>> np.matmul(a,b).shape
(2, 2, 2)
>>> np.matmul(a,b)[0,1,1]
98
>>> sum(a[0,1,:] * b[0,:,1])
98

Vector, vector returns the scalar inner product, but neither argument is complex-conjugated:

>>> np.matmul([2j, 3j], [2j, 3j])
(-13+0j)

Scalar multiplication raises an error.

>>> np.matmul([1,2], 3)
Traceback (most recent call last):
...
ValueError: Scalar operands are not allowed, use '*' instead

numpy.tensordot(a, b, axes=2)
Compute tensor dot product along specified axes for arrays >= 1-D.

Given two tensors (arrays of dimension greater than or equal to one), a and b, and an array_like object containing
two array_like objects, (a_axes, b_axes), sum the products of a’s and b’s elements (components) over the
axes specified by a_axes and b_axes. The third argument can be a single non-negative integer_like scalar,
N; if it is such, then the last N dimensions of a and the first N dimensions of b are summed over.

Parameters

a, b [array_like, len(shape) >= 1] Tensors to “dot”.

4.17. Linear algebra (numpy.linalg) 657



NumPy Reference, Release 1.15.1

axes [int or (2,) array_like]

• integer_like If an int N, sum over the last N axes of a and the first N axes of b in order.
The sizes of the corresponding axes must match.

• (2,) array_like Or, a list of axes to be summed over, first sequence applying to a, second
to b. Both elements array_like must be of the same length.

See also:

dot, einsum

Notes

Three common use cases are:

• axes = 0 : tensor product 𝑎⊗ 𝑏

• axes = 1 : tensor dot product 𝑎 · 𝑏

• axes = 2 : (default) tensor double contraction 𝑎 : 𝑏

When axes is integer_like, the sequence for evaluation will be: first the -Nth axis in a and 0th axis in b, and the
-1th axis in a and Nth axis in b last.

When there is more than one axis to sum over - and they are not the last (first) axes of a (b) - the argument axes
should consist of two sequences of the same length, with the first axis to sum over given first in both sequences,
the second axis second, and so forth.

Examples

A “traditional” example:

>>> a = np.arange(60.).reshape(3,4,5)
>>> b = np.arange(24.).reshape(4,3,2)
>>> c = np.tensordot(a,b, axes=([1,0],[0,1]))
>>> c.shape
(5, 2)
>>> c
array([[ 4400., 4730.],

[ 4532., 4874.],
[ 4664., 5018.],
[ 4796., 5162.],
[ 4928., 5306.]])

>>> # A slower but equivalent way of computing the same...
>>> d = np.zeros((5,2))
>>> for i in range(5):
... for j in range(2):
... for k in range(3):
... for n in range(4):
... d[i,j] += a[k,n,i] * b[n,k,j]
>>> c == d
array([[ True, True],

[ True, True],
[ True, True],
[ True, True],
[ True, True]])

658 Chapter 4. Routines



NumPy Reference, Release 1.15.1

An extended example taking advantage of the overloading of + and *:

>>> a = np.array(range(1, 9))
>>> a.shape = (2, 2, 2)
>>> A = np.array(('a', 'b', 'c', 'd'), dtype=object)
>>> A.shape = (2, 2)
>>> a; A
array([[[1, 2],

[3, 4]],
[[5, 6],
[7, 8]]])

array([[a, b],
[c, d]], dtype=object)

>>> np.tensordot(a, A) # third argument default is 2 for double-contraction
array([abbcccdddd, aaaaabbbbbbcccccccdddddddd], dtype=object)

>>> np.tensordot(a, A, 1)
array([[[acc, bdd],

[aaacccc, bbbdddd]],
[[aaaaacccccc, bbbbbdddddd],
[aaaaaaacccccccc, bbbbbbbdddddddd]]], dtype=object)

>>> np.tensordot(a, A, 0) # tensor product (result too long to incl.)
array([[[[[a, b],

[c, d]],
...

>>> np.tensordot(a, A, (0, 1))
array([[[abbbbb, cddddd],

[aabbbbbb, ccdddddd]],
[[aaabbbbbbb, cccddddddd],
[aaaabbbbbbbb, ccccdddddddd]]], dtype=object)

>>> np.tensordot(a, A, (2, 1))
array([[[abb, cdd],

[aaabbbb, cccdddd]],
[[aaaaabbbbbb, cccccdddddd],
[aaaaaaabbbbbbbb, cccccccdddddddd]]], dtype=object)

>>> np.tensordot(a, A, ((0, 1), (0, 1)))
array([abbbcccccddddddd, aabbbbccccccdddddddd], dtype=object)

>>> np.tensordot(a, A, ((2, 1), (1, 0)))
array([acccbbdddd, aaaaacccccccbbbbbbdddddddd], dtype=object)

numpy.einsum(subscripts, *operands, out=None, dtype=None, order=’K’, casting=’safe’, opti-
mize=False)

Evaluates the Einstein summation convention on the operands.

Using the Einstein summation convention, many common multi-dimensional array operations can be represented
in a simple fashion. This function provides a way to compute such summations. The best way to understand this
function is to try the examples below, which show how many common NumPy functions can be implemented
as calls to einsum.

Parameters

4.17. Linear algebra (numpy.linalg) 659



NumPy Reference, Release 1.15.1

subscripts [str] Specifies the subscripts for summation.

operands [list of array_like] These are the arrays for the operation.

out [{ndarray, None}, optional] If provided, the calculation is done into this array.

dtype [{data-type, None}, optional] If provided, forces the calculation to use the data type
specified. Note that you may have to also give a more liberal casting parameter to allow the
conversions. Default is None.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the output. ‘C’ means it
should be C contiguous. ‘F’ means it should be Fortran contiguous, ‘A’ means it should be
‘F’ if the inputs are all ‘F’, ‘C’ otherwise. ‘K’ means it should be as close to the layout as
the inputs as is possible, including arbitrarily permuted axes. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur. Setting this to ‘unsafe’ is not recommended, as it can adversely affect
accumulations.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

Default is ‘safe’.

optimize [{False, True, ‘greedy’, ‘optimal’}, optional] Controls if intermediate optimization
should occur. No optimization will occur if False and True will default to the ‘greedy’
algorithm. Also accepts an explicit contraction list from the np.einsum_path function.
See np.einsum_path for more details. Default is True.

Returns

output [ndarray] The calculation based on the Einstein summation convention.

See also:

einsum_path, dot, inner, outer, tensordot, linalg.multi_dot

Notes

New in version 1.6.0.

The subscripts string is a comma-separated list of subscript labels, where each label refers to a dimension of
the corresponding operand. Repeated subscripts labels in one operand take the diagonal. For example, np.
einsum('ii', a) is equivalent to np.trace(a).

Whenever a label is repeated, it is summed, so np.einsum('i,i', a, b) is equivalent to np.inner(a,
b). If a label appears only once, it is not summed, so np.einsum('i', a) produces a view of a with no
changes.

The order of labels in the output is by default alphabetical. This means that np.einsum('ij', a) doesn’t
affect a 2D array, while np.einsum('ji', a) takes its transpose.

The output can be controlled by specifying output subscript labels as well. This specifies the label order,
and allows summing to be disallowed or forced when desired. The call np.einsum('i->', a) is like

660 Chapter 4. Routines



NumPy Reference, Release 1.15.1

np.sum(a, axis=-1), and np.einsum('ii->i', a) is like np.diag(a). The difference is that
einsum does not allow broadcasting by default.

To enable and control broadcasting, use an ellipsis. Default NumPy-style broadcasting is done by adding an
ellipsis to the left of each term, like np.einsum('...ii->...i', a). To take the trace along the first
and last axes, you can do np.einsum('i...i', a), or to do a matrix-matrix product with the left-most
indices instead of rightmost, you can do np.einsum('ij...,jk...->ik...', a, b).

When there is only one operand, no axes are summed, and no output parameter is provided, a view into the
operand is returned instead of a new array. Thus, taking the diagonal as np.einsum('ii->i', a) produces
a view.

An alternative way to provide the subscripts and operands is as einsum(op0, sublist0, op1,
sublist1, ..., [sublistout]). The examples below have corresponding einsum calls with the
two parameter methods.

New in version 1.10.0.

Views returned from einsum are now writeable whenever the input array is writeable. For example, np.
einsum('ijk...->kji...', a) will now have the same effect as np.swapaxes(a, 0, 2) and
np.einsum('ii->i', a) will return a writeable view of the diagonal of a 2D array.

New in version 1.12.0.

Added the optimize argument which will optimize the contraction order of an einsum expression. For a
contraction with three or more operands this can greatly increase the computational efficiency at the cost of a
larger memory footprint during computation.

See np.einsum_path for more details.

Examples

>>> a = np.arange(25).reshape(5,5)
>>> b = np.arange(5)
>>> c = np.arange(6).reshape(2,3)

>>> np.einsum('ii', a)
60
>>> np.einsum(a, [0,0])
60
>>> np.trace(a)
60

>>> np.einsum('ii->i', a)
array([ 0, 6, 12, 18, 24])
>>> np.einsum(a, [0,0], [0])
array([ 0, 6, 12, 18, 24])
>>> np.diag(a)
array([ 0, 6, 12, 18, 24])

>>> np.einsum('ij,j', a, b)
array([ 30, 80, 130, 180, 230])
>>> np.einsum(a, [0,1], b, [1])
array([ 30, 80, 130, 180, 230])
>>> np.dot(a, b)
array([ 30, 80, 130, 180, 230])

(continues on next page)

4.17. Linear algebra (numpy.linalg) 661



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> np.einsum('...j,j', a, b)
array([ 30, 80, 130, 180, 230])

>>> np.einsum('ji', c)
array([[0, 3],

[1, 4],
[2, 5]])

>>> np.einsum(c, [1,0])
array([[0, 3],

[1, 4],
[2, 5]])

>>> c.T
array([[0, 3],

[1, 4],
[2, 5]])

>>> np.einsum('..., ...', 3, c)
array([[ 0, 3, 6],

[ 9, 12, 15]])
>>> np.einsum(',ij', 3, C)
array([[ 0, 3, 6],

[ 9, 12, 15]])
>>> np.einsum(3, [Ellipsis], c, [Ellipsis])
array([[ 0, 3, 6],

[ 9, 12, 15]])
>>> np.multiply(3, c)
array([[ 0, 3, 6],

[ 9, 12, 15]])

>>> np.einsum('i,i', b, b)
30
>>> np.einsum(b, [0], b, [0])
30
>>> np.inner(b,b)
30

>>> np.einsum('i,j', np.arange(2)+1, b)
array([[0, 1, 2, 3, 4],

[0, 2, 4, 6, 8]])
>>> np.einsum(np.arange(2)+1, [0], b, [1])
array([[0, 1, 2, 3, 4],

[0, 2, 4, 6, 8]])
>>> np.outer(np.arange(2)+1, b)
array([[0, 1, 2, 3, 4],

[0, 2, 4, 6, 8]])

>>> np.einsum('i...->...', a)
array([50, 55, 60, 65, 70])
>>> np.einsum(a, [0,Ellipsis], [Ellipsis])
array([50, 55, 60, 65, 70])
>>> np.sum(a, axis=0)
array([50, 55, 60, 65, 70])

>>> a = np.arange(60.).reshape(3,4,5)

(continues on next page)

662 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> b = np.arange(24.).reshape(4,3,2)
>>> np.einsum('ijk,jil->kl', a, b)
array([[ 4400., 4730.],

[ 4532., 4874.],
[ 4664., 5018.],
[ 4796., 5162.],
[ 4928., 5306.]])

>>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
array([[ 4400., 4730.],

[ 4532., 4874.],
[ 4664., 5018.],
[ 4796., 5162.],
[ 4928., 5306.]])

>>> np.tensordot(a,b, axes=([1,0],[0,1]))
array([[ 4400., 4730.],

[ 4532., 4874.],
[ 4664., 5018.],
[ 4796., 5162.],
[ 4928., 5306.]])

>>> a = np.arange(6).reshape((3,2))
>>> b = np.arange(12).reshape((4,3))
>>> np.einsum('ki,jk->ij', a, b)
array([[10, 28, 46, 64],

[13, 40, 67, 94]])
>>> np.einsum('ki,...k->i...', a, b)
array([[10, 28, 46, 64],

[13, 40, 67, 94]])
>>> np.einsum('k...,jk', a, b)
array([[10, 28, 46, 64],

[13, 40, 67, 94]])

>>> # since version 1.10.0
>>> a = np.zeros((3, 3))
>>> np.einsum('ii->i', a)[:] = 1
>>> a
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

numpy.einsum_path(subscripts, *operands, optimize=’greedy’)
Evaluates the lowest cost contraction order for an einsum expression by considering the creation of intermediate
arrays.

Parameters

subscripts [str] Specifies the subscripts for summation.

*operands [list of array_like] These are the arrays for the operation.

optimize [{bool, list, tuple, ‘greedy’, ‘optimal’}] Choose the type of path. If a tuple is provided,
the second argument is assumed to be the maximum intermediate size created. If only a
single argument is provided the largest input or output array size is used as a maximum
intermediate size.

• if a list is given that starts with einsum_path, uses this as the contraction path

• if False no optimization is taken

4.17. Linear algebra (numpy.linalg) 663



NumPy Reference, Release 1.15.1

• if True defaults to the ‘greedy’ algorithm

• ‘optimal’ An algorithm that combinatorially explores all possible ways of contracting the
listed tensors and choosest the least costly path. Scales exponentially with the number of
terms in the contraction.

• ‘greedy’ An algorithm that chooses the best pair contraction at each step. Effectively,
this algorithm searches the largest inner, Hadamard, and then outer products at each step.
Scales cubically with the number of terms in the contraction. Equivalent to the ‘optimal’
path for most contractions.

Default is ‘greedy’.

Returns

path [list of tuples] A list representation of the einsum path.

string_repr [str] A printable representation of the einsum path.

See also:

einsum, linalg.multi_dot

Notes

The resulting path indicates which terms of the input contraction should be contracted first, the result of this
contraction is then appended to the end of the contraction list. This list can then be iterated over until all
intermediate contractions are complete.

Examples

We can begin with a chain dot example. In this case, it is optimal to contract the b and c tensors first as
represented by the first element of the path (1, 2). The resulting tensor is added to the end of the contraction
and the remaining contraction (0, 1) is then completed.

>>> a = np.random.rand(2, 2)
>>> b = np.random.rand(2, 5)
>>> c = np.random.rand(5, 2)
>>> path_info = np.einsum_path('ij,jk,kl->il', a, b, c, optimize='greedy')
>>> print(path_info[0])
['einsum_path', (1, 2), (0, 1)]
>>> print(path_info[1])
Complete contraction: ij,jk,kl->il

Naive scaling: 4
Optimized scaling: 3
Naive FLOP count: 1.600e+02

Optimized FLOP count: 5.600e+01
Theoretical speedup: 2.857

Largest intermediate: 4.000e+00 elements
-------------------------------------------------------------------------
scaling current remaining
-------------------------------------------------------------------------

3 kl,jk->jl ij,jl->il
3 jl,ij->il il->il

A more complex index transformation example.

664 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> I = np.random.rand(10, 10, 10, 10)
>>> C = np.random.rand(10, 10)
>>> path_info = np.einsum_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C,

optimize='greedy')

>>> print(path_info[0])
['einsum_path', (0, 2), (0, 3), (0, 2), (0, 1)]
>>> print(path_info[1])
Complete contraction: ea,fb,abcd,gc,hd->efgh

Naive scaling: 8
Optimized scaling: 5
Naive FLOP count: 8.000e+08

Optimized FLOP count: 8.000e+05
Theoretical speedup: 1000.000

Largest intermediate: 1.000e+04 elements
--------------------------------------------------------------------------
scaling current remaining
--------------------------------------------------------------------------

5 abcd,ea->bcde fb,gc,hd,bcde->efgh
5 bcde,fb->cdef gc,hd,cdef->efgh
5 cdef,gc->defg hd,defg->efgh
5 defg,hd->efgh efgh->efgh

numpy.linalg.matrix_power(a, n)
Raise a square matrix to the (integer) power n.

For positive integers n, the power is computed by repeated matrix squarings and matrix multiplications. If n ==
0, the identity matrix of the same shape as M is returned. If n < 0, the inverse is computed and then raised to
the abs(n).

Note: Stacks of object matrices are not currently supported.

Parameters

a [(. . . , M, M) array_like] Matrix to be “powered.”

n [int] The exponent can be any integer or long integer, positive, negative, or zero.

Returns

a**n [(. . . , M, M) ndarray or matrix object] The return value is the same shape and type as M;
if the exponent is positive or zero then the type of the elements is the same as those of M. If
the exponent is negative the elements are floating-point.

Raises

LinAlgError For matrices that are not square or that (for negative powers) cannot be inverted
numerically.

Examples

>>> from numpy.linalg import matrix_power
>>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
>>> matrix_power(i, 3) # should = -i
array([[ 0, -1],

(continues on next page)

4.17. Linear algebra (numpy.linalg) 665



NumPy Reference, Release 1.15.1

(continued from previous page)

[ 1, 0]])
>>> matrix_power(i, 0)
array([[1, 0],

[0, 1]])
>>> matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements
array([[ 0., 1.],

[-1., 0.]])

Somewhat more sophisticated example

>>> q = np.zeros((4, 4))
>>> q[0:2, 0:2] = -i
>>> q[2:4, 2:4] = i
>>> q # one of the three quaternion units not equal to 1
array([[ 0., -1., 0., 0.],

[ 1., 0., 0., 0.],
[ 0., 0., 0., 1.],
[ 0., 0., -1., 0.]])

>>> matrix_power(q, 2) # = -np.eye(4)
array([[-1., 0., 0., 0.],

[ 0., -1., 0., 0.],
[ 0., 0., -1., 0.],
[ 0., 0., 0., -1.]])

numpy.kron(a, b)
Kronecker product of two arrays.

Computes the Kronecker product, a composite array made of blocks of the second array scaled by the first.

Parameters

a, b [array_like]

Returns

out [ndarray]

See also:

outer The outer product

Notes

The function assumes that the number of dimensions of a and b are the same, if necessary prepending the
smallest with ones. If a.shape = (r0,r1,..,rN) and b.shape = (s0,s1,. . . ,sN), the Kronecker product has shape
(r0*s0, r1*s1, . . . , rN*SN). The elements are products of elements from a and b, organized explicitly by:

kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]

where:

kt = it * st + jt, t = 0,...,N

In the common 2-D case (N=1), the block structure can be visualized:

666 Chapter 4. Routines



NumPy Reference, Release 1.15.1

[[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ],
[ ... ... ],
[ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]]

Examples

>>> np.kron([1,10,100], [5,6,7])
array([ 5, 6, 7, 50, 60, 70, 500, 600, 700])
>>> np.kron([5,6,7], [1,10,100])
array([ 5, 50, 500, 6, 60, 600, 7, 70, 700])

>>> np.kron(np.eye(2), np.ones((2,2)))
array([[ 1., 1., 0., 0.],

[ 1., 1., 0., 0.],
[ 0., 0., 1., 1.],
[ 0., 0., 1., 1.]])

>>> a = np.arange(100).reshape((2,5,2,5))
>>> b = np.arange(24).reshape((2,3,4))
>>> c = np.kron(a,b)
>>> c.shape
(2, 10, 6, 20)
>>> I = (1,3,0,2)
>>> J = (0,2,1)
>>> J1 = (0,) + J # extend to ndim=4
>>> S1 = (1,) + b.shape
>>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
>>> c[K] == a[I]*b[J]
True

4.17.2 Decompositions

linalg.cholesky(a) Cholesky decomposition.
linalg.qr(a[, mode]) Compute the qr factorization of a matrix.
linalg.svd(a[, full_matrices, compute_uv]) Singular Value Decomposition.

numpy.linalg.cholesky(a)
Cholesky decomposition.

Return the Cholesky decomposition, L * L.H, of the square matrix a, where L is lower-triangular and .H is
the conjugate transpose operator (which is the ordinary transpose if a is real-valued). a must be Hermitian
(symmetric if real-valued) and positive-definite. Only L is actually returned.

Parameters

a [(. . . , M, M) array_like] Hermitian (symmetric if all elements are real), positive-definite input
matrix.

Returns

L [(. . . , M, M) array_like] Upper or lower-triangular Cholesky factor of a. Returns a matrix
object if a is a matrix object.

Raises

4.17. Linear algebra (numpy.linalg) 667



NumPy Reference, Release 1.15.1

LinAlgError If the decomposition fails, for example, if a is not positive-definite.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

The Cholesky decomposition is often used as a fast way of solving

𝐴x = b

(when A is both Hermitian/symmetric and positive-definite).

First, we solve for y in

𝐿y = b,

and then for x in

𝐿.𝐻x = y.

Examples

>>> A = np.array([[1,-2j],[2j,5]])
>>> A
array([[ 1.+0.j, 0.-2.j],

[ 0.+2.j, 5.+0.j]])
>>> L = np.linalg.cholesky(A)
>>> L
array([[ 1.+0.j, 0.+0.j],

[ 0.+2.j, 1.+0.j]])
>>> np.dot(L, L.T.conj()) # verify that L * L.H = A
array([[ 1.+0.j, 0.-2.j],

[ 0.+2.j, 5.+0.j]])
>>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
>>> np.linalg.cholesky(A) # an ndarray object is returned
array([[ 1.+0.j, 0.+0.j],

[ 0.+2.j, 1.+0.j]])
>>> # But a matrix object is returned if A is a matrix object
>>> LA.cholesky(np.matrix(A))
matrix([[ 1.+0.j, 0.+0.j],

[ 0.+2.j, 1.+0.j]])

numpy.linalg.qr(a, mode=’reduced’)
Compute the qr factorization of a matrix.

Factor the matrix a as qr, where q is orthonormal and r is upper-triangular.

Parameters

a [array_like, shape (M, N)] Matrix to be factored.

mode [{‘reduced’, ‘complete’, ‘r’, ‘raw’, ‘full’, ‘economic’}, optional] If K = min(M, N), then

• ‘reduced’ : returns q, r with dimensions (M, K), (K, N) (default)

• ‘complete’ : returns q, r with dimensions (M, M), (M, N)

668 Chapter 4. Routines



NumPy Reference, Release 1.15.1

• ‘r’ : returns r only with dimensions (K, N)

• ‘raw’ : returns h, tau with dimensions (N, M), (K,)

• ‘full’ : alias of ‘reduced’, deprecated

• ‘economic’ : returns h from ‘raw’, deprecated.

The options ‘reduced’, ‘complete, and ‘raw’ are new in numpy 1.8, see the notes for more
information. The default is ‘reduced’, and to maintain backward compatibility with earlier
versions of numpy both it and the old default ‘full’ can be omitted. Note that array h re-
turned in ‘raw’ mode is transposed for calling Fortran. The ‘economic’ mode is deprecated.
The modes ‘full’ and ‘economic’ may be passed using only the first letter for backwards
compatibility, but all others must be spelled out. See the Notes for more explanation.

Returns

q [ndarray of float or complex, optional] A matrix with orthonormal columns. When mode
= ‘complete’ the result is an orthogonal/unitary matrix depending on whether or not a is
real/complex. The determinant may be either +/- 1 in that case.

r [ndarray of float or complex, optional] The upper-triangular matrix.

(h, tau) [ndarrays of np.double or np.cdouble, optional] The array h contains the Householder
reflectors that generate q along with r. The tau array contains scaling factors for the reflec-
tors. In the deprecated ‘economic’ mode only h is returned.

Raises

LinAlgError If factoring fails.

Notes

This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr.

For more information on the qr factorization, see for example: http://en.wikipedia.org/wiki/QR_factorization

Subclasses of ndarray are preserved except for the ‘raw’ mode. So if a is of type matrix, all the return values
will be matrices too.

New ‘reduced’, ‘complete’, and ‘raw’ options for mode were added in NumPy 1.8.0 and the old option ‘full’
was made an alias of ‘reduced’. In addition the options ‘full’ and ‘economic’ were deprecated. Because ‘full’
was the previous default and ‘reduced’ is the new default, backward compatibility can be maintained by letting
mode default. The ‘raw’ option was added so that LAPACK routines that can multiply arrays by q using the
Householder reflectors can be used. Note that in this case the returned arrays are of type np.double or np.cdouble
and the h array is transposed to be FORTRAN compatible. No routines using the ‘raw’ return are currently
exposed by numpy, but some are available in lapack_lite and just await the necessary work.

Examples

>>> a = np.random.randn(9, 6)
>>> q, r = np.linalg.qr(a)
>>> np.allclose(a, np.dot(q, r)) # a does equal qr
True
>>> r2 = np.linalg.qr(a, mode='r')
>>> r3 = np.linalg.qr(a, mode='economic')
>>> np.allclose(r, r2) # mode='r' returns the same r as mode='full'
True

(continues on next page)

4.17. Linear algebra (numpy.linalg) 669

http://en.wikipedia.org/wiki/QR_factorization


NumPy Reference, Release 1.15.1

(continued from previous page)

>>> # But only triu parts are guaranteed equal when mode='economic'
>>> np.allclose(r, np.triu(r3[:6,:6], k=0))
True

Example illustrating a common use of qr: solving of least squares problems

What are the least-squares-best m and y0 in y = y0 + mx for the following data: {(0,1), (1,0), (1,2), (2,1)}.
(Graph the points and you’ll see that it should be y0 = 0, m = 1.) The answer is provided by solving the
over-determined matrix equation Ax = b, where:

A = array([[0, 1], [1, 1], [1, 1], [2, 1]])
x = array([[y0], [m]])
b = array([[1], [0], [2], [1]])

If A = qr such that q is orthonormal (which is always possible via Gram-Schmidt), then x = inv(r) *
(q.T) * b. (In numpy practice, however, we simply use lstsq .)

>>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]])
>>> A
array([[0, 1],

[1, 1],
[1, 1],
[2, 1]])

>>> b = np.array([1, 0, 2, 1])
>>> q, r = LA.qr(A)
>>> p = np.dot(q.T, b)
>>> np.dot(LA.inv(r), p)
array([ 1.1e-16, 1.0e+00])

numpy.linalg.svd(a, full_matrices=True, compute_uv=True)
Singular Value Decomposition.

When a is a 2D array, it is factorized as u @ np.diag(s) @ vh = (u * s) @ vh, where u and vh are
2D unitary arrays and s is a 1D array of a’s singular values. When a is higher-dimensional, SVD is applied in
stacked mode as explained below.

Parameters

a [(. . . , M, N) array_like] A real or complex array with a.ndim >= 2.

full_matrices [bool, optional] If True (default), u and vh have the shapes (..., M, M) and
(..., N, N), respectively. Otherwise, the shapes are (..., M, K) and (..., K,
N), respectively, where K = min(M, N).

compute_uv [bool, optional] Whether or not to compute u and vh in addition to s. True by
default.

Returns

u [{ (. . . , M, M), (. . . , M, K) } array] Unitary array(s). The first a.ndim - 2 dimensions
have the same size as those of the input a. The size of the last two dimensions depends on
the value of full_matrices. Only returned when compute_uv is True.

s [(. . . , K) array] Vector(s) with the singular values, within each vector sorted in descending
order. The first a.ndim - 2 dimensions have the same size as those of the input a.

vh [{ (. . . , N, N), (. . . , K, N) } array] Unitary array(s). The first a.ndim - 2 dimensions
have the same size as those of the input a. The size of the last two dimensions depends on
the value of full_matrices. Only returned when compute_uv is True.

670 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Raises

LinAlgError If SVD computation does not converge.

Notes

Changed in version 1.8.0: Broadcasting rules apply, see the numpy.linalg documentation for details.

The decomposition is performed using LAPACK routine _gesdd.

SVD is usually described for the factorization of a 2D matrix 𝐴. The higher-dimensional case will be discussed
below. In the 2D case, SVD is written as 𝐴 = 𝑈𝑆𝑉 𝐻 , where 𝐴 = 𝑎, 𝑈 = 𝑢, 𝑆 = np.diag(𝑠) and 𝑉 𝐻 = 𝑣ℎ.
The 1D array s contains the singular values of a and u and vh are unitary. The rows of vh are the eigenvectors of
𝐴𝐻𝐴 and the columns of u are the eigenvectors of 𝐴𝐴𝐻 . In both cases the corresponding (possibly non-zero)
eigenvalues are given by s**2.

If a has more than two dimensions, then broadcasting rules apply, as explained in Linear algebra on several
matrices at once. This means that SVD is working in “stacked” mode: it iterates over all indices of the first
a.ndim - 2 dimensions and for each combination SVD is applied to the last two indices. The matrix a can be
reconstructed from the decomposition with either (u * s[..., None, :]) @ vh or u @ (s[...,
None] * vh). (The @ operator can be replaced by the function np.matmul for python versions below 3.5.)

If a is a matrix object (as opposed to an ndarray), then so are all the return values.

Examples

>>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6)
>>> b = np.random.randn(2, 7, 8, 3) + 1j*np.random.randn(2, 7, 8, 3)

Reconstruction based on full SVD, 2D case:

>>> u, s, vh = np.linalg.svd(a, full_matrices=True)
>>> u.shape, s.shape, vh.shape
((9, 9), (6,), (6, 6))
>>> np.allclose(a, np.dot(u[:, :6] * s, vh))
True
>>> smat = np.zeros((9, 6), dtype=complex)
>>> smat[:6, :6] = np.diag(s)
>>> np.allclose(a, np.dot(u, np.dot(smat, vh)))
True

Reconstruction based on reduced SVD, 2D case:

>>> u, s, vh = np.linalg.svd(a, full_matrices=False)
>>> u.shape, s.shape, vh.shape
((9, 6), (6,), (6, 6))
>>> np.allclose(a, np.dot(u * s, vh))
True
>>> smat = np.diag(s)
>>> np.allclose(a, np.dot(u, np.dot(smat, vh)))
True

Reconstruction based on full SVD, 4D case:

4.17. Linear algebra (numpy.linalg) 671



NumPy Reference, Release 1.15.1

>>> u, s, vh = np.linalg.svd(b, full_matrices=True)
>>> u.shape, s.shape, vh.shape
((2, 7, 8, 8), (2, 7, 3), (2, 7, 3, 3))
>>> np.allclose(b, np.matmul(u[..., :3] * s[..., None, :], vh))
True
>>> np.allclose(b, np.matmul(u[..., :3], s[..., None] * vh))
True

Reconstruction based on reduced SVD, 4D case:

>>> u, s, vh = np.linalg.svd(b, full_matrices=False)
>>> u.shape, s.shape, vh.shape
((2, 7, 8, 3), (2, 7, 3), (2, 7, 3, 3))
>>> np.allclose(b, np.matmul(u * s[..., None, :], vh))
True
>>> np.allclose(b, np.matmul(u, s[..., None] * vh))
True

4.17.3 Matrix eigenvalues

linalg.eig(a) Compute the eigenvalues and right eigenvectors of a square
array.

linalg.eigh(a[, UPLO]) Return the eigenvalues and eigenvectors of a Hermitian or
symmetric matrix.

linalg.eigvals(a) Compute the eigenvalues of a general matrix.
linalg.eigvalsh(a[, UPLO]) Compute the eigenvalues of a Hermitian or real symmetric

matrix.

numpy.linalg.eig(a)
Compute the eigenvalues and right eigenvectors of a square array.

Parameters

a [(. . . , M, M) array] Matrices for which the eigenvalues and right eigenvectors will be com-
puted

Returns

w [(. . . , M) array] The eigenvalues, each repeated according to its multiplicity. The eigenvalues
are not necessarily ordered. The resulting array will be of complex type, unless the imag-
inary part is zero in which case it will be cast to a real type. When a is real the resulting
eigenvalues will be real (0 imaginary part) or occur in conjugate pairs

v [(. . . , M, M) array] The normalized (unit “length”) eigenvectors, such that the column v[:,
i] is the eigenvector corresponding to the eigenvalue w[i].

Raises

LinAlgError If the eigenvalue computation does not converge.

See also:

eigvals eigenvalues of a non-symmetric array.

eigh eigenvalues and eigenvectors of a symmetric or Hermitian (conjugate symmetric) array.

eigvalsh eigenvalues of a symmetric or Hermitian (conjugate symmetric) array.

672 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of
general square arrays.

The number w is an eigenvalue of a if there exists a vector v such that dot(a,v) = w * v. Thus, the arrays
a, w, and v satisfy the equations dot(a[:,:], v[:,i]) = w[i] * v[:,i] for 𝑖 ∈ {0, ...,𝑀 − 1}.

The array v of eigenvectors may not be of maximum rank, that is, some of the columns may be linearly depen-
dent, although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the
eigenvectors are linearly independent. Likewise, the (complex-valued) matrix of eigenvectors v is unitary if the
matrix a is normal, i.e., if dot(a, a.H) = dot(a.H, a), where a.H denotes the conjugate transpose of
a.

Finally, it is emphasized that v consists of the right (as in right-hand side) eigenvectors of a. A vector y satisfying
dot(y.T, a) = z * y.T for some number z is called a left eigenvector of a, and, in general, the left and
right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other.

References

G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp.

Examples

>>> from numpy import linalg as LA

(Almost) trivial example with real e-values and e-vectors.

>>> w, v = LA.eig(np.diag((1, 2, 3)))
>>> w; v
array([ 1., 2., 3.])
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

Real matrix possessing complex e-values and e-vectors; note that the e-values are complex conjugates of each
other.

>>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))
>>> w; v
array([ 1. + 1.j, 1. - 1.j])
array([[ 0.70710678+0.j , 0.70710678+0.j ],

[ 0.00000000-0.70710678j, 0.00000000+0.70710678j]])

Complex-valued matrix with real e-values (but complex-valued e-vectors); note that a.conj().T = a, i.e., a is
Hermitian.

>>> a = np.array([[1, 1j], [-1j, 1]])
>>> w, v = LA.eig(a)
>>> w; v
array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0}

(continues on next page)

4.17. Linear algebra (numpy.linalg) 673



NumPy Reference, Release 1.15.1

(continued from previous page)

array([[ 0.00000000+0.70710678j, 0.70710678+0.j ],
[ 0.70710678+0.j , 0.00000000+0.70710678j]])

Be careful about round-off error!

>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
>>> # Theor. e-values are 1 +/- 1e-9
>>> w, v = LA.eig(a)
>>> w; v
array([ 1., 1.])
array([[ 1., 0.],

[ 0., 1.]])

numpy.linalg.eigh(a, UPLO=’L’)
Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix.

Returns two objects, a 1-D array containing the eigenvalues of a, and a 2-D square array or matrix (depending
on the input type) of the corresponding eigenvectors (in columns).

Parameters

a [(. . . , M, M) array] Hermitian/Symmetric matrices whose eigenvalues and eigenvectors are to
be computed.

UPLO [{‘L’, ‘U’}, optional] Specifies whether the calculation is done with the lower triangular
part of a (‘L’, default) or the upper triangular part (‘U’). Irrespective of this value only the
real parts of the diagonal will be considered in the computation to preserve the notion of a
Hermitian matrix. It therefore follows that the imaginary part of the diagonal will always be
treated as zero.

Returns

w [(. . . , M) ndarray] The eigenvalues in ascending order, each repeated according to its multi-
plicity.

v [{(. . . , M, M) ndarray, (. . . , M, M) matrix}] The column v[:, i] is the normalized eigen-
vector corresponding to the eigenvalue w[i]. Will return a matrix object if a is a matrix
object.

Raises

LinAlgError If the eigenvalue computation does not converge.

See also:

eigvalsh eigenvalues of symmetric or Hermitian arrays.

eig eigenvalues and right eigenvectors for non-symmetric arrays.

eigvals eigenvalues of non-symmetric arrays.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

The eigenvalues/eigenvectors are computed using LAPACK routines _syevd, _heevd

674 Chapter 4. Routines



NumPy Reference, Release 1.15.1

The eigenvalues of real symmetric or complex Hermitian matrices are always real. [1] The array v of (column)
eigenvectors is unitary and a, w, and v satisfy the equations dot(a, v[:, i]) = w[i] * v[:, i].

References

[1]

Examples

>>> from numpy import linalg as LA
>>> a = np.array([[1, -2j], [2j, 5]])
>>> a
array([[ 1.+0.j, 0.-2.j],

[ 0.+2.j, 5.+0.j]])
>>> w, v = LA.eigh(a)
>>> w; v
array([ 0.17157288, 5.82842712])
array([[-0.92387953+0.j , -0.38268343+0.j ],

[ 0.00000000+0.38268343j, 0.00000000-0.92387953j]])

>>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair
array([2.77555756e-17 + 0.j, 0. + 1.38777878e-16j])
>>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair
array([ 0.+0.j, 0.+0.j])

>>> A = np.matrix(a) # what happens if input is a matrix object
>>> A
matrix([[ 1.+0.j, 0.-2.j],

[ 0.+2.j, 5.+0.j]])
>>> w, v = LA.eigh(A)
>>> w; v
array([ 0.17157288, 5.82842712])
matrix([[-0.92387953+0.j , -0.38268343+0.j ],

[ 0.00000000+0.38268343j, 0.00000000-0.92387953j]])

>>> # demonstrate the treatment of the imaginary part of the diagonal
>>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
>>> a
array([[ 5.+2.j, 9.-2.j],

[ 0.+2.j, 2.-1.j]])
>>> # with UPLO='L' this is numerically equivalent to using LA.eig() with:
>>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
>>> b
array([[ 5.+0.j, 0.-2.j],

[ 0.+2.j, 2.+0.j]])
>>> wa, va = LA.eigh(a)
>>> wb, vb = LA.eig(b)
>>> wa; wb
array([ 1., 6.])
array([ 6.+0.j, 1.+0.j])
>>> va; vb
array([[-0.44721360-0.j , -0.89442719+0.j ],

[ 0.00000000+0.89442719j, 0.00000000-0.4472136j ]])

(continues on next page)

4.17. Linear algebra (numpy.linalg) 675



NumPy Reference, Release 1.15.1

(continued from previous page)

array([[ 0.89442719+0.j , 0.00000000-0.4472136j],
[ 0.00000000-0.4472136j, 0.89442719+0.j ]])

numpy.linalg.eigvals(a)
Compute the eigenvalues of a general matrix.

Main difference between eigvals and eig: the eigenvectors aren’t returned.

Parameters

a [(. . . , M, M) array_like] A complex- or real-valued matrix whose eigenvalues will be com-
puted.

Returns

w [(. . . , M,) ndarray] The eigenvalues, each repeated according to its multiplicity. They are not
necessarily ordered, nor are they necessarily real for real matrices.

Raises

LinAlgError If the eigenvalue computation does not converge.

See also:

eig eigenvalues and right eigenvectors of general arrays

eigvalsh eigenvalues of symmetric or Hermitian arrays.

eigh eigenvalues and eigenvectors of symmetric/Hermitian arrays.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of
general square arrays.

Examples

Illustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying
a matrix on the left by an orthogonal matrix, Q, and on the right by Q.T (the transpose of Q), preserves the
eigenvalues of the “middle” matrix. In other words, if Q is orthogonal, then Q * A * Q.T has the same
eigenvalues as A:

>>> from numpy import linalg as LA
>>> x = np.random.random()
>>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]])
>>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :])
(1.0, 1.0, 0.0)

Now multiply a diagonal matrix by Q on one side and by Q.T on the other:

>>> D = np.diag((-1,1))
>>> LA.eigvals(D)
array([-1., 1.])

(continues on next page)

676 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> A = np.dot(Q, D)
>>> A = np.dot(A, Q.T)
>>> LA.eigvals(A)
array([ 1., -1.])

numpy.linalg.eigvalsh(a, UPLO=’L’)
Compute the eigenvalues of a Hermitian or real symmetric matrix.

Main difference from eigh: the eigenvectors are not computed.

Parameters

a [(. . . , M, M) array_like] A complex- or real-valued matrix whose eigenvalues are to be com-
puted.

UPLO [{‘L’, ‘U’}, optional] Specifies whether the calculation is done with the lower triangular
part of a (‘L’, default) or the upper triangular part (‘U’). Irrespective of this value only the
real parts of the diagonal will be considered in the computation to preserve the notion of a
Hermitian matrix. It therefore follows that the imaginary part of the diagonal will always be
treated as zero.

Returns

w [(. . . , M,) ndarray] The eigenvalues in ascending order, each repeated according to its multi-
plicity.

Raises

LinAlgError If the eigenvalue computation does not converge.

See also:

eigh eigenvalues and eigenvectors of symmetric/Hermitian arrays.

eigvals eigenvalues of general real or complex arrays.

eig eigenvalues and right eigenvectors of general real or complex arrays.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

The eigenvalues are computed using LAPACK routines _syevd, _heevd

Examples

>>> from numpy import linalg as LA
>>> a = np.array([[1, -2j], [2j, 5]])
>>> LA.eigvalsh(a)
array([ 0.17157288, 5.82842712])

>>> # demonstrate the treatment of the imaginary part of the diagonal
>>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
>>> a
array([[ 5.+2.j, 9.-2.j],

(continues on next page)

4.17. Linear algebra (numpy.linalg) 677



NumPy Reference, Release 1.15.1

(continued from previous page)

[ 0.+2.j, 2.-1.j]])
>>> # with UPLO='L' this is numerically equivalent to using LA.eigvals()
>>> # with:
>>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
>>> b
array([[ 5.+0.j, 0.-2.j],

[ 0.+2.j, 2.+0.j]])
>>> wa = LA.eigvalsh(a)
>>> wb = LA.eigvals(b)
>>> wa; wb
array([ 1., 6.])
array([ 6.+0.j, 1.+0.j])

4.17.4 Norms and other numbers

linalg.norm(x[, ord, axis, keepdims]) Matrix or vector norm.
linalg.cond(x[, p]) Compute the condition number of a matrix.
linalg.det(a) Compute the determinant of an array.
linalg.matrix_rank(M[, tol, hermitian]) Return matrix rank of array using SVD method
linalg.slogdet(a) Compute the sign and (natural) logarithm of the determi-

nant of an array.
trace(a[, offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.

numpy.linalg.norm(x, ord=None, axis=None, keepdims=False)
Matrix or vector norm.

This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms
(described below), depending on the value of the ord parameter.

Parameters

x [array_like] Input array. If axis is None, x must be 1-D or 2-D.

ord [{non-zero int, inf, -inf, ‘fro’, ‘nuc’}, optional] Order of the norm (see table under Notes).
inf means numpy’s inf object.

axis [{int, 2-tuple of ints, None}, optional] If axis is an integer, it specifies the axis of x along
which to compute the vector norms. If axis is a 2-tuple, it specifies the axes that hold 2-D
matrices, and the matrix norms of these matrices are computed. If axis is None then either a
vector norm (when x is 1-D) or a matrix norm (when x is 2-D) is returned.

New in version 1.8.0.

keepdims [bool, optional] If this is set to True, the axes which are normed over are left in
the result as dimensions with size one. With this option the result will broadcast correctly
against the original x.

New in version 1.10.0.

Returns

n [float or ndarray] Norm of the matrix or vector(s).

678 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

For values of ord <= 0, the result is, strictly speaking, not a mathematical ‘norm’, but it may still be useful
for various numerical purposes.

The following norms can be calculated:

ord norm for matrices norm for vectors
None Frobenius norm 2-norm
‘fro’ Frobenius norm –
‘nuc’ nuclear norm –
inf max(sum(abs(x), axis=1)) max(abs(x))
-inf min(sum(abs(x), axis=1)) min(abs(x))
0 – sum(x != 0)
1 max(sum(abs(x), axis=0)) as below
-1 min(sum(abs(x), axis=0)) as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other – sum(abs(x)**ord)**(1./ord)

The Frobenius norm is given by [1]:

||𝐴||𝐹 = [
∑︀

𝑖,𝑗 𝑎𝑏𝑠(𝑎𝑖,𝑗)
2]1/2

The nuclear norm is the sum of the singular values.

References

[1]

Examples

>>> from numpy import linalg as LA
>>> a = np.arange(9) - 4
>>> a
array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
>>> b = a.reshape((3, 3))
>>> b
array([[-4, -3, -2],

[-1, 0, 1],
[ 2, 3, 4]])

>>> LA.norm(a)
7.745966692414834
>>> LA.norm(b)
7.745966692414834
>>> LA.norm(b, 'fro')
7.745966692414834
>>> LA.norm(a, np.inf)
4.0
>>> LA.norm(b, np.inf)
9.0

(continues on next page)

4.17. Linear algebra (numpy.linalg) 679



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> LA.norm(a, -np.inf)
0.0
>>> LA.norm(b, -np.inf)
2.0

>>> LA.norm(a, 1)
20.0
>>> LA.norm(b, 1)
7.0
>>> LA.norm(a, -1)
-4.6566128774142013e-010
>>> LA.norm(b, -1)
6.0
>>> LA.norm(a, 2)
7.745966692414834
>>> LA.norm(b, 2)
7.3484692283495345

>>> LA.norm(a, -2)
nan
>>> LA.norm(b, -2)
1.8570331885190563e-016
>>> LA.norm(a, 3)
5.8480354764257312
>>> LA.norm(a, -3)
nan

Using the axis argument to compute vector norms:

>>> c = np.array([[ 1, 2, 3],
... [-1, 1, 4]])
>>> LA.norm(c, axis=0)
array([ 1.41421356, 2.23606798, 5. ])
>>> LA.norm(c, axis=1)
array([ 3.74165739, 4.24264069])
>>> LA.norm(c, ord=1, axis=1)
array([ 6., 6.])

Using the axis argument to compute matrix norms:

>>> m = np.arange(8).reshape(2,2,2)
>>> LA.norm(m, axis=(1,2))
array([ 3.74165739, 11.22497216])
>>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :])
(3.7416573867739413, 11.224972160321824)

numpy.linalg.cond(x, p=None)
Compute the condition number of a matrix.

This function is capable of returning the condition number using one of seven different norms, depending on the
value of p (see Parameters below).

Parameters

x [(. . . , M, N) array_like] The matrix whose condition number is sought.

p [{None, 1, -1, 2, -2, inf, -inf, ‘fro’}, optional] Order of the norm:

680 Chapter 4. Routines



NumPy Reference, Release 1.15.1

p norm for matrices
None 2-norm, computed directly using the SVD
‘fro’ Frobenius norm
inf max(sum(abs(x), axis=1))
-inf min(sum(abs(x), axis=1))
1 max(sum(abs(x), axis=0))
-1 min(sum(abs(x), axis=0))
2 2-norm (largest sing. value)
-2 smallest singular value

inf means the numpy.inf object, and the Frobenius norm is the root-of-sum-of-squares norm.

Returns

c [{float, inf}] The condition number of the matrix. May be infinite.

See also:

numpy.linalg.norm

Notes

The condition number of x is defined as the norm of x times the norm of the inverse of x [1]; the norm can be
the usual L2-norm (root-of-sum-of-squares) or one of a number of other matrix norms.

References

[1]

Examples

>>> from numpy import linalg as LA
>>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]])
>>> a
array([[ 1, 0, -1],

[ 0, 1, 0],
[ 1, 0, 1]])

>>> LA.cond(a)
1.4142135623730951
>>> LA.cond(a, 'fro')
3.1622776601683795
>>> LA.cond(a, np.inf)
2.0
>>> LA.cond(a, -np.inf)
1.0
>>> LA.cond(a, 1)
2.0
>>> LA.cond(a, -1)
1.0
>>> LA.cond(a, 2)
1.4142135623730951
>>> LA.cond(a, -2)

(continues on next page)

4.17. Linear algebra (numpy.linalg) 681



NumPy Reference, Release 1.15.1

(continued from previous page)

0.70710678118654746
>>> min(LA.svd(a, compute_uv=0))*min(LA.svd(LA.inv(a), compute_uv=0))
0.70710678118654746

numpy.linalg.det(a)
Compute the determinant of an array.

Parameters

a [(. . . , M, M) array_like] Input array to compute determinants for.

Returns

det [(. . . ) array_like] Determinant of a.

See also:

slogdet Another way to represent the determinant, more suitable for large matrices where under-
flow/overflow may occur.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

The determinant is computed via LU factorization using the LAPACK routine z/dgetrf.

Examples

The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.linalg.det(a)
-2.0

Computing determinants for a stack of matrices:

>>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
>>> a.shape
(3, 2, 2)
>>> np.linalg.det(a)
array([-2., -3., -8.])

numpy.linalg.matrix_rank(M, tol=None, hermitian=False)
Return matrix rank of array using SVD method

Rank of the array is the number of singular values of the array that are greater than tol.

Changed in version 1.14: Can now operate on stacks of matrices

Parameters

M [{(M,), (. . . , M, N)} array_like] input vector or stack of matrices

tol [(. . . ) array_like, float, optional] threshold below which SVD values are considered zero. If
tol is None, and S is an array with singular values for M, and eps is the epsilon value for
datatype of S, then tol is set to S.max() * max(M.shape) * eps.

682 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Changed in version 1.14: Broadcasted against the stack of matrices

hermitian [bool, optional] If True, M is assumed to be Hermitian (symmetric if real-valued),
enabling a more efficient method for finding singular values. Defaults to False.

New in version 1.14.

Notes

The default threshold to detect rank deficiency is a test on the magnitude of the singular values of M. By default,
we identify singular values less than S.max() * max(M.shape) * eps as indicating rank deficiency
(with the symbols defined above). This is the algorithm MATLAB uses [1]. It also appears in Numerical recipes
in the discussion of SVD solutions for linear least squares [2].

This default threshold is designed to detect rank deficiency accounting for the numerical errors of the SVD
computation. Imagine that there is a column in M that is an exact (in floating point) linear combination of
other columns in M. Computing the SVD on M will not produce a singular value exactly equal to 0 in general:
any difference of the smallest SVD value from 0 will be caused by numerical imprecision in the calculation of
the SVD. Our threshold for small SVD values takes this numerical imprecision into account, and the default
threshold will detect such numerical rank deficiency. The threshold may declare a matrix M rank deficient even
if the linear combination of some columns of M is not exactly equal to another column of M but only numerically
very close to another column of M.

We chose our default threshold because it is in wide use. Other thresholds are possible. For example, elsewhere
in the 2007 edition of Numerical recipes there is an alternative threshold of S.max() * np.finfo(M.
dtype).eps / 2. * np.sqrt(m + n + 1.). The authors describe this threshold as being based on
“expected roundoff error” (p 71).

The thresholds above deal with floating point roundoff error in the calculation of the SVD. However, you may
have more information about the sources of error in M that would make you consider other tolerance values to
detect effective rank deficiency. The most useful measure of the tolerance depends on the operations you intend
to use on your matrix. For example, if your data come from uncertain measurements with uncertainties greater
than floating point epsilon, choosing a tolerance near that uncertainty may be preferable. The tolerance may be
absolute if the uncertainties are absolute rather than relative.

References

[1], [2]

Examples

>>> from numpy.linalg import matrix_rank
>>> matrix_rank(np.eye(4)) # Full rank matrix
4
>>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix
>>> matrix_rank(I)
3
>>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0
1
>>> matrix_rank(np.zeros((4,)))
0

numpy.linalg.slogdet(a)
Compute the sign and (natural) logarithm of the determinant of an array.

4.17. Linear algebra (numpy.linalg) 683



NumPy Reference, Release 1.15.1

If an array has a very small or very large determinant, then a call to det may overflow or underflow. This
routine is more robust against such issues, because it computes the logarithm of the determinant rather than the
determinant itself.

Parameters

a [(. . . , M, M) array_like] Input array, has to be a square 2-D array.

Returns

sign [(. . . ) array_like] A number representing the sign of the determinant. For a real matrix,
this is 1, 0, or -1. For a complex matrix, this is a complex number with absolute value 1
(i.e., it is on the unit circle), or else 0.

logdet [(. . . ) array_like] The natural log of the absolute value of the determinant.

If the determinant is zero, then ‘sign‘ will be 0 and ‘logdet‘ will be

-Inf. In all cases, the determinant is equal to ‘‘sign * np.exp(logdet)‘‘.

See also:

det

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

New in version 1.6.0.

The determinant is computed via LU factorization using the LAPACK routine z/dgetrf.

Examples

The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

>>> a = np.array([[1, 2], [3, 4]])
>>> (sign, logdet) = np.linalg.slogdet(a)
>>> (sign, logdet)
(-1, 0.69314718055994529)
>>> sign * np.exp(logdet)
-2.0

Computing log-determinants for a stack of matrices:

>>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
>>> a.shape
(3, 2, 2)
>>> sign, logdet = np.linalg.slogdet(a)
>>> (sign, logdet)
(array([-1., -1., -1.]), array([ 0.69314718, 1.09861229, 2.07944154]))
>>> sign * np.exp(logdet)
array([-2., -3., -8.])

This routine succeeds where ordinary det does not:

684 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> np.linalg.det(np.eye(500) * 0.1)
0.0
>>> np.linalg.slogdet(np.eye(500) * 0.1)
(1, -1151.2925464970228)

numpy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

If a is 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements a[i,
i+offset] for all i.

If a has more than two dimensions, then the axes specified by axis1 and axis2 are used to determine the 2-D
sub-arrays whose traces are returned. The shape of the resulting array is the same as that of a with axis1 and
axis2 removed.

Parameters

a [array_like] Input array, from which the diagonals are taken.

offset [int, optional] Offset of the diagonal from the main diagonal. Can be both positive and
negative. Defaults to 0.

axis1, axis2 [int, optional] Axes to be used as the first and second axis of the 2-D sub-arrays
from which the diagonals should be taken. Defaults are the first two axes of a.

dtype [dtype, optional] Determines the data-type of the returned array and of the accumulator
where the elements are summed. If dtype has the value None and a is of integer type of
precision less than the default integer precision, then the default integer precision is used.
Otherwise, the precision is the same as that of a.

out [ndarray, optional] Array into which the output is placed. Its type is preserved and it must
be of the right shape to hold the output.

Returns

sum_along_diagonals [ndarray] If a is 2-D, the sum along the diagonal is returned. If a has
larger dimensions, then an array of sums along diagonals is returned.

See also:

diag, diagonal, diagflat

Examples

>>> np.trace(np.eye(3))
3.0
>>> a = np.arange(8).reshape((2,2,2))
>>> np.trace(a)
array([6, 8])

>>> a = np.arange(24).reshape((2,2,2,3))
>>> np.trace(a).shape
(2, 3)

4.17.5 Solving equations and inverting matrices

4.17. Linear algebra (numpy.linalg) 685



NumPy Reference, Release 1.15.1

linalg.solve(a, b) Solve a linear matrix equation, or system of linear scalar
equations.

linalg.tensorsolve(a, b[, axes]) Solve the tensor equation a x = b for x.
linalg.lstsq(a, b[, rcond]) Return the least-squares solution to a linear matrix equa-

tion.
linalg.inv(a) Compute the (multiplicative) inverse of a matrix.
linalg.pinv(a[, rcond]) Compute the (Moore-Penrose) pseudo-inverse of a matrix.
linalg.tensorinv(a[, ind]) Compute the ‘inverse’ of an N-dimensional array.

numpy.linalg.solve(a, b)
Solve a linear matrix equation, or system of linear scalar equations.

Computes the “exact” solution, x, of the well-determined, i.e., full rank, linear matrix equation ax = b.

Parameters

a [(. . . , M, M) array_like] Coefficient matrix.

b [{(. . . , M,), (. . . , M, K)}, array_like] Ordinate or “dependent variable” values.

Returns

x [{(. . . , M,), (. . . , M, K)} ndarray] Solution to the system a x = b. Returned shape is identical
to b.

Raises

LinAlgError If a is singular or not square.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

The solutions are computed using LAPACK routine _gesv

a must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either
is not true, use lstsq for the least-squares best “solution” of the system/equation.

References

[1]

Examples

Solve the system of equations 3 * x0 + x1 = 9 and x0 + 2 * x1 = 8:

>>> a = np.array([[3,1], [1,2]])
>>> b = np.array([9,8])
>>> x = np.linalg.solve(a, b)
>>> x
array([ 2., 3.])

Check that the solution is correct:

686 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> np.allclose(np.dot(a, x), b)
True

numpy.linalg.tensorsolve(a, b, axes=None)
Solve the tensor equation a x = b for x.

It is assumed that all indices of x are summed over in the product, together with the rightmost indices of a, as is
done in, for example, tensordot(a, x, axes=b.ndim).

Parameters

a [array_like] Coefficient tensor, of shape b.shape + Q. Q, a tuple, equals the shape of that
sub-tensor of a consisting of the appropriate number of its rightmost indices, and must be
such that prod(Q) == prod(b.shape) (in which sense a is said to be ‘square’).

b [array_like] Right-hand tensor, which can be of any shape.

axes [tuple of ints, optional] Axes in a to reorder to the right, before inversion. If None (default),
no reordering is done.

Returns

x [ndarray, shape Q]

Raises

LinAlgError If a is singular or not ‘square’ (in the above sense).

See also:

numpy.tensordot, tensorinv , numpy.einsum

Examples

>>> a = np.eye(2*3*4)
>>> a.shape = (2*3, 4, 2, 3, 4)
>>> b = np.random.randn(2*3, 4)
>>> x = np.linalg.tensorsolve(a, b)
>>> x.shape
(2, 3, 4)
>>> np.allclose(np.tensordot(a, x, axes=3), b)
True

numpy.linalg.lstsq(a, b, rcond=’warn’)
Return the least-squares solution to a linear matrix equation.

Solves the equation a x = b by computing a vector x that minimizes the Euclidean 2-norm || b - a x ||^2. The
equation may be under-, well-, or over- determined (i.e., the number of linearly independent rows of a can be
less than, equal to, or greater than its number of linearly independent columns). If a is square and of full rank,
then x (but for round-off error) is the “exact” solution of the equation.

Parameters

a [(M, N) array_like] “Coefficient” matrix.

b [{(M,), (M, K)} array_like] Ordinate or “dependent variable” values. If b is two-dimensional,
the least-squares solution is calculated for each of the K columns of b.

rcond [float, optional] Cut-off ratio for small singular values of a. For the purposes of rank
determination, singular values are treated as zero if they are smaller than rcond times the
largest singular value of a.

4.17. Linear algebra (numpy.linalg) 687



NumPy Reference, Release 1.15.1

Changed in version 1.14.0: If not set, a FutureWarning is given. The previous default of -1
will use the machine precision as rcond parameter, the new default will use the machine pre-
cision times max(M, N). To silence the warning and use the new default, use rcond=None,
to keep using the old behavior, use rcond=-1.

Returns

x [{(N,), (N, K)} ndarray] Least-squares solution. If b is two-dimensional, the solutions are in
the K columns of x.

residuals [{(1,), (K,), (0,)} ndarray] Sums of residuals; squared Euclidean 2-norm for each
column in b - a*x. If the rank of a is < N or M <= N, this is an empty array. If b is
1-dimensional, this is a (1,) shape array. Otherwise the shape is (K,).

rank [int] Rank of matrix a.

s [(min(M, N),) ndarray] Singular values of a.

Raises

LinAlgError If computation does not converge.

Notes

If b is a matrix, then all array results are returned as matrices.

Examples

Fit a line, y = mx + c, through some noisy data-points:

>>> x = np.array([0, 1, 2, 3])
>>> y = np.array([-1, 0.2, 0.9, 2.1])

By examining the coefficients, we see that the line should have a gradient of roughly 1 and cut the y-axis at,
more or less, -1.

We can rewrite the line equation as y = Ap, where A = [[x 1]] and p = [[m], [c]]. Now use
lstsq to solve for p:

>>> A = np.vstack([x, np.ones(len(x))]).T
>>> A
array([[ 0., 1.],

[ 1., 1.],
[ 2., 1.],
[ 3., 1.]])

>>> m, c = np.linalg.lstsq(A, y, rcond=None)[0]
>>> print(m, c)
1.0 -0.95

Plot the data along with the fitted line:

>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o', label='Original data', markersize=10)
>>> plt.plot(x, m*x + c, 'r', label='Fitted line')
>>> plt.legend()
>>> plt.show()

688 Chapter 4. Routines



NumPy Reference, Release 1.15.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0 Original data
Fitted line

numpy.linalg.inv(a)
Compute the (multiplicative) inverse of a matrix.

Given a square matrix a, return the matrix ainv satisfying dot(a, ainv) = dot(ainv, a) = eye(a.
shape[0]).

Parameters

a [(. . . , M, M) array_like] Matrix to be inverted.

Returns

ainv [(. . . , M, M) ndarray or matrix] (Multiplicative) inverse of the matrix a.

Raises

LinAlgError If a is not square or inversion fails.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

Examples

>>> from numpy.linalg import inv
>>> a = np.array([[1., 2.], [3., 4.]])
>>> ainv = inv(a)
>>> np.allclose(np.dot(a, ainv), np.eye(2))
True
>>> np.allclose(np.dot(ainv, a), np.eye(2))
True

If a is a matrix object, then the return value is a matrix as well:

4.17. Linear algebra (numpy.linalg) 689



NumPy Reference, Release 1.15.1

>>> ainv = inv(np.matrix(a))
>>> ainv
matrix([[-2. , 1. ],

[ 1.5, -0.5]])

Inverses of several matrices can be computed at once:

>>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
>>> inv(a)
array([[[-2. , 1. ],

[ 1.5, -0.5]],
[[-5. , 2. ],
[ 3. , -1. ]]])

numpy.linalg.pinv(a, rcond=1e-15)
Compute the (Moore-Penrose) pseudo-inverse of a matrix.

Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all
large singular values.

Changed in version 1.14: Can now operate on stacks of matrices

Parameters

a [(. . . , M, N) array_like] Matrix or stack of matrices to be pseudo-inverted.

rcond [(. . . ) array_like of float] Cutoff for small singular values. Singular values smaller (in
modulus) than rcond * largest_singular_value (again, in modulus) are set to zero. Broadcasts
against the stack of matrices

Returns

B [(. . . , N, M) ndarray] The pseudo-inverse of a. If a is a matrix instance, then so is B.

Raises

LinAlgError If the SVD computation does not converge.

Notes

The pseudo-inverse of a matrix A, denoted 𝐴+, is defined as: “the matrix that ‘solves’ [the least-squares prob-
lem] 𝐴𝑥 = 𝑏,” i.e., if �̄� is said solution, then 𝐴+ is that matrix such that �̄� = 𝐴+𝑏.

It can be shown that if 𝑄1Σ𝑄𝑇
2 = 𝐴 is the singular value decomposition of A, then 𝐴+ = 𝑄2Σ+𝑄𝑇

1 , where
𝑄1,2 are orthogonal matrices, Σ is a diagonal matrix consisting of A’s so-called singular values, (followed,
typically, by zeros), and then Σ+ is simply the diagonal matrix consisting of the reciprocals of A’s singular
values (again, followed by zeros). [1]

References

[1]

Examples

The following example checks that a * a+ * a == a and a+ * a * a+ == a+:

690 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> a = np.random.randn(9, 6)
>>> B = np.linalg.pinv(a)
>>> np.allclose(a, np.dot(a, np.dot(B, a)))
True
>>> np.allclose(B, np.dot(B, np.dot(a, B)))
True

numpy.linalg.tensorinv(a, ind=2)
Compute the ‘inverse’ of an N-dimensional array.

The result is an inverse for a relative to the tensordot operation tensordot(a, b, ind), i. e., up to
floating-point accuracy, tensordot(tensorinv(a), a, ind) is the “identity” tensor for the tensordot
operation.

Parameters

a [array_like] Tensor to ‘invert’. Its shape must be ‘square’, i. e., prod(a.shape[:ind])
== prod(a.shape[ind:]).

ind [int, optional] Number of first indices that are involved in the inverse sum. Must be a
positive integer, default is 2.

Returns

b [ndarray] a’s tensordot inverse, shape a.shape[ind:] + a.shape[:ind].

Raises

LinAlgError If a is singular or not ‘square’ (in the above sense).

See also:

numpy.tensordot, tensorsolve

Examples

>>> a = np.eye(4*6)
>>> a.shape = (4, 6, 8, 3)
>>> ainv = np.linalg.tensorinv(a, ind=2)
>>> ainv.shape
(8, 3, 4, 6)
>>> b = np.random.randn(4, 6)
>>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b))
True

>>> a = np.eye(4*6)
>>> a.shape = (24, 8, 3)
>>> ainv = np.linalg.tensorinv(a, ind=1)
>>> ainv.shape
(8, 3, 24)
>>> b = np.random.randn(24)
>>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
True

4.17.6 Exceptions

4.17. Linear algebra (numpy.linalg) 691



NumPy Reference, Release 1.15.1

linalg.LinAlgError Generic Python-exception-derived object raised by linalg
functions.

exception numpy.linalg.LinAlgError
Generic Python-exception-derived object raised by linalg functions.

General purpose exception class, derived from Python’s exception.Exception class, programmatically raised in
linalg functions when a Linear Algebra-related condition would prevent further correct execution of the function.

Parameters

None

Examples

>>> from numpy import linalg as LA
>>> LA.inv(np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "...linalg.py", line 350,

in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
File "...linalg.py", line 249,

in solve
raise LinAlgError('Singular matrix')

numpy.linalg.LinAlgError: Singular matrix

4.17.7 Linear algebra on several matrices at once

New in version 1.8.0.

Several of the linear algebra routines listed above are able to compute results for several matrices at once, if they are
stacked into the same array.

This is indicated in the documentation via input parameter specifications such as a : (..., M, M)
array_like. This means that if for instance given an input array a.shape == (N, M, M), it is interpreted
as a “stack” of N matrices, each of size M-by-M. Similar specification applies to return values, for instance the
determinant has det : (...) and will in this case return an array of shape det(a).shape == (N,). This
generalizes to linear algebra operations on higher-dimensional arrays: the last 1 or 2 dimensions of a multidimensional
array are interpreted as vectors or matrices, as appropriate for each operation.

4.18 Logic functions

4.18.1 Truth value testing

all(a[, axis, out, keepdims]) Test whether all array elements along a given axis evaluate
to True.

any(a[, axis, out, keepdims]) Test whether any array element along a given axis evaluates
to True.

692 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.all(a, axis=None, out=None, keepdims=<no value>)
Test whether all array elements along a given axis evaluate to True.

Parameters

a [array_like] Input array or object that can be converted to an array.

axis [None or int or tuple of ints, optional] Axis or axes along which a logical AND reduction
is performed. The default (axis = None) is to perform a logical AND over all the dimensions
of the input array. axis may be negative, in which case it counts from the last to the first
axis.

New in version 1.7.0.

If this is a tuple of ints, a reduction is performed on multiple axes, instead of a single axis
or all the axes as before.

out [ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output and its type is preserved (e.g., if dtype(out) is float, the
result will consist of 0.0’s and 1.0’s). See doc.ufuncs (Section “Output arguments”) for
more details.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the allmethod of
sub-classes of ndarray , however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns

all [ndarray, bool] A new boolean or array is returned unless out is specified, in which case a
reference to out is returned.

See also:

ndarray.all equivalent method

any Test whether any element along a given axis evaluates to True.

Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero.

Examples

>>> np.all([[True,False],[True,True]])
False

>>> np.all([[True,False],[True,True]], axis=0)
array([ True, False])

>>> np.all([-1, 4, 5])
True

4.18. Logic functions 693



NumPy Reference, Release 1.15.1

>>> np.all([1.0, np.nan])
True

>>> o=np.array([False])
>>> z=np.all([-1, 4, 5], out=o)
>>> id(z), id(o), z
(28293632, 28293632, array([ True]))

numpy.any(a, axis=None, out=None, keepdims=<no value>)
Test whether any array element along a given axis evaluates to True.

Returns single boolean unless axis is not None

Parameters

a [array_like] Input array or object that can be converted to an array.

axis [None or int or tuple of ints, optional] Axis or axes along which a logical OR reduction is
performed. The default (axis = None) is to perform a logical OR over all the dimensions of
the input array. axis may be negative, in which case it counts from the last to the first axis.

New in version 1.7.0.

If this is a tuple of ints, a reduction is performed on multiple axes, instead of a single axis
or all the axes as before.

out [ndarray, optional] Alternate output array in which to place the result. It must have the
same shape as the expected output and its type is preserved (e.g., if it is of type float, then
it will remain so, returning 1.0 for True and 0.0 for False, regardless of the type of a). See
doc.ufuncs (Section “Output arguments”) for details.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the any method of
sub-classes of ndarray , however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns

any [bool or ndarray] A new boolean or ndarray is returned unless out is specified, in which
case a reference to out is returned.

See also:

ndarray.any equivalent method

all Test whether all elements along a given axis evaluate to True.

Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero.

Examples

>>> np.any([[True, False], [True, True]])
True

694 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> np.any([[True, False], [False, False]], axis=0)
array([ True, False])

>>> np.any([-1, 0, 5])
True

>>> np.any(np.nan)
True

>>> o=np.array([False])
>>> z=np.any([-1, 4, 5], out=o)
>>> z, o
(array([ True]), array([ True]))
>>> # Check now that z is a reference to o
>>> z is o
True
>>> id(z), id(o) # identity of z and o
(191614240, 191614240)

4.18.2 Array contents

isfinite(x, /[, out, where, casting, order, . . . ]) Test element-wise for finiteness (not infinity or not Not a
Number).

isinf(x, /[, out, where, casting, order, . . . ]) Test element-wise for positive or negative infinity.
isnan(x, /[, out, where, casting, order, . . . ]) Test element-wise for NaN and return result as a boolean

array.
isnat(x, /[, out, where, casting, order, . . . ]) Test element-wise for NaT (not a time) and return result as

a boolean array.
isneginf(x[, out]) Test element-wise for negative infinity, return result as bool

array.
isposinf(x[, out]) Test element-wise for positive infinity, return result as bool

array.

numpy.isfinite(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'isfinite'>

Test element-wise for finiteness (not infinity or not Not a Number).

The result is returned as a boolean array.

Parameters

x [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

4.18. Logic functions 695



NumPy Reference, Release 1.15.1

y [ndarray, bool] True where x is not positive infinity, negative infinity, or NaN; false otherwise.
This is a scalar if x is a scalar.

See also:

isinf, isneginf, isposinf, isnan

Notes

Not a Number, positive infinity and negative infinity are considered to be non-finite.

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity
is equivalent to positive infinity. Errors result if the second argument is also supplied when x is a scalar input,
or if first and second arguments have different shapes.

Examples

>>> np.isfinite(1)
True
>>> np.isfinite(0)
True
>>> np.isfinite(np.nan)
False
>>> np.isfinite(np.inf)
False
>>> np.isfinite(np.NINF)
False
>>> np.isfinite([np.log(-1.),1.,np.log(0)])
array([False, True, False])

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isfinite(x, y)
array([0, 1, 0])
>>> y
array([0, 1, 0])

numpy.isinf(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'isinf'>

Test element-wise for positive or negative infinity.

Returns a boolean array of the same shape as x, True where x == +/-inf, otherwise False.

Parameters

x [array_like] Input values

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

696 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns

y [bool (scalar) or boolean ndarray] True where x is positive or negative infinity, false otherwise.
This is a scalar if x is a scalar.

See also:

isneginf, isposinf, isnan, isfinite

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).

Errors result if the second argument is supplied when the first argument is a scalar, or if the first and second
arguments have different shapes.

Examples

>>> np.isinf(np.inf)
True
>>> np.isinf(np.nan)
False
>>> np.isinf(np.NINF)
True
>>> np.isinf([np.inf, -np.inf, 1.0, np.nan])
array([ True, True, False, False])

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isinf(x, y)
array([1, 0, 1])
>>> y
array([1, 0, 1])

numpy.isnan(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'isnan'>

Test element-wise for NaN and return result as a boolean array.

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or bool] True where x is NaN, false otherwise. This is a scalar if x is a scalar.

See also:

isinf, isneginf, isposinf, isfinite, isnat

4.18. Logic functions 697



NumPy Reference, Release 1.15.1

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity.

Examples

>>> np.isnan(np.nan)
True
>>> np.isnan(np.inf)
False
>>> np.isnan([np.log(-1.),1.,np.log(0)])
array([ True, False, False])

numpy.isnat(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'isnat'>

Test element-wise for NaT (not a time) and return result as a boolean array.

Parameters

x [array_like] Input array with datetime or timedelta data type.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or bool] True where x is NaT, false otherwise. This is a scalar if x is a scalar.

See also:

isnan, isinf, isneginf, isposinf, isfinite

Examples

>>> np.isnat(np.datetime64("NaT"))
True
>>> np.isnat(np.datetime64("2016-01-01"))
False
>>> np.isnat(np.array(["NaT", "2016-01-01"], dtype="datetime64[ns]"))
array([ True, False])

numpy.isneginf(x, out=None)
Test element-wise for negative infinity, return result as bool array.

Parameters

x [array_like] The input array.

out [array_like, optional] A boolean array with the same shape and type as x to store the result.

Returns

698 Chapter 4. Routines



NumPy Reference, Release 1.15.1

out [ndarray] A boolean array with the same dimensions as the input. If second argument is not
supplied then a numpy boolean array is returned with values True where the corresponding
element of the input is negative infinity and values False where the element of the input is
not negative infinity.

If a second argument is supplied the result is stored there. If the type of that array is a
numeric type the result is represented as zeros and ones, if the type is boolean then as False
and True. The return value out is then a reference to that array.

See also:

isinf, isposinf, isnan, isfinite

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).

Errors result if the second argument is also supplied when x is a scalar input, or if first and second arguments
have different shapes.

Examples

>>> np.isneginf(np.NINF)
array(True, dtype=bool)
>>> np.isneginf(np.inf)
array(False, dtype=bool)
>>> np.isneginf(np.PINF)
array(False, dtype=bool)
>>> np.isneginf([-np.inf, 0., np.inf])
array([ True, False, False])

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isneginf(x, y)
array([1, 0, 0])
>>> y
array([1, 0, 0])

numpy.isposinf(x, out=None)
Test element-wise for positive infinity, return result as bool array.

Parameters

x [array_like] The input array.

y [array_like, optional] A boolean array with the same shape as x to store the result.

Returns

out [ndarray] A boolean array with the same dimensions as the input. If second argument is not
supplied then a boolean array is returned with values True where the corresponding element
of the input is positive infinity and values False where the element of the input is not positive
infinity.

If a second argument is supplied the result is stored there. If the type of that array is a
numeric type the result is represented as zeros and ones, if the type is boolean then as False
and True. The return value out is then a reference to that array.

4.18. Logic functions 699



NumPy Reference, Release 1.15.1

See also:

isinf, isneginf, isfinite, isnan

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).

Errors result if the second argument is also supplied when x is a scalar input, or if first and second arguments
have different shapes.

Examples

>>> np.isposinf(np.PINF)
array(True, dtype=bool)
>>> np.isposinf(np.inf)
array(True, dtype=bool)
>>> np.isposinf(np.NINF)
array(False, dtype=bool)
>>> np.isposinf([-np.inf, 0., np.inf])
array([False, False, True])

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isposinf(x, y)
array([0, 0, 1])
>>> y
array([0, 0, 1])

4.18.3 Array type testing

iscomplex(x) Returns a bool array, where True if input element is com-
plex.

iscomplexobj(x) Check for a complex type or an array of complex numbers.
isfortran(a) Returns True if the array is Fortran contiguous but not C

contiguous.
isreal(x) Returns a bool array, where True if input element is real.
isrealobj(x) Return True if x is a not complex type or an array of com-

plex numbers.
isscalar(num) Returns True if the type of num is a scalar type.

numpy.iscomplex(x)
Returns a bool array, where True if input element is complex.

What is tested is whether the input has a non-zero imaginary part, not if the input type is complex.

Parameters

x [array_like] Input array.

Returns

out [ndarray of bools] Output array.

700 Chapter 4. Routines



NumPy Reference, Release 1.15.1

See also:

isreal

iscomplexobj Return True if x is a complex type or an array of complex numbers.

Examples

>>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
array([ True, False, False, False, False, True])

numpy.iscomplexobj(x)
Check for a complex type or an array of complex numbers.

The type of the input is checked, not the value. Even if the input has an imaginary part equal to zero,
iscomplexobj evaluates to True.

Parameters

x [any] The input can be of any type and shape.

Returns

iscomplexobj [bool] The return value, True if x is of a complex type or has at least one complex
element.

See also:

isrealobj, iscomplex

Examples

>>> np.iscomplexobj(1)
False
>>> np.iscomplexobj(1+0j)
True
>>> np.iscomplexobj([3, 1+0j, True])
True

numpy.isfortran(a)
Returns True if the array is Fortran contiguous but not C contiguous.

This function is obsolete and, because of changes due to relaxed stride checking, its return value for the same
array may differ for versions of NumPy >= 1.10.0 and previous versions. If you only want to check if an array
is Fortran contiguous use a.flags.f_contiguous instead.

Parameters

a [ndarray] Input array.

Examples

np.array allows to specify whether the array is written in C-contiguous order (last index varies the fastest), or
FORTRAN-contiguous order in memory (first index varies the fastest).

4.18. Logic functions 701



NumPy Reference, Release 1.15.1

>>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
>>> a
array([[1, 2, 3],

[4, 5, 6]])
>>> np.isfortran(a)
False

>>> b = np.array([[1, 2, 3], [4, 5, 6]], order='FORTRAN')
>>> b
array([[1, 2, 3],

[4, 5, 6]])
>>> np.isfortran(b)
True

The transpose of a C-ordered array is a FORTRAN-ordered array.

>>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
>>> a
array([[1, 2, 3],

[4, 5, 6]])
>>> np.isfortran(a)
False
>>> b = a.T
>>> b
array([[1, 4],

[2, 5],
[3, 6]])

>>> np.isfortran(b)
True

C-ordered arrays evaluate as False even if they are also FORTRAN-ordered.

>>> np.isfortran(np.array([1, 2], order='FORTRAN'))
False

numpy.isreal(x)
Returns a bool array, where True if input element is real.

If element has complex type with zero complex part, the return value for that element is True.

Parameters

x [array_like] Input array.

Returns

out [ndarray, bool] Boolean array of same shape as x.

See also:

iscomplex

isrealobj Return True if x is not a complex type.

Examples

>>> np.isreal([1+1j, 1+0j, 4.5, 3, 2, 2j])
array([False, True, True, True, True, False])

702 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.isrealobj(x)
Return True if x is a not complex type or an array of complex numbers.

The type of the input is checked, not the value. So even if the input has an imaginary part equal to zero,
isrealobj evaluates to False if the data type is complex.

Parameters

x [any] The input can be of any type and shape.

Returns

y [bool] The return value, False if x is of a complex type.

See also:

iscomplexobj, isreal

Examples

>>> np.isrealobj(1)
True
>>> np.isrealobj(1+0j)
False
>>> np.isrealobj([3, 1+0j, True])
False

numpy.isscalar(num)
Returns True if the type of num is a scalar type.

Parameters

num [any] Input argument, can be of any type and shape.

Returns

val [bool] True if num is a scalar type, False if it is not.

Examples

>>> np.isscalar(3.1)
True
>>> np.isscalar([3.1])
False
>>> np.isscalar(False)
True
>>> np.isscalar('numpy')
True

NumPy supports PEP 3141 numbers:

>>> from fractions import Fraction
>>> isscalar(Fraction(5, 17))
True
>>> from numbers import Number
>>> isscalar(Number())
True

4.18. Logic functions 703



NumPy Reference, Release 1.15.1

4.18.4 Logical operations

logical_and(x1, x2, /[, out, where, . . . ]) Compute the truth value of x1 AND x2 element-wise.
logical_or(x1, x2, /[, out, where, casting, . . . ]) Compute the truth value of x1 OR x2 element-wise.
logical_not(x, /[, out, where, casting, . . . ]) Compute the truth value of NOT x element-wise.
logical_xor(x1, x2, /[, out, where, . . . ]) Compute the truth value of x1 XOR x2, element-wise.

numpy.logical_and(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'logical_and'>

Compute the truth value of x1 AND x2 element-wise.

Parameters

x1, x2 [array_like] Input arrays. x1 and x2 must be of the same shape.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or bool] Boolean result with the same shape as x1 and x2 of the logical AND opera-
tion on corresponding elements of x1 and x2. This is a scalar if both x1 and x2 are scalars.

See also:

logical_or, logical_not, logical_xor, bitwise_and

Examples

>>> np.logical_and(True, False)
False
>>> np.logical_and([True, False], [False, False])
array([False, False])

>>> x = np.arange(5)
>>> np.logical_and(x>1, x<4)
array([False, False, True, True, False])

numpy.logical_or(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'logical_or'>

Compute the truth value of x1 OR x2 element-wise.

Parameters

x1, x2 [array_like] Logical OR is applied to the elements of x1 and x2. They have to be of the
same shape.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

704 Chapter 4. Routines



NumPy Reference, Release 1.15.1

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or bool] Boolean result with the same shape as x1 and x2 of the logical OR operation
on elements of x1 and x2. This is a scalar if both x1 and x2 are scalars.

See also:

logical_and, logical_not, logical_xor, bitwise_or

Examples

>>> np.logical_or(True, False)
True
>>> np.logical_or([True, False], [False, False])
array([ True, False])

>>> x = np.arange(5)
>>> np.logical_or(x < 1, x > 3)
array([ True, False, False, False, True])

numpy.logical_not(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'logical_not'>

Compute the truth value of NOT x element-wise.

Parameters

x [array_like] Logical NOT is applied to the elements of x.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [bool or ndarray of bool] Boolean result with the same shape as x of the NOT operation on
elements of x. This is a scalar if x is a scalar.

See also:

logical_and, logical_or, logical_xor

Examples

>>> np.logical_not(3)
False
>>> np.logical_not([True, False, 0, 1])
array([False, True, True, False])

4.18. Logic functions 705



NumPy Reference, Release 1.15.1

>>> x = np.arange(5)
>>> np.logical_not(x<3)
array([False, False, False, True, True])

numpy.logical_xor(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'logical_xor'>

Compute the truth value of x1 XOR x2, element-wise.

Parameters

x1, x2 [array_like] Logical XOR is applied to the elements of x1 and x2. They must be broad-
castable to the same shape.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [bool or ndarray of bool] Boolean result of the logical XOR operation applied to the elements
of x1 and x2; the shape is determined by whether or not broadcasting of one or both arrays
was required. This is a scalar if both x1 and x2 are scalars.

See also:

logical_and, logical_or, logical_not, bitwise_xor

Examples

>>> np.logical_xor(True, False)
True
>>> np.logical_xor([True, True, False, False], [True, False, True, False])
array([False, True, True, False])

>>> x = np.arange(5)
>>> np.logical_xor(x < 1, x > 3)
array([ True, False, False, False, True])

Simple example showing support of broadcasting

>>> np.logical_xor(0, np.eye(2))
array([[ True, False],

[False, True]])

4.18.5 Comparison

allclose(a, b[, rtol, atol, equal_nan]) Returns True if two arrays are element-wise equal within a
tolerance.

Continued on next page

706 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Table 74 – continued from previous page
isclose(a, b[, rtol, atol, equal_nan]) Returns a boolean array where two arrays are element-wise

equal within a tolerance.
array_equal(a1, a2) True if two arrays have the same shape and elements, False

otherwise.
array_equiv(a1, a2) Returns True if input arrays are shape consistent and all

elements equal.

numpy.allclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)
Returns True if two arrays are element-wise equal within a tolerance.

The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and the
absolute difference atol are added together to compare against the absolute difference between a and b.

If either array contains one or more NaNs, False is returned. Infs are treated as equal if they are in the same
place and of the same sign in both arrays.

Parameters

a, b [array_like] Input arrays to compare.

rtol [float] The relative tolerance parameter (see Notes).

atol [float] The absolute tolerance parameter (see Notes).

equal_nan [bool] Whether to compare NaN’s as equal. If True, NaN’s in a will be considered
equal to NaN’s in b in the output array.

New in version 1.10.0.

Returns

allclose [bool] Returns True if the two arrays are equal within the given tolerance; False other-
wise.

See also:

isclose, all, any , equal

Notes

If the following equation is element-wise True, then allclose returns True.

absolute(a - b) <= (atol + rtol * absolute(b))

The above equation is not symmetric in a and b, so that allclose(a, b) might be different from
allclose(b, a) in some rare cases.

The comparison of a and b uses standard broadcasting, which means that a and b need not have the same shape
in order for allclose(a, b) to evaluate to True. The same is true for equal but not array_equal.

Examples

>>> np.allclose([1e10,1e-7], [1.00001e10,1e-8])
False
>>> np.allclose([1e10,1e-8], [1.00001e10,1e-9])
True
>>> np.allclose([1e10,1e-8], [1.0001e10,1e-9])
False

(continues on next page)

4.18. Logic functions 707



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> np.allclose([1.0, np.nan], [1.0, np.nan])
False
>>> np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
True

numpy.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)
Returns a boolean array where two arrays are element-wise equal within a tolerance.

The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and the
absolute difference atol are added together to compare against the absolute difference between a and b.

Warning: The default atol is not appropriate for comparing numbers that are much smaller than one (see
Notes).

Parameters

a, b [array_like] Input arrays to compare.

rtol [float] The relative tolerance parameter (see Notes).

atol [float] The absolute tolerance parameter (see Notes).

equal_nan [bool] Whether to compare NaN’s as equal. If True, NaN’s in a will be considered
equal to NaN’s in b in the output array.

Returns

y [array_like] Returns a boolean array of where a and b are equal within the given tolerance. If
both a and b are scalars, returns a single boolean value.

See also:

allclose

Notes

New in version 1.7.0.

For finite values, isclose uses the following equation to test whether two floating point values are equivalent.

absolute(a - b) <= (atol + rtol * absolute(b))

Unlike the built-in math.isclose, the above equation is not symmetric in a and b – it assumes b is the
reference value – so that isclose(a, b) might be different from isclose(b, a). Furthermore, the default value of
atol is not zero, and is used to determine what small values should be considered close to zero. The default value
is appropriate for expected values of order unity: if the expected values are significantly smaller than one, it can
result in false positives. atol should be carefully selected for the use case at hand. A zero value for atol will
result in False if either a or b is zero.

Examples

>>> np.isclose([1e10,1e-7], [1.00001e10,1e-8])
array([True, False])
>>> np.isclose([1e10,1e-8], [1.00001e10,1e-9])

(continues on next page)

708 Chapter 4. Routines

https://docs.python.org/dev/library/math.html#math.isclose


NumPy Reference, Release 1.15.1

(continued from previous page)

array([True, True])
>>> np.isclose([1e10,1e-8], [1.0001e10,1e-9])
array([False, True])
>>> np.isclose([1.0, np.nan], [1.0, np.nan])
array([True, False])
>>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
array([True, True])
>>> np.isclose([1e-8, 1e-7], [0.0, 0.0])
array([ True, False], dtype=bool)
>>> np.isclose([1e-100, 1e-7], [0.0, 0.0], atol=0.0)
array([False, False], dtype=bool)
>>> np.isclose([1e-10, 1e-10], [1e-20, 0.0])
array([ True, True], dtype=bool)
>>> np.isclose([1e-10, 1e-10], [1e-20, 0.999999e-10], atol=0.0)
array([False, True], dtype=bool)

numpy.array_equal(a1, a2)
True if two arrays have the same shape and elements, False otherwise.

Parameters

a1, a2 [array_like] Input arrays.

Returns

b [bool] Returns True if the arrays are equal.

See also:

allclose Returns True if two arrays are element-wise equal within a tolerance.

array_equiv Returns True if input arrays are shape consistent and all elements equal.

Examples

>>> np.array_equal([1, 2], [1, 2])
True
>>> np.array_equal(np.array([1, 2]), np.array([1, 2]))
True
>>> np.array_equal([1, 2], [1, 2, 3])
False
>>> np.array_equal([1, 2], [1, 4])
False

numpy.array_equiv(a1, a2)
Returns True if input arrays are shape consistent and all elements equal.

Shape consistent means they are either the same shape, or one input array can be broadcasted to create the same
shape as the other one.

Parameters

a1, a2 [array_like] Input arrays.

Returns

out [bool] True if equivalent, False otherwise.

4.18. Logic functions 709



NumPy Reference, Release 1.15.1

Examples

>>> np.array_equiv([1, 2], [1, 2])
True
>>> np.array_equiv([1, 2], [1, 3])
False

Showing the shape equivalence:

>>> np.array_equiv([1, 2], [[1, 2], [1, 2]])
True
>>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]])
False

>>> np.array_equiv([1, 2], [[1, 2], [1, 3]])
False

greater(x1, x2, /[, out, where, casting, . . . ]) Return the truth value of (x1 > x2) element-wise.
greater_equal(x1, x2, /[, out, where, . . . ]) Return the truth value of (x1 >= x2) element-wise.
less(x1, x2, /[, out, where, casting, . . . ]) Return the truth value of (x1 < x2) element-wise.
less_equal(x1, x2, /[, out, where, casting, . . . ]) Return the truth value of (x1 =< x2) element-wise.
equal(x1, x2, /[, out, where, casting, . . . ]) Return (x1 == x2) element-wise.
not_equal(x1, x2, /[, out, where, casting, . . . ]) Return (x1 != x2) element-wise.

numpy.greater(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'greater'>

Return the truth value of (x1 > x2) element-wise.

Parameters

x1, x2 [array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable
to a common shape (which may be the shape of one or the other).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

greater_equal, less, less_equal, equal, not_equal

Examples

>>> np.greater([4,2],[2,2])
array([ True, False])

710 Chapter 4. Routines



NumPy Reference, Release 1.15.1

If the inputs are ndarrays, then np.greater is equivalent to ‘>’.

>>> a = np.array([4,2])
>>> b = np.array([2,2])
>>> a > b
array([ True, False])

numpy.greater_equal(x1, x2, /, out=None, *, where=True, casting=’same_kind’, or-
der=’K’, dtype=None, subok=True[, signature, extobj]) = <ufunc
'greater_equal'>

Return the truth value of (x1 >= x2) element-wise.

Parameters

x1, x2 [array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable
to a common shape (which may be the shape of one or the other).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [bool or ndarray of bool] Output array, element-wise comparison of x1 and x2. Typically of
type bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

greater, less, less_equal, equal, not_equal

Examples

>>> np.greater_equal([4, 2, 1], [2, 2, 2])
array([ True, True, False])

numpy.less(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'less'>

Return the truth value of (x1 < x2) element-wise.

Parameters

x1, x2 [array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable
to a common shape (which may be the shape of one or the other).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

4.18. Logic functions 711



NumPy Reference, Release 1.15.1

out [ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

greater, less_equal, greater_equal, equal, not_equal

Examples

>>> np.less([1, 2], [2, 2])
array([ True, False])

numpy.less_equal(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'less_equal'>

Return the truth value of (x1 =< x2) element-wise.

Parameters

x1, x2 [array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable
to a common shape (which may be the shape of one or the other).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

greater, less, greater_equal, equal, not_equal

Examples

>>> np.less_equal([4, 2, 1], [2, 2, 2])
array([False, True, True])

numpy.equal(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'equal'>

Return (x1 == x2) element-wise.

Parameters

x1, x2 [array_like] Input arrays of the same shape.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

712 Chapter 4. Routines



NumPy Reference, Release 1.15.1

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

not_equal, greater_equal, less_equal, greater, less

Examples

>>> np.equal([0, 1, 3], np.arange(3))
array([ True, True, False])

What is compared are values, not types. So an int (1) and an array of length one can evaluate as True:

>>> np.equal(1, np.ones(1))
array([ True])

numpy.not_equal(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'not_equal'>

Return (x1 != x2) element-wise.

Parameters

x1, x2 [array_like] Input arrays.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

equal, greater, greater_equal, less, less_equal

Examples

>>> np.not_equal([1.,2.], [1., 3.])
array([False, True])
>>> np.not_equal([1, 2], [[1, 3],[1, 4]])
array([[False, True],

[False, True]])

4.18. Logic functions 713



NumPy Reference, Release 1.15.1

4.19 Mathematical functions

4.19.1 Trigonometric functions

sin(x, /[, out, where, casting, order, . . . ]) Trigonometric sine, element-wise.
cos(x, /[, out, where, casting, order, . . . ]) Cosine element-wise.
tan(x, /[, out, where, casting, order, . . . ]) Compute tangent element-wise.
arcsin(x, /[, out, where, casting, order, . . . ]) Inverse sine, element-wise.
arccos(x, /[, out, where, casting, order, . . . ]) Trigonometric inverse cosine, element-wise.
arctan(x, /[, out, where, casting, order, . . . ]) Trigonometric inverse tangent, element-wise.
hypot(x1, x2, /[, out, where, casting, . . . ]) Given the “legs” of a right triangle, return its hypotenuse.
arctan2(x1, x2, /[, out, where, casting, . . . ]) Element-wise arc tangent of x1/x2 choosing the quadrant

correctly.
degrees(x, /[, out, where, casting, order, . . . ]) Convert angles from radians to degrees.
radians(x, /[, out, where, casting, order, . . . ]) Convert angles from degrees to radians.
unwrap(p[, discont, axis]) Unwrap by changing deltas between values to 2*pi com-

plement.
deg2rad(x, /[, out, where, casting, order, . . . ]) Convert angles from degrees to radians.
rad2deg(x, /[, out, where, casting, order, . . . ]) Convert angles from radians to degrees.

numpy.sin(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'sin'>

Trigonometric sine, element-wise.

Parameters

x [array_like] Angle, in radians (2𝜋 rad equals 360 degrees).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [array_like] The sine of each element of x. This is a scalar if x is a scalar.

See also:

arcsin, sinh, cos

Notes

The sine is one of the fundamental functions of trigonometry (the mathematical study of triangles). Consider
a circle of radius 1 centered on the origin. A ray comes in from the +𝑥 axis, makes an angle at the origin
(measured counter-clockwise from that axis), and departs from the origin. The 𝑦 coordinate of the outgoing
ray’s intersection with the unit circle is the sine of that angle. It ranges from -1 for 𝑥 = 3𝜋/2 to +1 for 𝜋/2.
The function has zeroes where the angle is a multiple of 𝜋. Sines of angles between 𝜋 and 2𝜋 are negative. The
numerous properties of the sine and related functions are included in any standard trigonometry text.

714 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

Print sine of one angle:

>>> np.sin(np.pi/2.)
1.0

Print sines of an array of angles given in degrees:

>>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180. )
array([ 0. , 0.5 , 0.70710678, 0.8660254 , 1. ])

Plot the sine function:

>>> import matplotlib.pylab as plt
>>> x = np.linspace(-np.pi, np.pi, 201)
>>> plt.plot(x, np.sin(x))
>>> plt.xlabel('Angle [rad]')
>>> plt.ylabel('sin(x)')
>>> plt.axis('tight')
>>> plt.show()

3 2 1 0 1 2 3
Angle [rad]

1.0

0.5

0.0

0.5

1.0

sin
(x

)

numpy.cos(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'cos'>

Cosine element-wise.

Parameters

x [array_like] Input array in radians.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

4.19. Mathematical functions 715



NumPy Reference, Release 1.15.1

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The corresponding cosine values. This is a scalar if x is a scalar.

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.

Examples

>>> np.cos(np.array([0, np.pi/2, np.pi]))
array([ 1.00000000e+00, 6.12303177e-17, -1.00000000e+00])
>>>
>>> # Example of providing the optional output parameter
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid return array shape

numpy.tan(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'tan'>

Compute tangent element-wise.

Equivalent to np.sin(x)/np.cos(x) element-wise.

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The corresponding tangent values. This is a scalar if x is a scalar.

716 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.

Examples

>>> from math import pi
>>> np.tan(np.array([-pi,pi/2,pi]))
array([ 1.22460635e-16, 1.63317787e+16, -1.22460635e-16])
>>>
>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid return array shape

numpy.arcsin(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'arcsin'>

Inverse sine, element-wise.

Parameters

x [array_like] y-coordinate on the unit circle.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

angle [ndarray] The inverse sine of each element in x, in radians and in the closed interval
[-pi/2, pi/2]. This is a scalar if x is a scalar.

See also:

sin, cos, arccos, tan, arctan, arctan2, emath.arcsin

4.19. Mathematical functions 717



NumPy Reference, Release 1.15.1

Notes

arcsin is a multivalued function: for each x there are infinitely many numbers z such that 𝑠𝑖𝑛(𝑧) = 𝑥. The
convention is to return the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arcsin always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arcsin is a complex analytic function that has, by convention, the branch cuts [-inf,
-1] and [1, inf] and is continuous from above on the former and from below on the latter.

The inverse sine is also known as asin or sin^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 10th printing, New York: Dover,
1964, pp. 79ff. http://www.math.sfu.ca/~cbm/aands/

Examples

>>> np.arcsin(1) # pi/2
1.5707963267948966
>>> np.arcsin(-1) # -pi/2
-1.5707963267948966
>>> np.arcsin(0)
0.0

numpy.arccos(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'arccos'>

Trigonometric inverse cosine, element-wise.

The inverse of cos so that, if y = cos(x), then x = arccos(y).

Parameters

x [array_like] x-coordinate on the unit circle. For real arguments, the domain is [-1, 1].

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

angle [ndarray] The angle of the ray intersecting the unit circle at the given x-coordinate in
radians [0, pi]. This is a scalar if x is a scalar.

See also:

cos, arctan, arcsin, emath.arccos

718 Chapter 4. Routines

http://www.math.sfu.ca/~cbm/aands/


NumPy Reference, Release 1.15.1

Notes

arccos is a multivalued function: for each x there are infinitely many numbers z such that cos(z) = x. The
convention is to return the angle z whose real part lies in [0, pi].

For real-valued input data types, arccos always returns real output. For each value that cannot be expressed
as a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arccos is a complex analytic function that has branch cuts [-inf, -1] and [1, inf]
and is continuous from above on the former and from below on the latter.

The inverse cos is also known as acos or cos^-1.

References

M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 79. http:
//www.math.sfu.ca/~cbm/aands/

Examples

We expect the arccos of 1 to be 0, and of -1 to be pi:

>>> np.arccos([1, -1])
array([ 0. , 3.14159265])

Plot arccos:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-1, 1, num=100)
>>> plt.plot(x, np.arccos(x))
>>> plt.axis('tight')
>>> plt.show()

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

3.0

4.19. Mathematical functions 719

http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/


NumPy Reference, Release 1.15.1

numpy.arctan(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'arctan'>

Trigonometric inverse tangent, element-wise.

The inverse of tan, so that if y = tan(x) then x = arctan(y).

Parameters

x [array_like]

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Out has the same shape as x. Its real part is in [-pi/2, pi/2]
(arctan(+/-inf) returns +/-pi/2). This is a scalar if x is a scalar.

See also:

arctan2 The “four quadrant” arctan of the angle formed by (x, y) and the positive x-axis.

angle Argument of complex values.

Notes

arctan is a multi-valued function: for each x there are infinitely many numbers z such that tan(z) = x. The
convention is to return the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arctan always returns real output. For each value that cannot be expressed
as a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctan is a complex analytic function that has [1j, infj] and [-1j, -infj] as branch
cuts, and is continuous from the left on the former and from the right on the latter.

The inverse tangent is also known as atan or tan^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 10th printing, New York: Dover,
1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/

Examples

We expect the arctan of 0 to be 0, and of 1 to be pi/4:

>>> np.arctan([0, 1])
array([ 0. , 0.78539816])

720 Chapter 4. Routines

http://www.math.sfu.ca/~cbm/aands/


NumPy Reference, Release 1.15.1

>>> np.pi/4
0.78539816339744828

Plot arctan:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-10, 10)
>>> plt.plot(x, np.arctan(x))
>>> plt.axis('tight')
>>> plt.show()

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

numpy.hypot(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'hypot'>

Given the “legs” of a right triangle, return its hypotenuse.

Equivalent to sqrt(x1**2 + x2**2), element-wise. If x1 or x2 is scalar_like (i.e., unambiguously cast-
able to a scalar type), it is broadcast for use with each element of the other argument. (See Examples)

Parameters

x1, x2 [array_like] Leg of the triangle(s).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

z [ndarray] The hypotenuse of the triangle(s). This is a scalar if both x1 and x2 are scalars.

4.19. Mathematical functions 721



NumPy Reference, Release 1.15.1

Examples

>>> np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3)))
array([[ 5., 5., 5.],

[ 5., 5., 5.],
[ 5., 5., 5.]])

Example showing broadcast of scalar_like argument:

>>> np.hypot(3*np.ones((3, 3)), [4])
array([[ 5., 5., 5.],

[ 5., 5., 5.],
[ 5., 5., 5.]])

numpy.arctan2(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'arctan2'>

Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

The quadrant (i.e., branch) is chosen so that arctan2(x1, x2) is the signed angle in radians between the
ray ending at the origin and passing through the point (1,0), and the ray ending at the origin and passing through
the point (x2, x1). (Note the role reversal: the “y-coordinate” is the first function parameter, the “x-coordinate”
is the second.) By IEEE convention, this function is defined for x2 = +/-0 and for either or both of x1 and x2 =
+/-inf (see Notes for specific values).

This function is not defined for complex-valued arguments; for the so-called argument of complex values, use
angle.

Parameters

x1 [array_like, real-valued] y-coordinates.

x2 [array_like, real-valued] x-coordinates. x2 must be broadcastable to match the shape of x1
or vice versa.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

angle [ndarray] Array of angles in radians, in the range [-pi, pi]. This is a scalar if both
x1 and x2 are scalars.

See also:

arctan, tan, angle

Notes

arctan2 is identical to the atan2 function of the underlying C library. The following special values are defined
in the C standard: [1]

722 Chapter 4. Routines



NumPy Reference, Release 1.15.1

x1 x2 arctan2(x1,x2)
+/- 0 +0 +/- 0
+/- 0 -0 +/- pi
> 0 +/-inf +0 / +pi
< 0 +/-inf -0 / -pi
+/-inf +inf +/- (pi/4)
+/-inf -inf +/- (3*pi/4)

Note that +0 and -0 are distinct floating point numbers, as are +inf and -inf.

References

[1]

Examples

Consider four points in different quadrants:

>>> x = np.array([-1, +1, +1, -1])
>>> y = np.array([-1, -1, +1, +1])
>>> np.arctan2(y, x) * 180 / np.pi
array([-135., -45., 45., 135.])

Note the order of the parameters. arctan2 is defined also when x2 = 0 and at several other special points,
obtaining values in the range [-pi, pi]:

>>> np.arctan2([1., -1.], [0., 0.])
array([ 1.57079633, -1.57079633])
>>> np.arctan2([0., 0., np.inf], [+0., -0., np.inf])
array([ 0. , 3.14159265, 0.78539816])

numpy.degrees(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'degrees'>

Convert angles from radians to degrees.

Parameters

x [array_like] Input array in radians.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray of floats] The corresponding degree values; if out was supplied this is a reference to
it. This is a scalar if x is a scalar.

See also:

4.19. Mathematical functions 723



NumPy Reference, Release 1.15.1

rad2deg equivalent function

Examples

Convert a radian array to degrees

>>> rad = np.arange(12.)*np.pi/6
>>> np.degrees(rad)
array([ 0., 30., 60., 90., 120., 150., 180., 210., 240.,

270., 300., 330.])

>>> out = np.zeros((rad.shape))
>>> r = degrees(rad, out)
>>> np.all(r == out)
True

numpy.radians(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'radians'>

Convert angles from degrees to radians.

Parameters

x [array_like] Input array in degrees.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The corresponding radian values. This is a scalar if x is a scalar.

See also:

deg2rad equivalent function

Examples

Convert a degree array to radians

>>> deg = np.arange(12.) * 30.
>>> np.radians(deg)
array([ 0. , 0.52359878, 1.04719755, 1.57079633, 2.0943951 ,

2.61799388, 3.14159265, 3.66519143, 4.1887902 , 4.71238898,
5.23598776, 5.75958653])

>>> out = np.zeros((deg.shape))
>>> ret = np.radians(deg, out)
>>> ret is out
True

724 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.unwrap(p, discont=3.141592653589793, axis=-1)
Unwrap by changing deltas between values to 2*pi complement.

Unwrap radian phase p by changing absolute jumps greater than discont to their 2*pi complement along the
given axis.

Parameters

p [array_like] Input array.

discont [float, optional] Maximum discontinuity between values, default is pi.

axis [int, optional] Axis along which unwrap will operate, default is the last axis.

Returns

out [ndarray] Output array.

See also:

rad2deg, deg2rad

Notes

If the discontinuity in p is smaller than pi, but larger than discont, no unwrapping is done because taking the
2*pi complement would only make the discontinuity larger.

Examples

>>> phase = np.linspace(0, np.pi, num=5)
>>> phase[3:] += np.pi
>>> phase
array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531])
>>> np.unwrap(phase)
array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ])

numpy.deg2rad(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'deg2rad'>

Convert angles from degrees to radians.

Parameters

x [array_like] Angles in degrees.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The corresponding angle in radians. This is a scalar if x is a scalar.

See also:

rad2deg Convert angles from radians to degrees.

4.19. Mathematical functions 725



NumPy Reference, Release 1.15.1

unwrap Remove large jumps in angle by wrapping.

Notes

New in version 1.3.0.

deg2rad(x) is x * pi / 180.

Examples

>>> np.deg2rad(180)
3.1415926535897931

numpy.rad2deg(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'rad2deg'>

Convert angles from radians to degrees.

Parameters

x [array_like] Angle in radians.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The corresponding angle in degrees. This is a scalar if x is a scalar.

See also:

deg2rad Convert angles from degrees to radians.

unwrap Remove large jumps in angle by wrapping.

Notes

New in version 1.3.0.

rad2deg(x) is 180 * x / pi.

Examples

>>> np.rad2deg(np.pi/2)
90.0

726 Chapter 4. Routines



NumPy Reference, Release 1.15.1

4.19.2 Hyperbolic functions

sinh(x, /[, out, where, casting, order, . . . ]) Hyperbolic sine, element-wise.
cosh(x, /[, out, where, casting, order, . . . ]) Hyperbolic cosine, element-wise.
tanh(x, /[, out, where, casting, order, . . . ]) Compute hyperbolic tangent element-wise.
arcsinh(x, /[, out, where, casting, order, . . . ]) Inverse hyperbolic sine element-wise.
arccosh(x, /[, out, where, casting, order, . . . ]) Inverse hyperbolic cosine, element-wise.
arctanh(x, /[, out, where, casting, order, . . . ]) Inverse hyperbolic tangent element-wise.

numpy.sinh(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'sinh'>

Hyperbolic sine, element-wise.

Equivalent to 1/2 * (np.exp(x) - np.exp(-x)) or -1j * np.sin(1j*x).

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The corresponding hyperbolic sine values. This is a scalar if x is a scalar.

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83.

Examples

>>> np.sinh(0)
0.0
>>> np.sinh(np.pi*1j/2)
1j
>>> np.sinh(np.pi*1j) # (exact value is 0)
1.2246063538223773e-016j
>>> # Discrepancy due to vagaries of floating point arithmetic.

4.19. Mathematical functions 727



NumPy Reference, Release 1.15.1

>>> # Example of providing the optional output parameter
>>> out2 = np.sinh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.sinh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid return array shape

numpy.cosh(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'cosh'>

Hyperbolic cosine, element-wise.

Equivalent to 1/2 * (np.exp(x) + np.exp(-x)) and np.cos(1j*x).

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Output array of same shape as x. This is a scalar if x is a scalar.

Examples

>>> np.cosh(0)
1.0

The hyperbolic cosine describes the shape of a hanging cable:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-4, 4, 1000)
>>> plt.plot(x, np.cosh(x))
>>> plt.show()

numpy.tanh(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'tanh'>

Compute hyperbolic tangent element-wise.

Equivalent to np.sinh(x)/np.cosh(x) or -1j * np.tan(1j*x).

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or

728 Chapter 4. Routines



NumPy Reference, Release 1.15.1

4 3 2 1 0 1 2 3 4
0

5

10

15

20

25

None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The corresponding hyperbolic tangent values. This is a scalar if x is a scalar.

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

[1], [2]

Examples

>>> np.tanh((0, np.pi*1j, np.pi*1j/2))
array([ 0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j])

>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out2 = np.tanh([0.1], out1)
>>> out2 is out1
True

4.19. Mathematical functions 729



NumPy Reference, Release 1.15.1

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.tanh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid return array shape

numpy.arcsinh(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'arcsinh'>

Inverse hyperbolic sine element-wise.

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Array of the same shape as x. This is a scalar if x is a scalar.

Notes

arcsinh is a multivalued function: for each x there are infinitely many numbers z such that sinh(z) = x. The
convention is to return the z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arcsinh always returns real output. For each value that cannot be expressed
as a real number or infinity, it returns nan and sets the invalid floating point error flag.

For complex-valued input, arccos is a complex analytical function that has branch cuts [1j, infj] and [-1j,
-infj] and is continuous from the right on the former and from the left on the latter.

The inverse hyperbolic sine is also known as asinh or sinh^-1.

References

[1], [2]

Examples

>>> np.arcsinh(np.array([np.e, 10.0]))
array([ 1.72538256, 2.99822295])

numpy.arccosh(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'arccosh'>

Inverse hyperbolic cosine, element-wise.

Parameters

x [array_like] Input array.

730 Chapter 4. Routines



NumPy Reference, Release 1.15.1

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

arccosh [ndarray] Array of the same shape as x. This is a scalar if x is a scalar.

See also:

cosh, arcsinh, sinh, arctanh, tanh

Notes

arccosh is a multivalued function: for each x there are infinitely many numbers z such that cosh(z) = x. The
convention is to return the z whose imaginary part lies in [-pi, pi] and the real part in [0, inf].

For real-valued input data types, arccosh always returns real output. For each value that cannot be expressed
as a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arccosh is a complex analytical function that has a branch cut [-inf, 1] and is
continuous from above on it.

References

[1], [2]

Examples

>>> np.arccosh([np.e, 10.0])
array([ 1.65745445, 2.99322285])
>>> np.arccosh(1)
0.0

numpy.arctanh(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'arctanh'>

Inverse hyperbolic tangent element-wise.

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

4.19. Mathematical functions 731



NumPy Reference, Release 1.15.1

Returns

out [ndarray or scalar] Array of the same shape as x. This is a scalar if x is a scalar.

See also:

emath.arctanh

Notes

arctanh is a multivalued function: for each x there are infinitely many numbers z such that tanh(z) = x. The
convention is to return the z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arctanh always returns real output. For each value that cannot be expressed
as a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctanh is a complex analytical function that has branch cuts [-1, -inf] and [1, inf]
and is continuous from above on the former and from below on the latter.

The inverse hyperbolic tangent is also known as atanh or tanh^-1.

References

[1], [2]

Examples

>>> np.arctanh([0, -0.5])
array([ 0. , -0.54930614])

4.19.3 Rounding

around(a[, decimals, out]) Evenly round to the given number of decimals.
round_(a[, decimals, out]) Round an array to the given number of decimals.
rint(x, /[, out, where, casting, order, . . . ]) Round elements of the array to the nearest integer.
fix(x[, out]) Round to nearest integer towards zero.
floor(x, /[, out, where, casting, order, . . . ]) Return the floor of the input, element-wise.
ceil(x, /[, out, where, casting, order, . . . ]) Return the ceiling of the input, element-wise.
trunc(x, /[, out, where, casting, order, . . . ]) Return the truncated value of the input, element-wise.

numpy.around(a, decimals=0, out=None)
Evenly round to the given number of decimals.

Parameters

a [array_like] Input data.

decimals [int, optional] Number of decimal places to round to (default: 0). If decimals is
negative, it specifies the number of positions to the left of the decimal point.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape as the expected output, but the type of the output values will be cast if necessary.
See doc.ufuncs (Section “Output arguments”) for details.

732 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns

rounded_array [ndarray] An array of the same type as a, containing the rounded values. Unless
out was specified, a new array is created. A reference to the result is returned.

The real and imaginary parts of complex numbers are rounded separately. The result of
rounding a float is a float.

See also:

ndarray.round equivalent method

ceil, fix, floor, rint, trunc

Notes

For values exactly halfway between rounded decimal values, NumPy rounds to the nearest even value. Thus
1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc. Results may also be surprising due to the inexact
representation of decimal fractions in the IEEE floating point standard [1] and errors introduced when scaling
by powers of ten.

References

[1], [2]

Examples

>>> np.around([0.37, 1.64])
array([ 0., 2.])
>>> np.around([0.37, 1.64], decimals=1)
array([ 0.4, 1.6])
>>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
array([ 0., 2., 2., 4., 4.])
>>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned
array([ 1, 2, 3, 11])
>>> np.around([1,2,3,11], decimals=-1)
array([ 0, 0, 0, 10])

numpy.round_(a, decimals=0, out=None)
Round an array to the given number of decimals.

Refer to around for full documentation.

See also:

around equivalent function

numpy.rint(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'rint'>

Round elements of the array to the nearest integer.

Parameters

x [array_like] Input array.

4.19. Mathematical functions 733



NumPy Reference, Release 1.15.1

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Output array is same shape and type as x. This is a scalar if x is a scalar.

See also:

ceil, floor, trunc

Examples

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.rint(a)
array([-2., -2., -0., 0., 2., 2., 2.])

numpy.fix(x, out=None)
Round to nearest integer towards zero.

Round an array of floats element-wise to nearest integer towards zero. The rounded values are returned as floats.

Parameters

x [array_like] An array of floats to be rounded

y [ndarray, optional] Output array

Returns

out [ndarray of floats] The array of rounded numbers

See also:

trunc, floor, ceil

around Round to given number of decimals

Examples

>>> np.fix(3.14)
3.0
>>> np.fix(3)
3.0
>>> np.fix([2.1, 2.9, -2.1, -2.9])
array([ 2., 2., -2., -2.])

numpy.floor(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'floor'>

Return the floor of the input, element-wise.

The floor of the scalar x is the largest integer i, such that i <= x. It is often denoted as ⌊𝑥⌋.

Parameters

734 Chapter 4. Routines



NumPy Reference, Release 1.15.1

x [array_like] Input data.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The floor of each element in x. This is a scalar if x is a scalar.

See also:

ceil, trunc, rint

Notes

Some spreadsheet programs calculate the “floor-towards-zero”, in other words floor(-2.5) == -2.
NumPy instead uses the definition of floor where floor(-2.5) == -3.

Examples

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.floor(a)
array([-2., -2., -1., 0., 1., 1., 2.])

numpy.ceil(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'ceil'>

Return the ceiling of the input, element-wise.

The ceil of the scalar x is the smallest integer i, such that i >= x. It is often denoted as ⌈𝑥⌉.

Parameters

x [array_like] Input data.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The ceiling of each element in x, with float dtype. This is a scalar if x is
a scalar.

See also:

floor, trunc, rint

4.19. Mathematical functions 735

https://docs.python.org/dev/library/functions.html#float


NumPy Reference, Release 1.15.1

Examples

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.ceil(a)
array([-1., -1., -0., 1., 2., 2., 2.])

numpy.trunc(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'trunc'>

Return the truncated value of the input, element-wise.

The truncated value of the scalar x is the nearest integer i which is closer to zero than x is. In short, the fractional
part of the signed number x is discarded.

Parameters

x [array_like] Input data.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The truncated value of each element in x. This is a scalar if x is a scalar.

See also:

ceil, floor, rint

Notes

New in version 1.3.0.

Examples

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.trunc(a)
array([-1., -1., -0., 0., 1., 1., 2.])

4.19.4 Sums, products, differences

prod(a[, axis, dtype, out, keepdims, initial]) Return the product of array elements over a given axis.
sum(a[, axis, dtype, out, keepdims, initial]) Sum of array elements over a given axis.
nanprod(a[, axis, dtype, out, keepdims]) Return the product of array elements over a given axis treat-

ing Not a Numbers (NaNs) as ones.
nansum(a[, axis, dtype, out, keepdims]) Return the sum of array elements over a given axis treating

Not a Numbers (NaNs) as zero.
Continued on next page

736 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Table 79 – continued from previous page
cumprod(a[, axis, dtype, out]) Return the cumulative product of elements along a given

axis.
cumsum(a[, axis, dtype, out]) Return the cumulative sum of the elements along a given

axis.
nancumprod(a[, axis, dtype, out]) Return the cumulative product of array elements over a

given axis treating Not a Numbers (NaNs) as one.
nancumsum(a[, axis, dtype, out]) Return the cumulative sum of array elements over a given

axis treating Not a Numbers (NaNs) as zero.
diff(a[, n, axis]) Calculate the n-th discrete difference along the given axis.
ediff1d(ary[, to_end, to_begin]) The differences between consecutive elements of an array.
gradient(f, *varargs, **kwargs) Return the gradient of an N-dimensional array.
cross(a, b[, axisa, axisb, axisc, axis]) Return the cross product of two (arrays of) vectors.
trapz(y[, x, dx, axis]) Integrate along the given axis using the composite trape-

zoidal rule.

numpy.prod(a, axis=None, dtype=None, out=None, keepdims=<no value>, initial=<no value>)
Return the product of array elements over a given axis.

Parameters

a [array_like] Input data.

axis [None or int or tuple of ints, optional] Axis or axes along which a product is performed.
The default, axis=None, will calculate the product of all the elements in the input array. If
axis is negative it counts from the last to the first axis.

New in version 1.7.0.

If axis is a tuple of ints, a product is performed on all of the axes specified in the tuple
instead of a single axis or all the axes as before.

dtype [dtype, optional] The type of the returned array, as well as of the accumulator in which
the elements are multiplied. The dtype of a is used by default unless a has an integer dtype of
less precision than the default platform integer. In that case, if a is signed then the platform
integer is used while if a is unsigned then an unsigned integer of the same precision as the
platform integer is used.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape as the expected output, but the type of the output values will be cast if necessary.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the prod method
of sub-classes of ndarray , however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

initial [scalar, optional] The starting value for this product. See reduce for details.

New in version 1.15.0.

Returns

product_along_axis [ndarray, see dtype parameter above.] An array shaped as a but with the
specified axis removed. Returns a reference to out if specified.

See also:

4.19. Mathematical functions 737



NumPy Reference, Release 1.15.1

ndarray.prod equivalent method

numpy.doc.ufuncs Section “Output arguments”

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow. That means that, on a 32-bit
platform:

>>> x = np.array([536870910, 536870910, 536870910, 536870910])
>>> np.prod(x) # random
16

The product of an empty array is the neutral element 1:

>>> np.prod([])
1.0

Examples

By default, calculate the product of all elements:

>>> np.prod([1.,2.])
2.0

Even when the input array is two-dimensional:

>>> np.prod([[1.,2.],[3.,4.]])
24.0

But we can also specify the axis over which to multiply:

>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([ 2., 12.])

If the type of x is unsigned, then the output type is the unsigned platform integer:

>>> x = np.array([1, 2, 3], dtype=np.uint8)
>>> np.prod(x).dtype == np.uint
True

If x is of a signed integer type, then the output type is the default platform integer:

>>> x = np.array([1, 2, 3], dtype=np.int8)
>>> np.prod(x).dtype == int
True

You can also start the product with a value other than one:

>>> np.prod([1, 2], initial=5)
10

numpy.sum(a, axis=None, dtype=None, out=None, keepdims=<no value>, initial=<no value>)
Sum of array elements over a given axis.

Parameters

738 Chapter 4. Routines



NumPy Reference, Release 1.15.1

a [array_like] Elements to sum.

axis [None or int or tuple of ints, optional] Axis or axes along which a sum is performed. The
default, axis=None, will sum all of the elements of the input array. If axis is negative it
counts from the last to the first axis.

New in version 1.7.0.

If axis is a tuple of ints, a sum is performed on all of the axes specified in the tuple instead
of a single axis or all the axes as before.

dtype [dtype, optional] The type of the returned array and of the accumulator in which the
elements are summed. The dtype of a is used by default unless a has an integer dtype of
less precision than the default platform integer. In that case, if a is signed then the platform
integer is used while if a is unsigned then an unsigned integer of the same precision as the
platform integer is used.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape as the expected output, but the type of the output values will be cast if necessary.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the sum method of
sub-classes of ndarray , however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

initial [scalar, optional] Starting value for the sum. See reduce for details.

New in version 1.15.0.

Returns

sum_along_axis [ndarray] An array with the same shape as a, with the specified axis removed.
If a is a 0-d array, or if axis is None, a scalar is returned. If an output array is specified, a
reference to out is returned.

See also:

ndarray.sum Equivalent method.

cumsum Cumulative sum of array elements.

trapz Integration of array values using the composite trapezoidal rule.

mean, average

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

The sum of an empty array is the neutral element 0:

>>> np.sum([])
0.0

4.19. Mathematical functions 739



NumPy Reference, Release 1.15.1

Examples

>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 5]])
6
>>> np.sum([[0, 1], [0, 5]], axis=0)
array([0, 6])
>>> np.sum([[0, 1], [0, 5]], axis=1)
array([1, 5])

If the accumulator is too small, overflow occurs:

>>> np.ones(128, dtype=np.int8).sum(dtype=np.int8)
-128

You can also start the sum with a value other than zero:

>>> np.sum([10], initial=5)
15

numpy.nanprod(a, axis=None, dtype=None, out=None, keepdims=<no value>)
Return the product of array elements over a given axis treating Not a Numbers (NaNs) as ones.

One is returned for slices that are all-NaN or empty.

New in version 1.10.0.

Parameters

a [array_like] Array containing numbers whose product is desired. If a is not an array, a con-
version is attempted.

axis [{int, tuple of int, None}, optional] Axis or axes along which the product is computed. The
default is to compute the product of the flattened array.

dtype [data-type, optional] The type of the returned array and of the accumulator in which the
elements are summed. By default, the dtype of a is used. An exception is when a has an
integer type with less precision than the platform (u)intp. In that case, the default will be
either (u)int32 or (u)int64 depending on whether the platform is 32 or 64 bits. For inexact
inputs, dtype must be inexact.

out [ndarray, optional] Alternate output array in which to place the result. The default is None.
If provided, it must have the same shape as the expected output, but the type will be cast
if necessary. See doc.ufuncs for details. The casting of NaN to integer can yield unex-
pected results.

keepdims [bool, optional] If True, the axes which are reduced are left in the result as dimensions
with size one. With this option, the result will broadcast correctly against the original arr.

Returns

nanprod [ndarray] A new array holding the result is returned unless out is specified, in which
case it is returned.

See also:

numpy.prod Product across array propagating NaNs.

740 Chapter 4. Routines



NumPy Reference, Release 1.15.1

isnan Show which elements are NaN.

Examples

>>> np.nanprod(1)
1
>>> np.nanprod([1])
1
>>> np.nanprod([1, np.nan])
1.0
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanprod(a)
6.0
>>> np.nanprod(a, axis=0)
array([ 3., 2.])

numpy.nansum(a, axis=None, dtype=None, out=None, keepdims=<no value>)
Return the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero.

In NumPy versions <= 1.9.0 Nan is returned for slices that are all-NaN or empty. In later versions zero is
returned.

Parameters

a [array_like] Array containing numbers whose sum is desired. If a is not an array, a conversion
is attempted.

axis [{int, tuple of int, None}, optional] Axis or axes along which the sum is computed. The
default is to compute the sum of the flattened array.

dtype [data-type, optional] The type of the returned array and of the accumulator in which the
elements are summed. By default, the dtype of a is used. An exception is when a has an
integer type with less precision than the platform (u)intp. In that case, the default will be
either (u)int32 or (u)int64 depending on whether the platform is 32 or 64 bits. For inexact
inputs, dtype must be inexact.

New in version 1.8.0.

out [ndarray, optional] Alternate output array in which to place the result. The default is None.
If provided, it must have the same shape as the expected output, but the type will be cast
if necessary. See doc.ufuncs for details. The casting of NaN to integer can yield unex-
pected results.

New in version 1.8.0.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original a.

If the value is anything but the default, then keepdims will be passed through to the mean or
sum methods of sub-classes of ndarray . If the sub-classes methods does not implement
keepdims any exceptions will be raised.

New in version 1.8.0.

Returns

nansum [ndarray.] A new array holding the result is returned unless out is specified, in which
it is returned. The result has the same size as a, and the same shape as a if axis is not None
or a is a 1-d array.

4.19. Mathematical functions 741



NumPy Reference, Release 1.15.1

See also:

numpy.sum Sum across array propagating NaNs.

isnan Show which elements are NaN.

isfinite Show which elements are not NaN or +/-inf.

Notes

If both positive and negative infinity are present, the sum will be Not A Number (NaN).

Examples

>>> np.nansum(1)
1
>>> np.nansum([1])
1
>>> np.nansum([1, np.nan])
1.0
>>> a = np.array([[1, 1], [1, np.nan]])
>>> np.nansum(a)
3.0
>>> np.nansum(a, axis=0)
array([ 2., 1.])
>>> np.nansum([1, np.nan, np.inf])
inf
>>> np.nansum([1, np.nan, np.NINF])
-inf
>>> np.nansum([1, np.nan, np.inf, -np.inf]) # both +/- infinity present
nan

numpy.cumprod(a, axis=None, dtype=None, out=None)
Return the cumulative product of elements along a given axis.

Parameters

a [array_like] Input array.

axis [int, optional] Axis along which the cumulative product is computed. By default the input
is flattened.

dtype [dtype, optional] Type of the returned array, as well as of the accumulator in which the
elements are multiplied. If dtype is not specified, it defaults to the dtype of a, unless a has
an integer dtype with a precision less than that of the default platform integer. In that case,
the default platform integer is used instead.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output but the type of the resulting values will
be cast if necessary.

Returns

cumprod [ndarray] A new array holding the result is returned unless out is specified, in which
case a reference to out is returned.

See also:

742 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.doc.ufuncs Section “Output arguments”

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> a = np.array([1,2,3])
>>> np.cumprod(a) # intermediate results 1, 1*2
... # total product 1*2*3 = 6
array([1, 2, 6])
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.cumprod(a, dtype=float) # specify type of output
array([ 1., 2., 6., 24., 120., 720.])

The cumulative product for each column (i.e., over the rows) of a:

>>> np.cumprod(a, axis=0)
array([[ 1, 2, 3],

[ 4, 10, 18]])

The cumulative product for each row (i.e. over the columns) of a:

>>> np.cumprod(a,axis=1)
array([[ 1, 2, 6],

[ 4, 20, 120]])

numpy.cumsum(a, axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along a given axis.

Parameters

a [array_like] Input array.

axis [int, optional] Axis along which the cumulative sum is computed. The default (None) is to
compute the cumsum over the flattened array.

dtype [dtype, optional] Type of the returned array and of the accumulator in which the elements
are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the default
platform integer is used.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output but the type will be cast if necessary.
See doc.ufuncs (Section “Output arguments”) for more details.

Returns

cumsum_along_axis [ndarray.] A new array holding the result is returned unless out is speci-
fied, in which case a reference to out is returned. The result has the same size as a, and the
same shape as a if axis is not None or a is a 1-d array.

See also:

sum Sum array elements.

trapz Integration of array values using the composite trapezoidal rule.

4.19. Mathematical functions 743



NumPy Reference, Release 1.15.1

diff Calculate the n-th discrete difference along given axis.

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> a = np.array([[1,2,3], [4,5,6]])
>>> a
array([[1, 2, 3],

[4, 5, 6]])
>>> np.cumsum(a)
array([ 1, 3, 6, 10, 15, 21])
>>> np.cumsum(a, dtype=float) # specifies type of output value(s)
array([ 1., 3., 6., 10., 15., 21.])

>>> np.cumsum(a,axis=0) # sum over rows for each of the 3 columns
array([[1, 2, 3],

[5, 7, 9]])
>>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows
array([[ 1, 3, 6],

[ 4, 9, 15]])

numpy.nancumprod(a, axis=None, dtype=None, out=None)
Return the cumulative product of array elements over a given axis treating Not a Numbers (NaNs) as one. The
cumulative product does not change when NaNs are encountered and leading NaNs are replaced by ones.

Ones are returned for slices that are all-NaN or empty.

New in version 1.12.0.

Parameters

a [array_like] Input array.

axis [int, optional] Axis along which the cumulative product is computed. By default the input
is flattened.

dtype [dtype, optional] Type of the returned array, as well as of the accumulator in which the
elements are multiplied. If dtype is not specified, it defaults to the dtype of a, unless a has
an integer dtype with a precision less than that of the default platform integer. In that case,
the default platform integer is used instead.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output but the type of the resulting values will
be cast if necessary.

Returns

nancumprod [ndarray] A new array holding the result is returned unless out is specified, in
which case it is returned.

See also:

numpy.cumprod Cumulative product across array propagating NaNs.

isnan Show which elements are NaN.

744 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> np.nancumprod(1)
array([1])
>>> np.nancumprod([1])
array([1])
>>> np.nancumprod([1, np.nan])
array([ 1., 1.])
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nancumprod(a)
array([ 1., 2., 6., 6.])
>>> np.nancumprod(a, axis=0)
array([[ 1., 2.],

[ 3., 2.]])
>>> np.nancumprod(a, axis=1)
array([[ 1., 2.],

[ 3., 3.]])

numpy.nancumsum(a, axis=None, dtype=None, out=None)
Return the cumulative sum of array elements over a given axis treating Not a Numbers (NaNs) as zero. The
cumulative sum does not change when NaNs are encountered and leading NaNs are replaced by zeros.

Zeros are returned for slices that are all-NaN or empty.

New in version 1.12.0.

Parameters

a [array_like] Input array.

axis [int, optional] Axis along which the cumulative sum is computed. The default (None) is to
compute the cumsum over the flattened array.

dtype [dtype, optional] Type of the returned array and of the accumulator in which the elements
are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the default
platform integer is used.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output but the type will be cast if necessary.
See doc.ufuncs (Section “Output arguments”) for more details.

Returns

nancumsum [ndarray.] A new array holding the result is returned unless out is specified, in
which it is returned. The result has the same size as a, and the same shape as a if axis is not
None or a is a 1-d array.

See also:

numpy.cumsum Cumulative sum across array propagating NaNs.

isnan Show which elements are NaN.

Examples

>>> np.nancumsum(1)
array([1])

(continues on next page)

4.19. Mathematical functions 745



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> np.nancumsum([1])
array([1])
>>> np.nancumsum([1, np.nan])
array([ 1., 1.])
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nancumsum(a)
array([ 1., 3., 6., 6.])
>>> np.nancumsum(a, axis=0)
array([[ 1., 2.],

[ 4., 2.]])
>>> np.nancumsum(a, axis=1)
array([[ 1., 3.],

[ 3., 3.]])

numpy.diff(a, n=1, axis=-1)
Calculate the n-th discrete difference along the given axis.

The first difference is given by out[n] = a[n+1] - a[n] along the given axis, higher differences are
calculated by using diff recursively.

Parameters

a [array_like] Input array

n [int, optional] The number of times values are differenced. If zero, the input is returned as-is.

axis [int, optional] The axis along which the difference is taken, default is the last axis.

Returns

diff [ndarray] The n-th differences. The shape of the output is the same as a except along axis
where the dimension is smaller by n. The type of the output is the same as the type of the
difference between any two elements of a. This is the same as the type of a in most cases.
A notable exception is datetime64, which results in a timedelta64 output array.

See also:

gradient, ediff1d, cumsum

Notes

Type is preserved for boolean arrays, so the result will contain False when consecutive elements are the same
and True when they differ.

For unsigned integer arrays, the results will also be unsigned. This should not be surprising, as the result is
consistent with calculating the difference directly:

>>> u8_arr = np.array([1, 0], dtype=np.uint8)
>>> np.diff(u8_arr)
array([255], dtype=uint8)
>>> u8_arr[1,...] - u8_arr[0,...]
array(255, np.uint8)

If this is not desirable, then the array should be cast to a larger integer type first:

>>> i16_arr = u8_arr.astype(np.int16)
>>> np.diff(i16_arr)
array([-1], dtype=int16)

746 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> x = np.array([1, 2, 4, 7, 0])
>>> np.diff(x)
array([ 1, 2, 3, -7])
>>> np.diff(x, n=2)
array([ 1, 1, -10])

>>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]])
>>> np.diff(x)
array([[2, 3, 4],

[5, 1, 2]])
>>> np.diff(x, axis=0)
array([[-1, 2, 0, -2]])

>>> x = np.arange('1066-10-13', '1066-10-16', dtype=np.datetime64)
>>> np.diff(x)
array([1, 1], dtype='timedelta64[D]')

numpy.ediff1d(ary, to_end=None, to_begin=None)
The differences between consecutive elements of an array.

Parameters

ary [array_like] If necessary, will be flattened before the differences are taken.

to_end [array_like, optional] Number(s) to append at the end of the returned differences.

to_begin [array_like, optional] Number(s) to prepend at the beginning of the returned differ-
ences.

Returns

ediff1d [ndarray] The differences. Loosely, this is ary.flat[1:] - ary.flat[:-1].

See also:

diff, gradient

Notes

When applied to masked arrays, this function drops the mask information if the to_begin and/or to_end param-
eters are used.

Examples

>>> x = np.array([1, 2, 4, 7, 0])
>>> np.ediff1d(x)
array([ 1, 2, 3, -7])

>>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
array([-99, 1, 2, 3, -7, 88, 99])

The returned array is always 1D.

4.19. Mathematical functions 747



NumPy Reference, Release 1.15.1

>>> y = [[1, 2, 4], [1, 6, 24]]
>>> np.ediff1d(y)
array([ 1, 2, -3, 5, 18])

numpy.gradient(f, *varargs, **kwargs)
Return the gradient of an N-dimensional array.

The gradient is computed using second order accurate central differences in the interior points and either first
or second order accurate one-sides (forward or backwards) differences at the boundaries. The returned gradient
hence has the same shape as the input array.

Parameters

f [array_like] An N-dimensional array containing samples of a scalar function.

varargs [list of scalar or array, optional] Spacing between f values. Default unitary spacing for
all dimensions. Spacing can be specified using:

1. single scalar to specify a sample distance for all dimensions.

2. N scalars to specify a constant sample distance for each dimension. i.e. dx, dy, dz, . . .

3. N arrays to specify the coordinates of the values along each dimension of F. The length
of the array must match the size of the corresponding dimension

4. Any combination of N scalars/arrays with the meaning of 2. and 3.

If axis is given, the number of varargs must equal the number of axes. Default: 1.

edge_order [{1, 2}, optional] Gradient is calculated using N-th order accurate differences at
the boundaries. Default: 1.

New in version 1.9.1.

axis [None or int or tuple of ints, optional] Gradient is calculated only along the given axis or
axes The default (axis = None) is to calculate the gradient for all the axes of the input array.
axis may be negative, in which case it counts from the last to the first axis.

New in version 1.11.0.

Returns

gradient [ndarray or list of ndarray] A set of ndarrays (or a single ndarray if there is only
one dimension) corresponding to the derivatives of f with respect to each dimension. Each
derivative has the same shape as f.

Notes

Assuming that 𝑓 ∈ 𝐶3 (i.e., 𝑓 has at least 3 continuous derivatives) and let ℎ* be a non-homogeneous stepsize,
we minimize the “consistency error” 𝜂𝑖 between the true gradient and its estimate from a linear combination of
the neighboring grid-points:

𝜂𝑖 = 𝑓
(1)
𝑖 − [𝛼𝑓 (𝑥𝑖) + 𝛽𝑓 (𝑥𝑖 + ℎ𝑑) + 𝛾𝑓 (𝑥𝑖 − ℎ𝑠)]

By substituting 𝑓(𝑥𝑖 + ℎ𝑑) and 𝑓(𝑥𝑖 − ℎ𝑠) with their Taylor series expansion, this translates into solving the
following the linear system: ⎧⎨⎩ 𝛼 + 𝛽 + 𝛾 = 0

𝛽ℎ𝑑 − 𝛾ℎ𝑠 = 1
𝛽ℎ2

𝑑 + 𝛾ℎ2
𝑠 = 0

748 Chapter 4. Routines



NumPy Reference, Release 1.15.1

The resulting approximation of 𝑓 (1)
𝑖 is the following:

𝑓
(1)
𝑖 =

ℎ2
𝑠𝑓 (𝑥𝑖 + ℎ𝑑) +

(︀
ℎ2
𝑑 − ℎ2

𝑠

)︀
𝑓 (𝑥𝑖) − ℎ2

𝑑𝑓 (𝑥𝑖 − ℎ𝑠)

ℎ𝑠ℎ𝑑 (ℎ𝑑 + ℎ𝑠)
+ 𝒪

(︂
ℎ𝑑ℎ

2
𝑠 + ℎ𝑠ℎ

2
𝑑

ℎ𝑑 + ℎ𝑠

)︂
It is worth noting that if ℎ𝑠 = ℎ𝑑 (i.e., data are evenly spaced) we find the standard second order approximation:

𝑓
(1)
𝑖 =

𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖−1)

2ℎ
+ 𝒪

(︀
ℎ2
)︀

With a similar procedure the forward/backward approximations used for boundaries can be derived.

References

[1], [2], [3]

Examples

>>> f = np.array([1, 2, 4, 7, 11, 16], dtype=float)
>>> np.gradient(f)
array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ])
>>> np.gradient(f, 2)
array([ 0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ])

Spacing can be also specified with an array that represents the coordinates of the values F along the dimensions.
For instance a uniform spacing:

>>> x = np.arange(f.size)
>>> np.gradient(f, x)
array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ])

Or a non uniform one:

>>> x = np.array([0., 1., 1.5, 3.5, 4., 6.], dtype=float)
>>> np.gradient(f, x)
array([ 1. , 3. , 3.5, 6.7, 6.9, 2.5])

For two dimensional arrays, the return will be two arrays ordered by axis. In this example the first array stands
for the gradient in rows and the second one in columns direction:

>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float))
[array([[ 2., 2., -1.],

[ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ],
[ 1. , 1. , 1. ]])]

In this example the spacing is also specified: uniform for axis=0 and non uniform for axis=1

>>> dx = 2.
>>> y = [1., 1.5, 3.5]
>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float), dx, y)
[array([[ 1. , 1. , -0.5],

[ 1. , 1. , -0.5]]), array([[ 2. , 2. , 2. ],
[ 2. , 1.7, 0.5]])]

It is possible to specify how boundaries are treated using edge_order

4.19. Mathematical functions 749



NumPy Reference, Release 1.15.1

>>> x = np.array([0, 1, 2, 3, 4])
>>> f = x**2
>>> np.gradient(f, edge_order=1)
array([ 1., 2., 4., 6., 7.])
>>> np.gradient(f, edge_order=2)
array([-0., 2., 4., 6., 8.])

The axis keyword can be used to specify a subset of axes of which the gradient is calculated

>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float), axis=0)
array([[ 2., 2., -1.],

[ 2., 2., -1.]])

numpy.cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None)
Return the cross product of two (arrays of) vectors.

The cross product of a and b in 𝑅3 is a vector perpendicular to both a and b. If a and b are arrays of vectors,
the vectors are defined by the last axis of a and b by default, and these axes can have dimensions 2 or 3. Where
the dimension of either a or b is 2, the third component of the input vector is assumed to be zero and the cross
product calculated accordingly. In cases where both input vectors have dimension 2, the z-component of the
cross product is returned.

Parameters

a [array_like] Components of the first vector(s).

b [array_like] Components of the second vector(s).

axisa [int, optional] Axis of a that defines the vector(s). By default, the last axis.

axisb [int, optional] Axis of b that defines the vector(s). By default, the last axis.

axisc [int, optional] Axis of c containing the cross product vector(s). Ignored if both input
vectors have dimension 2, as the return is scalar. By default, the last axis.

axis [int, optional] If defined, the axis of a, b and c that defines the vector(s) and cross prod-
uct(s). Overrides axisa, axisb and axisc.

Returns

c [ndarray] Vector cross product(s).

Raises

ValueError When the dimension of the vector(s) in a and/or b does not equal 2 or 3.

See also:

inner Inner product

outer Outer product.

ix_ Construct index arrays.

Notes

New in version 1.9.0.

Supports full broadcasting of the inputs.

750 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

Vector cross-product.

>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> np.cross(x, y)
array([-3, 6, -3])

One vector with dimension 2.

>>> x = [1, 2]
>>> y = [4, 5, 6]
>>> np.cross(x, y)
array([12, -6, -3])

Equivalently:

>>> x = [1, 2, 0]
>>> y = [4, 5, 6]
>>> np.cross(x, y)
array([12, -6, -3])

Both vectors with dimension 2.

>>> x = [1,2]
>>> y = [4,5]
>>> np.cross(x, y)
-3

Multiple vector cross-products. Note that the direction of the cross product vector is defined by the right-hand
rule.

>>> x = np.array([[1,2,3], [4,5,6]])
>>> y = np.array([[4,5,6], [1,2,3]])
>>> np.cross(x, y)
array([[-3, 6, -3],

[ 3, -6, 3]])

The orientation of c can be changed using the axisc keyword.

>>> np.cross(x, y, axisc=0)
array([[-3, 3],

[ 6, -6],
[-3, 3]])

Change the vector definition of x and y using axisa and axisb.

>>> x = np.array([[1,2,3], [4,5,6], [7, 8, 9]])
>>> y = np.array([[7, 8, 9], [4,5,6], [1,2,3]])
>>> np.cross(x, y)
array([[ -6, 12, -6],

[ 0, 0, 0],
[ 6, -12, 6]])

>>> np.cross(x, y, axisa=0, axisb=0)
array([[-24, 48, -24],

[-30, 60, -30],
[-36, 72, -36]])

4.19. Mathematical functions 751



NumPy Reference, Release 1.15.1

numpy.trapz(y, x=None, dx=1.0, axis=-1)
Integrate along the given axis using the composite trapezoidal rule.

Integrate y (x) along given axis.

Parameters

y [array_like] Input array to integrate.

x [array_like, optional] The sample points corresponding to the y values. If x is None, the
sample points are assumed to be evenly spaced dx apart. The default is None.

dx [scalar, optional] The spacing between sample points when x is None. The default is 1.

axis [int, optional] The axis along which to integrate.

Returns

trapz [float] Definite integral as approximated by trapezoidal rule.

See also:

sum, cumsum

Notes

Image [2] illustrates trapezoidal rule – y-axis locations of points will be taken from y array, by default x-axis
distances between points will be 1.0, alternatively they can be provided with x array or with dx scalar. Return
value will be equal to combined area under the red lines.

References

[1], [2]

Examples

>>> np.trapz([1,2,3])
4.0
>>> np.trapz([1,2,3], x=[4,6,8])
8.0
>>> np.trapz([1,2,3], dx=2)
8.0
>>> a = np.arange(6).reshape(2, 3)
>>> a
array([[0, 1, 2],

[3, 4, 5]])
>>> np.trapz(a, axis=0)
array([ 1.5, 2.5, 3.5])
>>> np.trapz(a, axis=1)
array([ 2., 8.])

4.19.5 Exponents and logarithms

752 Chapter 4. Routines



NumPy Reference, Release 1.15.1

exp(x, /[, out, where, casting, order, . . . ]) Calculate the exponential of all elements in the input array.
expm1(x, /[, out, where, casting, order, . . . ]) Calculate exp(x) - 1 for all elements in the array.
exp2(x, /[, out, where, casting, order, . . . ]) Calculate 2**p for all p in the input array.
log(x, /[, out, where, casting, order, . . . ]) Natural logarithm, element-wise.
log10(x, /[, out, where, casting, order, . . . ]) Return the base 10 logarithm of the input array, element-

wise.
log2(x, /[, out, where, casting, order, . . . ]) Base-2 logarithm of x.
log1p(x, /[, out, where, casting, order, . . . ]) Return the natural logarithm of one plus the input array,

element-wise.
logaddexp(x1, x2, /[, out, where, casting, . . . ]) Logarithm of the sum of exponentiations of the inputs.
logaddexp2(x1, x2, /[, out, where, casting, . . . ]) Logarithm of the sum of exponentiations of the inputs in

base-2.

numpy.exp(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'exp'>

Calculate the exponential of all elements in the input array.

Parameters

x [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Output array, element-wise exponential of x. This is a scalar if x is a
scalar.

See also:

expm1 Calculate exp(x) - 1 for all elements in the array.

exp2 Calculate 2**x for all elements in the array.

Notes

The irrational number e is also known as Euler’s number. It is approximately 2.718281, and is the base of the
natural logarithm, ln (this means that, if 𝑥 = ln 𝑦 = log𝑒 𝑦, then 𝑒𝑥 = 𝑦. For real input, exp(x) is always
positive.

For complex arguments, x = a + ib, we can write 𝑒𝑥 = 𝑒𝑎𝑒𝑖𝑏. The first term, 𝑒𝑎, is already known (it is
the real argument, described above). The second term, 𝑒𝑖𝑏, is cos 𝑏 + 𝑖 sin 𝑏, a function with magnitude 1 and a
periodic phase.

References

[1], [2]

4.19. Mathematical functions 753



NumPy Reference, Release 1.15.1

Examples

Plot the magnitude and phase of exp(x) in the complex plane:

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-2*np.pi, 2*np.pi, 100)
>>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane
>>> out = np.exp(xx)

>>> plt.subplot(121)
>>> plt.imshow(np.abs(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='gray')
>>> plt.title('Magnitude of exp(x)')

>>> plt.subplot(122)
>>> plt.imshow(np.angle(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='hsv')
>>> plt.title('Phase (angle) of exp(x)')
>>> plt.show()

5 0 5

5.0

2.5

0.0

2.5

5.0

Magnitude of exp(x)

5 0 5

5.0

2.5

0.0

2.5

5.0

Phase (angle) of exp(x)

numpy.expm1(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'expm1'>

Calculate exp(x) - 1 for all elements in the array.

Parameters

x [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

754 Chapter 4. Routines



NumPy Reference, Release 1.15.1

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Element-wise exponential minus one: out = exp(x) - 1. This is
a scalar if x is a scalar.

See also:

log1p log(1 + x), the inverse of expm1.

Notes

This function provides greater precision than exp(x) - 1 for small values of x.

Examples

The true value of exp(1e-10) - 1 is 1.00000000005e-10 to about 32 significant digits. This example
shows the superiority of expm1 in this case.

>>> np.expm1(1e-10)
1.00000000005e-10
>>> np.exp(1e-10) - 1
1.000000082740371e-10

numpy.exp2(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'exp2'>

Calculate 2**p for all p in the input array.

Parameters

x [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Element-wise 2 to the power x. This is a scalar if x is a scalar.

See also:

power

Notes

New in version 1.3.0.

4.19. Mathematical functions 755



NumPy Reference, Release 1.15.1

Examples

>>> np.exp2([2, 3])
array([ 4., 8.])

numpy.log(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'log'>

Natural logarithm, element-wise.

The natural logarithm log is the inverse of the exponential function, so that log(exp(x)) = x. The natural
logarithm is logarithm in base e.

Parameters

x [array_like] Input value.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The natural logarithm of x, element-wise. This is a scalar if x is a scalar.

See also:

log10, log2, log1p, emath.log

Notes

Logarithm is a multivalued function: for each x there is an infinite number of z such that exp(z) = x. The
convention is to return the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, log is a complex analytical function that has a branch cut [-inf, 0] and is continuous
from above on it. log handles the floating-point negative zero as an infinitesimal negative number, conforming
to the C99 standard.

References

[1], [2]

Examples

>>> np.log([1, np.e, np.e**2, 0])
array([ 0., 1., 2., -Inf])

756 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.log10(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'log10'>

Return the base 10 logarithm of the input array, element-wise.

Parameters

x [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The logarithm to the base 10 of x, element-wise. NaNs are returned where x is
negative. This is a scalar if x is a scalar.

See also:

emath.log10

Notes

Logarithm is a multivalued function: for each x there is an infinite number of z such that 10**z = x. The
convention is to return the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log10 always returns real output. For each value that cannot be expressed as
a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, log10 is a complex analytical function that has a branch cut [-inf, 0] and is con-
tinuous from above on it. log10 handles the floating-point negative zero as an infinitesimal negative number,
conforming to the C99 standard.

References

[1], [2]

Examples

>>> np.log10([1e-15, -3.])
array([-15., NaN])

numpy.log2(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'log2'>

Base-2 logarithm of x.

Parameters

x [array_like] Input values.

4.19. Mathematical functions 757



NumPy Reference, Release 1.15.1

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] Base-2 logarithm of x. This is a scalar if x is a scalar.

See also:

log, log10, log1p, emath.log2

Notes

New in version 1.3.0.

Logarithm is a multivalued function: for each x there is an infinite number of z such that 2**z = x. The
convention is to return the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log2 always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, log2 is a complex analytical function that has a branch cut [-inf, 0] and is continuous
from above on it. log2 handles the floating-point negative zero as an infinitesimal negative number, conforming
to the C99 standard.

Examples

>>> x = np.array([0, 1, 2, 2**4])
>>> np.log2(x)
array([-Inf, 0., 1., 4.])

>>> xi = np.array([0+1.j, 1, 2+0.j, 4.j])
>>> np.log2(xi)
array([ 0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j])

numpy.log1p(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'log1p'>

Return the natural logarithm of one plus the input array, element-wise.

Calculates log(1 + x).

Parameters

x [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

758 Chapter 4. Routines



NumPy Reference, Release 1.15.1

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] Natural logarithm of 1 + x, element-wise. This is a scalar if x is a scalar.

See also:

expm1 exp(x) - 1, the inverse of log1p.

Notes

For real-valued input, log1p is accurate also for x so small that 1 + x == 1 in floating-point accuracy.

Logarithm is a multivalued function: for each x there is an infinite number of z such that exp(z) = 1 + x. The
convention is to return the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log1p always returns real output. For each value that cannot be expressed as
a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, log1p is a complex analytical function that has a branch cut [-inf, -1] and is con-
tinuous from above on it. log1p handles the floating-point negative zero as an infinitesimal negative number,
conforming to the C99 standard.

References

[1], [2]

Examples

>>> np.log1p(1e-99)
1e-99
>>> np.log(1 + 1e-99)
0.0

numpy.logaddexp(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'logaddexp'>

Logarithm of the sum of exponentiations of the inputs.

Calculates log(exp(x1) + exp(x2)). This function is useful in statistics where the calculated proba-
bilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the
logarithm of the calculated probability is stored. This function allows adding probabilities stored in such a
fashion.

Parameters

x1, x2 [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

4.19. Mathematical functions 759



NumPy Reference, Release 1.15.1

Returns

result [ndarray] Logarithm of exp(x1) + exp(x2). This is a scalar if both x1 and x2 are
scalars.

See also:

logaddexp2 Logarithm of the sum of exponentiations of inputs in base 2.

Notes

New in version 1.3.0.

Examples

>>> prob1 = np.log(1e-50)
>>> prob2 = np.log(2.5e-50)
>>> prob12 = np.logaddexp(prob1, prob2)
>>> prob12
-113.87649168120691
>>> np.exp(prob12)
3.5000000000000057e-50

numpy.logaddexp2(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'logaddexp2'>

Logarithm of the sum of exponentiations of the inputs in base-2.

Calculates log2(2**x1 + 2**x2). This function is useful in machine learning when the calculated prob-
abilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the
base-2 logarithm of the calculated probability can be used instead. This function allows adding probabilities
stored in such a fashion.

Parameters

x1, x2 [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

result [ndarray] Base-2 logarithm of 2**x1 + 2**x2. This is a scalar if both x1 and x2 are
scalars.

See also:

logaddexp Logarithm of the sum of exponentiations of the inputs.

760 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

New in version 1.3.0.

Examples

>>> prob1 = np.log2(1e-50)
>>> prob2 = np.log2(2.5e-50)
>>> prob12 = np.logaddexp2(prob1, prob2)
>>> prob1, prob2, prob12
(-166.09640474436813, -164.77447664948076, -164.28904982231052)
>>> 2**prob12
3.4999999999999914e-50

4.19.6 Other special functions

i0(x) Modified Bessel function of the first kind, order 0.
sinc(x) Return the sinc function.

numpy.i0(x)
Modified Bessel function of the first kind, order 0.

Usually denoted 𝐼0. This function does broadcast, but will not “up-cast” int dtype arguments unless accompa-
nied by at least one float or complex dtype argument (see Raises below).

Parameters

x [array_like, dtype float or complex] Argument of the Bessel function.

Returns

out [ndarray, shape = x.shape, dtype = x.dtype] The modified Bessel function evaluated at each
of the elements of x.

Raises

TypeError: array cannot be safely cast to required type If argument consists exclusively of
int dtypes.

See also:

scipy.special.iv, scipy.special.ive

Notes

We use the algorithm published by Clenshaw [1] and referenced by Abramowitz and Stegun [2], for which the
function domain is partitioned into the two intervals [0,8] and (8,inf), and Chebyshev polynomial expansions
are employed in each interval. Relative error on the domain [0,30] using IEEE arithmetic is documented [3] as
having a peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000).

References

[1], [2], [3]

4.19. Mathematical functions 761

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.iv.html#scipy.special.iv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ive.html#scipy.special.ive


NumPy Reference, Release 1.15.1

Examples

>>> np.i0([0.])
array(1.0)
>>> np.i0([0., 1. + 2j])
array([ 1.00000000+0.j , 0.18785373+0.64616944j])

numpy.sinc(x)
Return the sinc function.

The sinc function is sin(𝜋𝑥)/(𝜋𝑥).

Parameters

x [ndarray] Array (possibly multi-dimensional) of values for which to to calculate sinc(x).

Returns

out [ndarray] sinc(x), which has the same shape as the input.

Notes

sinc(0) is the limit value 1.

The name sinc is short for “sine cardinal” or “sinus cardinalis”.

The sinc function is used in various signal processing applications, including in anti-aliasing, in the construction
of a Lanczos resampling filter, and in interpolation.

For bandlimited interpolation of discrete-time signals, the ideal interpolation kernel is proportional to the sinc
function.

References

[1], [2]

Examples

>>> x = np.linspace(-4, 4, 41)
>>> np.sinc(x)
array([ -3.89804309e-17, -4.92362781e-02, -8.40918587e-02,

-8.90384387e-02, -5.84680802e-02, 3.89804309e-17,
6.68206631e-02, 1.16434881e-01, 1.26137788e-01,
8.50444803e-02, -3.89804309e-17, -1.03943254e-01,

-1.89206682e-01, -2.16236208e-01, -1.55914881e-01,
3.89804309e-17, 2.33872321e-01, 5.04551152e-01,
7.56826729e-01, 9.35489284e-01, 1.00000000e+00,
9.35489284e-01, 7.56826729e-01, 5.04551152e-01,
2.33872321e-01, 3.89804309e-17, -1.55914881e-01,

-2.16236208e-01, -1.89206682e-01, -1.03943254e-01,
-3.89804309e-17, 8.50444803e-02, 1.26137788e-01,
1.16434881e-01, 6.68206631e-02, 3.89804309e-17,

-5.84680802e-02, -8.90384387e-02, -8.40918587e-02,
-4.92362781e-02, -3.89804309e-17])

762 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> plt.plot(x, np.sinc(x))
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Sinc Function")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("X")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

It works in 2-D as well:

>>> x = np.linspace(-4, 4, 401)
>>> xx = np.outer(x, x)
>>> plt.imshow(np.sinc(xx))
<matplotlib.image.AxesImage object at 0x...>

4.19.7 Floating point routines

signbit(x, /[, out, where, casting, order, . . . ]) Returns element-wise True where signbit is set (less than
zero).

copysign(x1, x2, /[, out, where, casting, . . . ]) Change the sign of x1 to that of x2, element-wise.
frexp(x[, out1, out2], / [[, out, where, . . . ]) Decompose the elements of x into mantissa and twos expo-

nent.
ldexp(x1, x2, /[, out, where, casting, . . . ]) Returns x1 * 2**x2, element-wise.
nextafter(x1, x2, /[, out, where, casting, . . . ]) Return the next floating-point value after x1 towards x2,

element-wise.
spacing(x, /[, out, where, casting, order, . . . ]) Return the distance between x and the nearest adjacent

number.

numpy.signbit(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'signbit'>

Returns element-wise True where signbit is set (less than zero).

Parameters

x [array_like] The input value(s).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

result [ndarray of bool] Output array, or reference to out if that was supplied. This is a scalar if
x is a scalar.

4.19. Mathematical functions 763



NumPy Reference, Release 1.15.1

Examples

>>> np.signbit(-1.2)
True
>>> np.signbit(np.array([1, -2.3, 2.1]))
array([False, True, False])

numpy.copysign(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'copysign'>

Change the sign of x1 to that of x2, element-wise.

If both arguments are arrays or sequences, they have to be of the same length. If x2 is a scalar, its sign will be
copied to all elements of x1.

Parameters

x1 [array_like] Values to change the sign of.

x2 [array_like] The sign of x2 is copied to x1.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] The values of x1 with the sign of x2. This is a scalar if both x1 and x2
are scalars.

Examples

>>> np.copysign(1.3, -1)
-1.3
>>> 1/np.copysign(0, 1)
inf
>>> 1/np.copysign(0, -1)
-inf

>>> np.copysign([-1, 0, 1], -1.1)
array([-1., -0., -1.])
>>> np.copysign([-1, 0, 1], np.arange(3)-1)
array([-1., 0., 1.])

numpy.frexp(x[, out1, out2], /[, out=(None, None)], *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj]) = <ufunc 'frexp'>

Decompose the elements of x into mantissa and twos exponent.

Returns (mantissa, exponent), where x = mantissa * 2**exponent‘. The mantissa is lies in the open interval(-1,
1), while the twos exponent is a signed integer.

Parameters

x [array_like] Array of numbers to be decomposed.

764 Chapter 4. Routines



NumPy Reference, Release 1.15.1

out1 [ndarray, optional] Output array for the mantissa. Must have the same shape as x.

out2 [ndarray, optional] Output array for the exponent. Must have the same shape as x.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

mantissa [ndarray] Floating values between -1 and 1. This is a scalar if x is a scalar.

exponent [ndarray] Integer exponents of 2. This is a scalar if x is a scalar.

See also:

ldexp Compute y = x1 * 2**x2, the inverse of frexp.

Notes

Complex dtypes are not supported, they will raise a TypeError.

Examples

>>> x = np.arange(9)
>>> y1, y2 = np.frexp(x)
>>> y1
array([ 0. , 0.5 , 0.5 , 0.75 , 0.5 , 0.625, 0.75 , 0.875,

0.5 ])
>>> y2
array([0, 1, 2, 2, 3, 3, 3, 3, 4])
>>> y1 * 2**y2
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8.])

numpy.ldexp(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'ldexp'>

Returns x1 * 2**x2, element-wise.

The mantissas x1 and twos exponents x2 are used to construct floating point numbers x1 * 2**x2.

Parameters

x1 [array_like] Array of multipliers.

x2 [array_like, int] Array of twos exponents.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

4.19. Mathematical functions 765



NumPy Reference, Release 1.15.1

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The result of x1 * 2**x2. This is a scalar if both x1 and x2 are scalars.

See also:

frexp Return (y1, y2) from x = y1 * 2**y2, inverse to ldexp.

Notes

Complex dtypes are not supported, they will raise a TypeError.

ldexp is useful as the inverse of frexp, if used by itself it is more clear to simply use the expression x1 *
2**x2.

Examples

>>> np.ldexp(5, np.arange(4))
array([ 5., 10., 20., 40.], dtype=float32)

>>> x = np.arange(6)
>>> np.ldexp(*np.frexp(x))
array([ 0., 1., 2., 3., 4., 5.])

numpy.nextafter(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'nextafter'>

Return the next floating-point value after x1 towards x2, element-wise.

Parameters

x1 [array_like] Values to find the next representable value of.

x2 [array_like] The direction where to look for the next representable value of x1.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] The next representable values of x1 in the direction of x2. This is a scalar
if both x1 and x2 are scalars.

Examples

766 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> eps = np.finfo(np.float64).eps
>>> np.nextafter(1, 2) == eps + 1
True
>>> np.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps]
array([ True, True])

numpy.spacing(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'spacing'>

Return the distance between x and the nearest adjacent number.

Parameters

x [array_like] Values to find the spacing of.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] The spacing of values of x. This is a scalar if x is a scalar.

Notes

It can be considered as a generalization of EPS: spacing(np.float64(1)) == np.finfo(np.
float64).eps, and there should not be any representable number between x + spacing(x) and x for
any finite x.

Spacing of +- inf and NaN is NaN.

Examples

>>> np.spacing(1) == np.finfo(np.float64).eps
True

4.19.8 Rational routines

lcm(x1, x2, /[, out, where, casting, order, . . . ]) Returns the lowest common multiple of |x1| and |x2|
gcd(x1, x2, /[, out, where, casting, order, . . . ]) Returns the greatest common divisor of |x1| and |x2|

numpy.lcm(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'lcm'>

Returns the lowest common multiple of |x1| and |x2|

Parameters

x1, x2 [array_like, int] Arrays of values

Returns

4.19. Mathematical functions 767



NumPy Reference, Release 1.15.1

y [ndarray or scalar] The lowest common multiple of the absolute value of the inputs This is a
scalar if both x1 and x2 are scalars.

See also:

gcd The greatest common divisor

Examples

>>> np.lcm(12, 20)
60
>>> np.lcm.reduce([3, 12, 20])
60
>>> np.lcm.reduce([40, 12, 20])
120
>>> np.lcm(np.arange(6), 20)
array([ 0, 20, 20, 60, 20, 20])

numpy.gcd(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'gcd'>

Returns the greatest common divisor of |x1| and |x2|

Parameters

x1, x2 [array_like, int] Arrays of values

Returns

y [ndarray or scalar] The greatest common divisor of the absolute value of the inputs This is a
scalar if both x1 and x2 are scalars.

See also:

lcm The lowest common multiple

Examples

>>> np.gcd(12, 20)
4
>>> np.gcd.reduce([15, 25, 35])
5
>>> np.gcd(np.arange(6), 20)
array([20, 1, 2, 1, 4, 5])

4.19.9 Arithmetic operations

add(x1, x2, /[, out, where, casting, order, . . . ]) Add arguments element-wise.
reciprocal(x, /[, out, where, casting, . . . ]) Return the reciprocal of the argument, element-wise.
positive(x, /[, out, where, casting, order, . . . ]) Numerical positive, element-wise.
negative(x, /[, out, where, casting, order, . . . ]) Numerical negative, element-wise.
multiply(x1, x2, /[, out, where, casting, . . . ]) Multiply arguments element-wise.
divide(x1, x2, /[, out, where, casting, . . . ]) Returns a true division of the inputs, element-wise.

Continued on next page

768 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Table 84 – continued from previous page
power(x1, x2, /[, out, where, casting, . . . ]) First array elements raised to powers from second array,

element-wise.
subtract(x1, x2, /[, out, where, casting, . . . ]) Subtract arguments, element-wise.
true_divide(x1, x2, /[, out, where, . . . ]) Returns a true division of the inputs, element-wise.
floor_divide(x1, x2, /[, out, where, . . . ]) Return the largest integer smaller or equal to the division

of the inputs.
float_power(x1, x2, /[, out, where, . . . ]) First array elements raised to powers from second array,

element-wise.
fmod(x1, x2, /[, out, where, casting, . . . ]) Return the element-wise remainder of division.
mod(x1, x2, /[, out, where, casting, order, . . . ]) Return element-wise remainder of division.
modf(x[, out1, out2], / [[, out, where, . . . ]) Return the fractional and integral parts of an array, element-

wise.
remainder(x1, x2, /[, out, where, casting, . . . ]) Return element-wise remainder of division.
divmod(x1, x2[, out1, out2], / [[, out, . . . ]) Return element-wise quotient and remainder simultane-

ously.

numpy.add(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'add'>

Add arguments element-wise.

Parameters

x1, x2 [array_like] The arrays to be added. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or the other).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

add [ndarray or scalar] The sum of x1 and x2, element-wise. This is a scalar if both x1 and x2
are scalars.

Notes

Equivalent to x1 + x2 in terms of array broadcasting.

Examples

>>> np.add(1.0, 4.0)
5.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.add(x1, x2)
array([[ 0., 2., 4.],

[ 3., 5., 7.],
[ 6., 8., 10.]])

4.19. Mathematical functions 769



NumPy Reference, Release 1.15.1

numpy.reciprocal(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'reciprocal'>

Return the reciprocal of the argument, element-wise.

Calculates 1/x.

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] Return array. This is a scalar if x is a scalar.

Notes

Note: This function is not designed to work with integers.

For integer arguments with absolute value larger than 1 the result is always zero because of the way Python
handles integer division. For integer zero the result is an overflow.

Examples

>>> np.reciprocal(2.)
0.5
>>> np.reciprocal([1, 2., 3.33])
array([ 1. , 0.5 , 0.3003003])

numpy.positive(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'positive'>

Numerical positive, element-wise.

New in version 1.13.0.

Parameters

x [array_like or scalar] Input array.

Returns

y [ndarray or scalar] Returned array or scalar: y = +x. This is a scalar if x is a scalar.

Notes

Equivalent to x.copy(), but only defined for types that support arithmetic.

770 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.negative(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'negative'>

Numerical negative, element-wise.

Parameters

x [array_like or scalar] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] Returned array or scalar: y = -x. This is a scalar if x is a scalar.

Examples

>>> np.negative([1.,-1.])
array([-1., 1.])

numpy.multiply(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'multiply'>

Multiply arguments element-wise.

Parameters

x1, x2 [array_like] Input arrays to be multiplied.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The product of x1 and x2, element-wise. Returns a scalar if both x1 and x2 are
scalars. This is a scalar if both x1 and x2 are scalars.

Notes

Equivalent to x1 * x2 in terms of array broadcasting.

Examples

>>> np.multiply(2.0, 4.0)
8.0

4.19. Mathematical functions 771



NumPy Reference, Release 1.15.1

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.multiply(x1, x2)
array([[ 0., 1., 4.],

[ 0., 4., 10.],
[ 0., 7., 16.]])

numpy.divide(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'true_divide'>

Returns a true division of the inputs, element-wise.

Instead of the Python traditional ‘floor division’, this returns a true division. True division adjusts the output
type to present the best answer, regardless of input types.

Parameters

x1 [array_like] Dividend array.

x2 [array_like] Divisor array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] This is a scalar if both x1 and x2 are scalars.

Notes

The floor division operator // was added in Python 2.2 making // and / equivalent operators. The default floor
division operation of / can be replaced by true division with from __future__ import division.

In Python 3.0, // is the floor division operator and / the true division operator. The true_divide(x1,
x2) function is equivalent to true division in Python.

Examples

>>> x = np.arange(5)
>>> np.true_divide(x, 4)
array([ 0. , 0.25, 0.5 , 0.75, 1. ])

>>> x/4
array([0, 0, 0, 0, 1])
>>> x//4
array([0, 0, 0, 0, 1])

>>> from __future__ import division
>>> x/4
array([ 0. , 0.25, 0.5 , 0.75, 1. ])

(continues on next page)

772 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> x//4
array([0, 0, 0, 0, 1])

numpy.power(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'power'>

First array elements raised to powers from second array, element-wise.

Raise each base in x1 to the positionally-corresponding power in x2. x1 and x2 must be broadcastable to the
same shape. Note that an integer type raised to a negative integer power will raise a ValueError.

Parameters

x1 [array_like] The bases.

x2 [array_like] The exponents.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The bases in x1 raised to the exponents in x2. This is a scalar if both x1 and x2 are
scalars.

See also:

float_power power function that promotes integers to float

Examples

Cube each element in a list.

>>> x1 = range(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> np.power(x1, 3)
array([ 0, 1, 8, 27, 64, 125])

Raise the bases to different exponents.

>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
>>> np.power(x1, x2)
array([ 0., 1., 8., 27., 16., 5.])

The effect of broadcasting.

>>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
>>> x2
array([[1, 2, 3, 3, 2, 1],

[1, 2, 3, 3, 2, 1]])
>>> np.power(x1, x2)

(continues on next page)

4.19. Mathematical functions 773



NumPy Reference, Release 1.15.1

(continued from previous page)

array([[ 0, 1, 8, 27, 16, 5],
[ 0, 1, 8, 27, 16, 5]])

numpy.subtract(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'subtract'>

Subtract arguments, element-wise.

Parameters

x1, x2 [array_like] The arrays to be subtracted from each other.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The difference of x1 and x2, element-wise. This is a scalar if both x1 and x2 are
scalars.

Notes

Equivalent to x1 - x2 in terms of array broadcasting.

Examples

>>> np.subtract(1.0, 4.0)
-3.0

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.subtract(x1, x2)
array([[ 0., 0., 0.],

[ 3., 3., 3.],
[ 6., 6., 6.]])

numpy.true_divide(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'true_divide'>

Returns a true division of the inputs, element-wise.

Instead of the Python traditional ‘floor division’, this returns a true division. True division adjusts the output
type to present the best answer, regardless of input types.

Parameters

x1 [array_like] Dividend array.

x2 [array_like] Divisor array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or

774 Chapter 4. Routines



NumPy Reference, Release 1.15.1

None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] This is a scalar if both x1 and x2 are scalars.

Notes

The floor division operator // was added in Python 2.2 making // and / equivalent operators. The default floor
division operation of / can be replaced by true division with from __future__ import division.

In Python 3.0, // is the floor division operator and / the true division operator. The true_divide(x1,
x2) function is equivalent to true division in Python.

Examples

>>> x = np.arange(5)
>>> np.true_divide(x, 4)
array([ 0. , 0.25, 0.5 , 0.75, 1. ])

>>> x/4
array([0, 0, 0, 0, 1])
>>> x//4
array([0, 0, 0, 0, 1])

>>> from __future__ import division
>>> x/4
array([ 0. , 0.25, 0.5 , 0.75, 1. ])
>>> x//4
array([0, 0, 0, 0, 1])

numpy.floor_divide(x1, x2, /, out=None, *, where=True, casting=’same_kind’, or-
der=’K’, dtype=None, subok=True[, signature, extobj]) = <ufunc
'floor_divide'>

Return the largest integer smaller or equal to the division of the inputs. It is equivalent to the Python // operator
and pairs with the Python % (remainder), function so that b = a % b + b * (a // b) up to roundoff.

Parameters

x1 [array_like] Numerator.

x2 [array_like] Denominator.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

4.19. Mathematical functions 775



NumPy Reference, Release 1.15.1

Returns

y [ndarray] y = floor(x1/x2) This is a scalar if both x1 and x2 are scalars.

See also:

remainder Remainder complementary to floor_divide.

divmod Simultaneous floor division and remainder.

divide Standard division.

floor Round a number to the nearest integer toward minus infinity.

ceil Round a number to the nearest integer toward infinity.

Examples

>>> np.floor_divide(7,3)
2
>>> np.floor_divide([1., 2., 3., 4.], 2.5)
array([ 0., 0., 1., 1.])

numpy.float_power(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'float_power'>

First array elements raised to powers from second array, element-wise.

Raise each base in x1 to the positionally-corresponding power in x2. x1 and x2 must be broadcastable to the
same shape. This differs from the power function in that integers, float16, and float32 are promoted to floats
with a minimum precision of float64 so that the result is always inexact. The intent is that the function will
return a usable result for negative powers and seldom overflow for positive powers.

New in version 1.12.0.

Parameters

x1 [array_like] The bases.

x2 [array_like] The exponents.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The bases in x1 raised to the exponents in x2. This is a scalar if both x1 and x2 are
scalars.

See also:

power power function that preserves type

776 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

Cube each element in a list.

>>> x1 = range(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> np.float_power(x1, 3)
array([ 0., 1., 8., 27., 64., 125.])

Raise the bases to different exponents.

>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
>>> np.float_power(x1, x2)
array([ 0., 1., 8., 27., 16., 5.])

The effect of broadcasting.

>>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
>>> x2
array([[1, 2, 3, 3, 2, 1],

[1, 2, 3, 3, 2, 1]])
>>> np.float_power(x1, x2)
array([[ 0., 1., 8., 27., 16., 5.],

[ 0., 1., 8., 27., 16., 5.]])

numpy.fmod(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'fmod'>

Return the element-wise remainder of division.

This is the NumPy implementation of the C library function fmod, the remainder has the same sign as the
dividend x1. It is equivalent to the Matlab(TM) rem function and should not be confused with the Python
modulus operator x1 % x2.

Parameters

x1 [array_like] Dividend.

x2 [array_like] Divisor.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [array_like] The remainder of the division of x1 by x2. This is a scalar if both x1 and x2 are
scalars.

See also:

remainder Equivalent to the Python % operator.

divide

4.19. Mathematical functions 777



NumPy Reference, Release 1.15.1

Notes

The result of the modulo operation for negative dividend and divisors is bound by conventions. For fmod, the
sign of result is the sign of the dividend, while for remainder the sign of the result is the sign of the divisor.
The fmod function is equivalent to the Matlab(TM) rem function.

Examples

>>> np.fmod([-3, -2, -1, 1, 2, 3], 2)
array([-1, 0, -1, 1, 0, 1])
>>> np.remainder([-3, -2, -1, 1, 2, 3], 2)
array([1, 0, 1, 1, 0, 1])

>>> np.fmod([5, 3], [2, 2.])
array([ 1., 1.])
>>> a = np.arange(-3, 3).reshape(3, 2)
>>> a
array([[-3, -2],

[-1, 0],
[ 1, 2]])

>>> np.fmod(a, [2,2])
array([[-1, 0],

[-1, 0],
[ 1, 0]])

numpy.mod(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'remainder'>

Return element-wise remainder of division.

Computes the remainder complementary to the floor_divide function. It is equivalent to the Python mod-
ulus operator‘‘x1 % x2‘‘ and has the same sign as the divisor x2. The MATLAB function equivalent to np.
remainder is mod.

Warning: This should not be confused with:

• Python 3.7’s math.remainder and C’s remainder, which computes the IEEE remainder, which are
the complement to round(x1 / x2).

• The MATLAB rem function and or the C % operator which is the complement to int(x1 / x2).

Parameters

x1 [array_like] Dividend array.

x2 [array_like] Divisor array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

778 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns

y [ndarray] The element-wise remainder of the quotient floor_divide(x1, x2). This is
a scalar if both x1 and x2 are scalars.

See also:

floor_divide Equivalent of Python // operator.

divmod Simultaneous floor division and remainder.

fmod Equivalent of the MATLAB rem function.

divide, floor

Notes

Returns 0 when x2 is 0 and both x1 and x2 are (arrays of) integers.

Examples

>>> np.remainder([4, 7], [2, 3])
array([0, 1])
>>> np.remainder(np.arange(7), 5)
array([0, 1, 2, 3, 4, 0, 1])

numpy.modf(x[, out1, out2], /[, out=(None, None)], *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj]) = <ufunc 'modf'>

Return the fractional and integral parts of an array, element-wise.

The fractional and integral parts are negative if the given number is negative.

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y1 [ndarray] Fractional part of x. This is a scalar if x is a scalar.

y2 [ndarray] Integral part of x. This is a scalar if x is a scalar.

See also:

divmod divmod(x, 1) is equivalent to modf with the return values switched, except it always has a posi-
tive remainder.

4.19. Mathematical functions 779



NumPy Reference, Release 1.15.1

Notes

For integer input the return values are floats.

Examples

>>> np.modf([0, 3.5])
(array([ 0. , 0.5]), array([ 0., 3.]))
>>> np.modf(-0.5)
(-0.5, -0)

numpy.remainder(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'remainder'>

Return element-wise remainder of division.

Computes the remainder complementary to the floor_divide function. It is equivalent to the Python mod-
ulus operator‘‘x1 % x2‘‘ and has the same sign as the divisor x2. The MATLAB function equivalent to np.
remainder is mod.

Warning: This should not be confused with:

• Python 3.7’s math.remainder and C’s remainder, which computes the IEEE remainder, which are
the complement to round(x1 / x2).

• The MATLAB rem function and or the C % operator which is the complement to int(x1 / x2).

Parameters

x1 [array_like] Dividend array.

x2 [array_like] Divisor array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The element-wise remainder of the quotient floor_divide(x1, x2). This is
a scalar if both x1 and x2 are scalars.

See also:

floor_divide Equivalent of Python // operator.

divmod Simultaneous floor division and remainder.

fmod Equivalent of the MATLAB rem function.

divide, floor

780 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

Returns 0 when x2 is 0 and both x1 and x2 are (arrays of) integers.

Examples

>>> np.remainder([4, 7], [2, 3])
array([0, 1])
>>> np.remainder(np.arange(7), 5)
array([0, 1, 2, 3, 4, 0, 1])

numpy.divmod(x1, x2[, out1, out2], /[, out=(None, None)], *, where=True, casting=’same_kind’, or-
der=’K’, dtype=None, subok=True[, signature, extobj]) = <ufunc 'divmod'>

Return element-wise quotient and remainder simultaneously.

New in version 1.13.0.

np.divmod(x, y) is equivalent to (x // y, x % y), but faster because it avoids redundant work. It is
used to implement the Python built-in function divmod on NumPy arrays.

Parameters

x1 [array_like] Dividend array.

x2 [array_like] Divisor array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out1 [ndarray] Element-wise quotient resulting from floor division. This is a scalar if both x1
and x2 are scalars.

out2 [ndarray] Element-wise remainder from floor division. This is a scalar if both x1 and x2
are scalars.

See also:

floor_divide Equivalent to Python’s // operator.

remainder Equivalent to Python’s % operator.

modf Equivalent to divmod(x, 1) for positive x with the return values switched.

Examples

>>> np.divmod(np.arange(5), 3)
(array([0, 0, 0, 1, 1]), array([0, 1, 2, 0, 1]))

4.19. Mathematical functions 781



NumPy Reference, Release 1.15.1

4.19.10 Handling complex numbers

angle(z[, deg]) Return the angle of the complex argument.
real(val) Return the real part of the complex argument.
imag(val) Return the imaginary part of the complex argument.
conj(x, /[, out, where, casting, order, . . . ]) Return the complex conjugate, element-wise.

numpy.angle(z, deg=0)
Return the angle of the complex argument.

Parameters

z [array_like] A complex number or sequence of complex numbers.

deg [bool, optional] Return angle in degrees if True, radians if False (default).

Returns

angle [ndarray or scalar] The counterclockwise angle from the positive real axis on the complex
plane, with dtype as numpy.float64.

See also:

arctan2, absolute

Examples

>>> np.angle([1.0, 1.0j, 1+1j]) # in radians
array([ 0. , 1.57079633, 0.78539816])
>>> np.angle(1+1j, deg=True) # in degrees
45.0

numpy.real(val)
Return the real part of the complex argument.

Parameters

val [array_like] Input array.

Returns

out [ndarray or scalar] The real component of the complex argument. If val is real, the type of
val is used for the output. If val has complex elements, the returned type is float.

See also:

real_if_close, imag, angle

Examples

>>> a = np.array([1+2j, 3+4j, 5+6j])
>>> a.real
array([ 1., 3., 5.])
>>> a.real = 9
>>> a
array([ 9.+2.j, 9.+4.j, 9.+6.j])
>>> a.real = np.array([9, 8, 7])

(continues on next page)

782 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> a
array([ 9.+2.j, 8.+4.j, 7.+6.j])
>>> np.real(1 + 1j)
1.0

numpy.imag(val)
Return the imaginary part of the complex argument.

Parameters

val [array_like] Input array.

Returns

out [ndarray or scalar] The imaginary component of the complex argument. If val is real, the
type of val is used for the output. If val has complex elements, the returned type is float.

See also:

real, angle, real_if_close

Examples

>>> a = np.array([1+2j, 3+4j, 5+6j])
>>> a.imag
array([ 2., 4., 6.])
>>> a.imag = np.array([8, 10, 12])
>>> a
array([ 1. +8.j, 3.+10.j, 5.+12.j])
>>> np.imag(1 + 1j)
1.0

numpy.conj(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'conjugate'>

Return the complex conjugate, element-wise.

The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

Parameters

x [array_like] Input value.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The complex conjugate of x, with same dtype as y. This is a scalar if x is a scalar.

4.19. Mathematical functions 783



NumPy Reference, Release 1.15.1

Examples

>>> np.conjugate(1+2j)
(1-2j)

>>> x = np.eye(2) + 1j * np.eye(2)
>>> np.conjugate(x)
array([[ 1.-1.j, 0.-0.j],

[ 0.-0.j, 1.-1.j]])

4.19.11 Miscellaneous

convolve(a, v[, mode]) Returns the discrete, linear convolution of two one-
dimensional sequences.

clip(a, a_min, a_max[, out]) Clip (limit) the values in an array.
sqrt(x, /[, out, where, casting, order, . . . ]) Return the non-negative square-root of an array, element-

wise.
cbrt(x, /[, out, where, casting, order, . . . ]) Return the cube-root of an array, element-wise.
square(x, /[, out, where, casting, order, . . . ]) Return the element-wise square of the input.
absolute(x, /[, out, where, casting, order, . . . ]) Calculate the absolute value element-wise.
fabs(x, /[, out, where, casting, order, . . . ]) Compute the absolute values element-wise.
sign(x, /[, out, where, casting, order, . . . ]) Returns an element-wise indication of the sign of a number.
heaviside(x1, x2, /[, out, where, casting, . . . ]) Compute the Heaviside step function.
maximum(x1, x2, /[, out, where, casting, . . . ]) Element-wise maximum of array elements.
minimum(x1, x2, /[, out, where, casting, . . . ]) Element-wise minimum of array elements.
fmax(x1, x2, /[, out, where, casting, . . . ]) Element-wise maximum of array elements.
fmin(x1, x2, /[, out, where, casting, . . . ]) Element-wise minimum of array elements.
nan_to_num(x[, copy]) Replace NaN with zero and infinity with large finite num-

bers.
real_if_close(a[, tol]) If complex input returns a real array if complex parts are

close to zero.
interp(x, xp, fp[, left, right, period]) One-dimensional linear interpolation.

numpy.convolve(a, v, mode=’full’)
Returns the discrete, linear convolution of two one-dimensional sequences.

The convolution operator is often seen in signal processing, where it models the effect of a linear time-invariant
system on a signal [1]. In probability theory, the sum of two independent random variables is distributed
according to the convolution of their individual distributions.

If v is longer than a, the arrays are swapped before computation.

Parameters

a [(N,) array_like] First one-dimensional input array.

v [(M,) array_like] Second one-dimensional input array.

mode [{‘full’, ‘valid’, ‘same’}, optional]

‘full’: By default, mode is ‘full’. This returns the convolution at each point of overlap, with
an output shape of (N+M-1,). At the end-points of the convolution, the signals do not
overlap completely, and boundary effects may be seen.

784 Chapter 4. Routines



NumPy Reference, Release 1.15.1

‘same’: Mode ‘same’ returns output of length max(M, N). Boundary effects are still vis-
ible.

‘valid’: Mode ‘valid’ returns output of length max(M, N) - min(M, N) + 1. The
convolution product is only given for points where the signals overlap completely. Values
outside the signal boundary have no effect.

Returns

out [ndarray] Discrete, linear convolution of a and v.

See also:

scipy.signal.fftconvolve Convolve two arrays using the Fast Fourier Transform.

scipy.linalg.toeplitz Used to construct the convolution operator.

polymul Polynomial multiplication. Same output as convolve, but also accepts poly1d objects as input.

Notes

The discrete convolution operation is defined as

(𝑎 * 𝑣)[𝑛] =

∞∑︁
𝑚=−∞

𝑎[𝑚]𝑣[𝑛−𝑚]

It can be shown that a convolution 𝑥(𝑡) * 𝑦(𝑡) in time/space is equivalent to the multiplication 𝑋(𝑓)𝑌 (𝑓) in the
Fourier domain, after appropriate padding (padding is necessary to prevent circular convolution). Since mul-
tiplication is more efficient (faster) than convolution, the function scipy.signal.fftconvolve exploits
the FFT to calculate the convolution of large data-sets.

References

[1]

Examples

Note how the convolution operator flips the second array before “sliding” the two across one another:

>>> np.convolve([1, 2, 3], [0, 1, 0.5])
array([ 0. , 1. , 2.5, 4. , 1.5])

Only return the middle values of the convolution. Contains boundary effects, where zeros are taken into account:

>>> np.convolve([1,2,3],[0,1,0.5], 'same')
array([ 1. , 2.5, 4. ])

The two arrays are of the same length, so there is only one position where they completely overlap:

>>> np.convolve([1,2,3],[0,1,0.5], 'valid')
array([ 2.5])

numpy.clip(a, a_min, a_max, out=None)
Clip (limit) the values in an array.

4.19. Mathematical functions 785

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.toeplitz.html#scipy.linalg.toeplitz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve


NumPy Reference, Release 1.15.1

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of
[0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.

Parameters

a [array_like] Array containing elements to clip.

a_min [scalar or array_like or None] Minimum value. If None, clipping is not performed on
lower interval edge. Not more than one of a_min and a_max may be None.

a_max [scalar or array_like or None] Maximum value. If None, clipping is not performed on
upper interval edge. Not more than one of a_min and a_max may be None. If a_min or
a_max are array_like, then the three arrays will be broadcasted to match their shapes.

out [ndarray, optional] The results will be placed in this array. It may be the input array for
in-place clipping. out must be of the right shape to hold the output. Its type is preserved.

Returns

clipped_array [ndarray] An array with the elements of a, but where values < a_min are re-
placed with a_min, and those > a_max with a_max.

See also:

numpy.doc.ufuncs Section “Output arguments”

Examples

>>> a = np.arange(10)
>>> np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 3, 6, out=a)
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8)
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

numpy.sqrt(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'sqrt'>

Return the non-negative square-root of an array, element-wise.

Parameters

x [array_like] The values whose square-roots are required.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

786 Chapter 4. Routines



NumPy Reference, Release 1.15.1

y [ndarray] An array of the same shape as x, containing the positive square-root of each element
in x. If any element in x is complex, a complex array is returned (and the square-roots of
negative reals are calculated). If all of the elements in x are real, so is y, with negative
elements returning nan. If out was provided, y is a reference to it. This is a scalar if x is a
scalar.

See also:

lib.scimath.sqrt A version which returns complex numbers when given negative reals.

Notes

sqrt has–consistent with common convention–as its branch cut the real “interval” [-inf, 0), and is continuous
from above on it. A branch cut is a curve in the complex plane across which a given complex function fails to
be continuous.

Examples

>>> np.sqrt([1,4,9])
array([ 1., 2., 3.])

>>> np.sqrt([4, -1, -3+4J])
array([ 2.+0.j, 0.+1.j, 1.+2.j])

>>> np.sqrt([4, -1, numpy.inf])
array([ 2., NaN, Inf])

numpy.cbrt(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'cbrt'>

Return the cube-root of an array, element-wise.

New in version 1.10.0.

Parameters

x [array_like] The values whose cube-roots are required.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] An array of the same shape as x, containing the cube cube-root of each element in
x. If out was provided, y is a reference to it. This is a scalar if x is a scalar.

4.19. Mathematical functions 787



NumPy Reference, Release 1.15.1

Examples

>>> np.cbrt([1,8,27])
array([ 1., 2., 3.])

numpy.square(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'square'>

Return the element-wise square of the input.

Parameters

x [array_like] Input data.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Element-wise x*x, of the same shape and dtype as x. This is a scalar if x
is a scalar.

See also:

numpy.linalg.matrix_power, sqrt, power

Examples

>>> np.square([-1j, 1])
array([-1.-0.j, 1.+0.j])

numpy.absolute(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'absolute'>

Calculate the absolute value element-wise.

np.abs is a shorthand for this function.

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

absolute [ndarray] An ndarray containing the absolute value of each element in x. For complex
input, a + ib, the absolute value is

√
𝑎2 + 𝑏2. This is a scalar if x is a scalar.

788 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> x = np.array([-1.2, 1.2])
>>> np.absolute(x)
array([ 1.2, 1.2])
>>> np.absolute(1.2 + 1j)
1.5620499351813308

Plot the function over [-10, 10]:

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(start=-10, stop=10, num=101)
>>> plt.plot(x, np.absolute(x))
>>> plt.show()

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0

2

4

6

8

10

Plot the function over the complex plane:

>>> xx = x + 1j * x[:, np.newaxis]
>>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10], cmap='gray')
>>> plt.show()

numpy.fabs(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'fabs'>

Compute the absolute values element-wise.

This function returns the absolute values (positive magnitude) of the data in x. Complex values are not handled,
use absolute to find the absolute values of complex data.

Parameters

x [array_like] The array of numbers for which the absolute values are required. If x is a scalar,
the result y will also be a scalar.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

4.19. Mathematical functions 789



NumPy Reference, Release 1.15.1

10 5 0 5 10
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The absolute values of x, the returned values are always floats. This is a
scalar if x is a scalar.

See also:

absolute Absolute values including complex types.

Examples

>>> np.fabs(-1)
1.0
>>> np.fabs([-1.2, 1.2])
array([ 1.2, 1.2])

numpy.sign(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj]) = <ufunc 'sign'>

Returns an element-wise indication of the sign of a number.

The sign function returns -1 if x < 0, 0 if x==0, 1 if x > 0. nan is returned for nan inputs.

For complex inputs, the sign function returns sign(x.real) + 0j if x.real != 0 else
sign(x.imag) + 0j.

complex(nan, 0) is returned for complex nan inputs.

Parameters

x [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or

790 Chapter 4. Routines

https://docs.python.org/dev/library/functions.html#complex


NumPy Reference, Release 1.15.1

None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The sign of x. This is a scalar if x is a scalar.

Notes

There is more than one definition of sign in common use for complex numbers. The definition used here is
equivalent to 𝑥/

√
𝑥 * 𝑥 which is different from a common alternative, 𝑥/|𝑥|.

Examples

>>> np.sign([-5., 4.5])
array([-1., 1.])
>>> np.sign(0)
0
>>> np.sign(5-2j)
(1+0j)

numpy.heaviside(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'heaviside'>

Compute the Heaviside step function.

The Heaviside step function is defined as:

0 if x1 < 0
heaviside(x1, x2) = x2 if x1 == 0

1 if x1 > 0

where x2 is often taken to be 0.5, but 0 and 1 are also sometimes used.

Parameters

x1 [array_like] Input values.

x2 [array_like] The value of the function when x1 is 0.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] The output array, element-wise Heaviside step function of x1. This is a
scalar if both x1 and x2 are scalars.

4.19. Mathematical functions 791



NumPy Reference, Release 1.15.1

Notes

New in version 1.13.0.

References

Examples

>>> np.heaviside([-1.5, 0, 2.0], 0.5)
array([ 0. , 0.5, 1. ])
>>> np.heaviside([-1.5, 0, 2.0], 1)
array([ 0., 1., 1.])

numpy.maximum(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'maximum'>

Element-wise maximum of array elements.

Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being
compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter
distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being
a NaN. The net effect is that NaNs are propagated.

Parameters

x1, x2 [array_like] The arrays holding the elements to be compared. They must have the same
shape, or shapes that can be broadcast to a single shape.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The maximum of x1 and x2, element-wise. This is a scalar if both x1 and
x2 are scalars.

See also:

minimum Element-wise minimum of two arrays, propagates NaNs.

fmax Element-wise maximum of two arrays, ignores NaNs.

amax The maximum value of an array along a given axis, propagates NaNs.

nanmax The maximum value of an array along a given axis, ignores NaNs.

fmin, amin, nanmin

Notes

The maximum is equivalent to np.where(x1 >= x2, x1, x2) when neither x1 nor x2 are nans, but it is
faster and does proper broadcasting.

792 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> np.maximum([2, 3, 4], [1, 5, 2])
array([2, 5, 4])

>>> np.maximum(np.eye(2), [0.5, 2]) # broadcasting
array([[ 1. , 2. ],

[ 0.5, 2. ]])

>>> np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan])
array([ NaN, NaN, NaN])
>>> np.maximum(np.Inf, 1)
inf

numpy.minimum(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'minimum'>

Element-wise minimum of array elements.

Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being
compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter
distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being
a NaN. The net effect is that NaNs are propagated.

Parameters

x1, x2 [array_like] The arrays holding the elements to be compared. They must have the same
shape, or shapes that can be broadcast to a single shape.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The minimum of x1 and x2, element-wise. This is a scalar if both x1 and
x2 are scalars.

See also:

maximum Element-wise maximum of two arrays, propagates NaNs.

fmin Element-wise minimum of two arrays, ignores NaNs.

amin The minimum value of an array along a given axis, propagates NaNs.

nanmin The minimum value of an array along a given axis, ignores NaNs.

fmax, amax, nanmax

Notes

The minimum is equivalent to np.where(x1 <= x2, x1, x2) when neither x1 nor x2 are NaNs, but it
is faster and does proper broadcasting.

4.19. Mathematical functions 793



NumPy Reference, Release 1.15.1

Examples

>>> np.minimum([2, 3, 4], [1, 5, 2])
array([1, 3, 2])

>>> np.minimum(np.eye(2), [0.5, 2]) # broadcasting
array([[ 0.5, 0. ],

[ 0. , 1. ]])

>>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([ NaN, NaN, NaN])
>>> np.minimum(-np.Inf, 1)
-inf

numpy.fmax(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'fmax'>

Element-wise maximum of array elements.

Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being
compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned.
The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary
parts being a NaN. The net effect is that NaNs are ignored when possible.

Parameters

x1, x2 [array_like] The arrays holding the elements to be compared. They must have the same
shape.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The maximum of x1 and x2, element-wise. This is a scalar if both x1 and
x2 are scalars.

See also:

fmin Element-wise minimum of two arrays, ignores NaNs.

maximum Element-wise maximum of two arrays, propagates NaNs.

amax The maximum value of an array along a given axis, propagates NaNs.

nanmax The maximum value of an array along a given axis, ignores NaNs.

minimum, amin, nanmin

Notes

New in version 1.3.0.

794 Chapter 4. Routines



NumPy Reference, Release 1.15.1

The fmax is equivalent to np.where(x1 >= x2, x1, x2) when neither x1 nor x2 are NaNs, but it is
faster and does proper broadcasting.

Examples

>>> np.fmax([2, 3, 4], [1, 5, 2])
array([ 2., 5., 4.])

>>> np.fmax(np.eye(2), [0.5, 2])
array([[ 1. , 2. ],

[ 0.5, 2. ]])

>>> np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([ 0., 0., NaN])

numpy.fmin(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj]) = <ufunc 'fmin'>

Element-wise minimum of array elements.

Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being
compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned.
The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary
parts being a NaN. The net effect is that NaNs are ignored when possible.

Parameters

x1, x2 [array_like] The arrays holding the elements to be compared. They must have the same
shape.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The minimum of x1 and x2, element-wise. This is a scalar if both x1 and
x2 are scalars.

See also:

fmax Element-wise maximum of two arrays, ignores NaNs.

minimum Element-wise minimum of two arrays, propagates NaNs.

amin The minimum value of an array along a given axis, propagates NaNs.

nanmin The minimum value of an array along a given axis, ignores NaNs.

maximum, amax, nanmax

4.19. Mathematical functions 795



NumPy Reference, Release 1.15.1

Notes

New in version 1.3.0.

The fmin is equivalent to np.where(x1 <= x2, x1, x2) when neither x1 nor x2 are NaNs, but it is
faster and does proper broadcasting.

Examples

>>> np.fmin([2, 3, 4], [1, 5, 2])
array([1, 3, 2])

>>> np.fmin(np.eye(2), [0.5, 2])
array([[ 0.5, 0. ],

[ 0. , 1. ]])

>>> np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([ 0., 0., NaN])

numpy.nan_to_num(x, copy=True)
Replace NaN with zero and infinity with large finite numbers.

If x is inexact, NaN is replaced by zero, and infinity and -infinity replaced by the respectively largest and most
negative finite floating point values representable by x.dtype.

For complex dtypes, the above is applied to each of the real and imaginary components of x separately.

If x is not inexact, then no replacements are made.

Parameters

x [scalar or array_like] Input data.

copy [bool, optional] Whether to create a copy of x (True) or to replace values in-place (False).
The in-place operation only occurs if casting to an array does not require a copy. Default is
True.

New in version 1.13.

Returns

out [ndarray] x, with the non-finite values replaced. If copy is False, this may be x itself.

See also:

isinf Shows which elements are positive or negative infinity.

isneginf Shows which elements are negative infinity.

isposinf Shows which elements are positive infinity.

isnan Shows which elements are Not a Number (NaN).

isfinite Shows which elements are finite (not NaN, not infinity)

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity.

796 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> np.nan_to_num(np.inf)
1.7976931348623157e+308
>>> np.nan_to_num(-np.inf)
-1.7976931348623157e+308
>>> np.nan_to_num(np.nan)
0.0
>>> x = np.array([np.inf, -np.inf, np.nan, -128, 128])
>>> np.nan_to_num(x)
array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000,

-1.28000000e+002, 1.28000000e+002])
>>> y = np.array([complex(np.inf, np.nan), np.nan, complex(np.nan, np.inf)])
>>> np.nan_to_num(y)
array([ 1.79769313e+308 +0.00000000e+000j,

0.00000000e+000 +0.00000000e+000j,
0.00000000e+000 +1.79769313e+308j])

numpy.real_if_close(a, tol=100)
If complex input returns a real array if complex parts are close to zero.

“Close to zero” is defined as tol * (machine epsilon of the type for a).

Parameters

a [array_like] Input array.

tol [float] Tolerance in machine epsilons for the complex part of the elements in the array.

Returns

out [ndarray] If a is real, the type of a is used for the output. If a has complex elements, the
returned type is float.

See also:

real, imag, angle

Notes

Machine epsilon varies from machine to machine and between data types but Python floats on most platforms
have a machine epsilon equal to 2.2204460492503131e-16. You can use ‘np.finfo(float).eps’ to print out the
machine epsilon for floats.

Examples

>>> np.finfo(float).eps
2.2204460492503131e-16

>>> np.real_if_close([2.1 + 4e-14j], tol=1000)
array([ 2.1])
>>> np.real_if_close([2.1 + 4e-13j], tol=1000)
array([ 2.1 +4.00000000e-13j])

numpy.interp(x, xp, fp, left=None, right=None, period=None)
One-dimensional linear interpolation.

4.19. Mathematical functions 797



NumPy Reference, Release 1.15.1

Returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, fp),
evaluated at x.

Parameters

x [array_like] The x-coordinates at which to evaluate the interpolated values.

xp [1-D sequence of floats] The x-coordinates of the data points, must be increasing if argument
period is not specified. Otherwise, xp is internally sorted after normalizing the periodic
boundaries with xp = xp % period.

fp [1-D sequence of float or complex] The y-coordinates of the data points, same length as xp.

left [optional float or complex corresponding to fp] Value to return for x < xp[0], default is
fp[0].

right [optional float or complex corresponding to fp] Value to return for x > xp[-1], default is
fp[-1].

period [None or float, optional] A period for the x-coordinates. This parameter allows the
proper interpolation of angular x-coordinates. Parameters left and right are ignored if period
is specified.

New in version 1.10.0.

Returns

y [float or complex (corresponding to fp) or ndarray] The interpolated values, same shape as x.

Raises

ValueError If xp and fp have different length If xp or fp are not 1-D sequences If period == 0

Notes

Does not check that the x-coordinate sequence xp is increasing. If xp is not increasing, the results are nonsense.
A simple check for increasing is:

np.all(np.diff(xp) > 0)

Examples

>>> xp = [1, 2, 3]
>>> fp = [3, 2, 0]
>>> np.interp(2.5, xp, fp)
1.0
>>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp)
array([ 3. , 3. , 2.5 , 0.56, 0. ])
>>> UNDEF = -99.0
>>> np.interp(3.14, xp, fp, right=UNDEF)
-99.0

Plot an interpolant to the sine function:

>>> x = np.linspace(0, 2*np.pi, 10)
>>> y = np.sin(x)
>>> xvals = np.linspace(0, 2*np.pi, 50)
>>> yinterp = np.interp(xvals, x, y)

(continues on next page)

798 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(xvals, yinterp, '-x')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.show()

0 1 2 3 4 5 6
1.0

0.5

0.0

0.5

1.0

Interpolation with periodic x-coordinates:

>>> x = [-180, -170, -185, 185, -10, -5, 0, 365]
>>> xp = [190, -190, 350, -350]
>>> fp = [5, 10, 3, 4]
>>> np.interp(x, xp, fp, period=360)
array([7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75])

Complex interpolation:

>>> x = [1.5, 4.0]
>>> xp = [2,3,5]
>>> fp = [1.0j, 0, 2+3j]
>>> np.interp(x, xp, fp)
array([ 0.+1.j , 1.+1.5j])

4.20 Matrix library (numpy.matlib)

This module contains all functions in the numpy namespace, with the following replacement functions that return
matrices instead of ndarrays.

Functions that are also in the numpy namespace and return matrices

mat(data[, dtype]) Interpret the input as a matrix.
matrix(data[, dtype, copy])

Continued on next page

4.20. Matrix library (numpy.matlib) 799



NumPy Reference, Release 1.15.1

Table 87 – continued from previous page
asmatrix(data[, dtype]) Interpret the input as a matrix.
bmat(obj[, ldict, gdict]) Build a matrix object from a string, nested sequence, or

array.

Replacement functions in matlib

empty(shape[, dtype, order]) Return a new matrix of given shape and type, without ini-
tializing entries.

zeros(shape[, dtype, order]) Return a matrix of given shape and type, filled with zeros.
ones(shape[, dtype, order]) Matrix of ones.
eye(n[, M, k, dtype, order]) Return a matrix with ones on the diagonal and zeros else-

where.
identity(n[, dtype]) Returns the square identity matrix of given size.
repmat(a, m, n) Repeat a 0-D to 2-D array or matrix MxN times.
rand(*args) Return a matrix of random values with given shape.
randn(*args) Return a random matrix with data from the “standard nor-

mal” distribution.

numpy.matlib.empty(shape, dtype=None, order=’C’)
Return a new matrix of given shape and type, without initializing entries.

Parameters

shape [int or tuple of int] Shape of the empty matrix.

dtype [data-type, optional] Desired output data-type.

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in row-major (C-style) or
column-major (Fortran-style) order in memory.

See also:

empty_like, zeros

Notes

empty , unlike zeros, does not set the matrix values to zero, and may therefore be marginally faster. On the
other hand, it requires the user to manually set all the values in the array, and should be used with caution.

Examples

>>> import numpy.matlib
>>> np.matlib.empty((2, 2)) # filled with random data
matrix([[ 6.76425276e-320, 9.79033856e-307],

[ 7.39337286e-309, 3.22135945e-309]]) #random
>>> np.matlib.empty((2, 2), dtype=int)
matrix([[ 6600475, 0],

[ 6586976, 22740995]]) #random

numpy.matlib.zeros(shape, dtype=None, order=’C’)
Return a matrix of given shape and type, filled with zeros.

Parameters

800 Chapter 4. Routines



NumPy Reference, Release 1.15.1

shape [int or sequence of ints] Shape of the matrix

dtype [data-type, optional] The desired data-type for the matrix, default is float.

order [{‘C’, ‘F’}, optional] Whether to store the result in C- or Fortran-contiguous order, de-
fault is ‘C’.

Returns

out [matrix] Zero matrix of given shape, dtype, and order.

See also:

numpy.zeros Equivalent array function.

matlib.ones Return a matrix of ones.

Notes

If shape has length one i.e. (N,), or is a scalar N, out becomes a single row matrix of shape (1,N).

Examples

>>> import numpy.matlib
>>> np.matlib.zeros((2, 3))
matrix([[ 0., 0., 0.],

[ 0., 0., 0.]])

>>> np.matlib.zeros(2)
matrix([[ 0., 0.]])

numpy.matlib.ones(shape, dtype=None, order=’C’)
Matrix of ones.

Return a matrix of given shape and type, filled with ones.

Parameters

shape [{sequence of ints, int}] Shape of the matrix

dtype [data-type, optional] The desired data-type for the matrix, default is np.float64.

order [{‘C’, ‘F’}, optional] Whether to store matrix in C- or Fortran-contiguous order, default
is ‘C’.

Returns

out [matrix] Matrix of ones of given shape, dtype, and order.

See also:

ones Array of ones.

matlib.zeros Zero matrix.

Notes

If shape has length one i.e. (N,), or is a scalar N, out becomes a single row matrix of shape (1,N).

4.20. Matrix library (numpy.matlib) 801



NumPy Reference, Release 1.15.1

Examples

>>> np.matlib.ones((2,3))
matrix([[ 1., 1., 1.],

[ 1., 1., 1.]])

>>> np.matlib.ones(2)
matrix([[ 1., 1.]])

numpy.matlib.eye(n, M=None, k=0, dtype=<class ’float’>, order=’C’)
Return a matrix with ones on the diagonal and zeros elsewhere.

Parameters

n [int] Number of rows in the output.

M [int, optional] Number of columns in the output, defaults to n.

k [int, optional] Index of the diagonal: 0 refers to the main diagonal, a positive value refers to
an upper diagonal, and a negative value to a lower diagonal.

dtype [dtype, optional] Data-type of the returned matrix.

order [{‘C’, ‘F’}, optional] Whether the output should be stored in row-major (C-style) or
column-major (Fortran-style) order in memory.

New in version 1.14.0.

Returns

I [matrix] A n x M matrix where all elements are equal to zero, except for the k-th diagonal,
whose values are equal to one.

See also:

numpy.eye Equivalent array function.

identity Square identity matrix.

Examples

>>> import numpy.matlib
>>> np.matlib.eye(3, k=1, dtype=float)
matrix([[ 0., 1., 0.],

[ 0., 0., 1.],
[ 0., 0., 0.]])

numpy.matlib.identity(n, dtype=None)
Returns the square identity matrix of given size.

Parameters

n [int] Size of the returned identity matrix.

dtype [data-type, optional] Data-type of the output. Defaults to float.

Returns

out [matrix] n x n matrix with its main diagonal set to one, and all other elements zero.

See also:

802 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.identity Equivalent array function.

matlib.eye More general matrix identity function.

Examples

>>> import numpy.matlib
>>> np.matlib.identity(3, dtype=int)
matrix([[1, 0, 0],

[0, 1, 0],
[0, 0, 1]])

numpy.matlib.repmat(a, m, n)
Repeat a 0-D to 2-D array or matrix MxN times.

Parameters

a [array_like] The array or matrix to be repeated.

m, n [int] The number of times a is repeated along the first and second axes.

Returns

out [ndarray] The result of repeating a.

Examples

>>> import numpy.matlib
>>> a0 = np.array(1)
>>> np.matlib.repmat(a0, 2, 3)
array([[1, 1, 1],

[1, 1, 1]])

>>> a1 = np.arange(4)
>>> np.matlib.repmat(a1, 2, 2)
array([[0, 1, 2, 3, 0, 1, 2, 3],

[0, 1, 2, 3, 0, 1, 2, 3]])

>>> a2 = np.asmatrix(np.arange(6).reshape(2, 3))
>>> np.matlib.repmat(a2, 2, 3)
matrix([[0, 1, 2, 0, 1, 2, 0, 1, 2],

[3, 4, 5, 3, 4, 5, 3, 4, 5],
[0, 1, 2, 0, 1, 2, 0, 1, 2],
[3, 4, 5, 3, 4, 5, 3, 4, 5]])

numpy.matlib.rand(*args)
Return a matrix of random values with given shape.

Create a matrix of the given shape and propagate it with random samples from a uniform distribution over [0,
1).

Parameters

*args [Arguments] Shape of the output. If given as N integers, each integer specifies the size of
one dimension. If given as a tuple, this tuple gives the complete shape.

Returns

4.20. Matrix library (numpy.matlib) 803



NumPy Reference, Release 1.15.1

out [ndarray] The matrix of random values with shape given by *args.

See also:

randn, numpy.random.rand

Examples

>>> import numpy.matlib
>>> np.matlib.rand(2, 3)
matrix([[ 0.68340382, 0.67926887, 0.83271405],

[ 0.00793551, 0.20468222, 0.95253525]]) #random
>>> np.matlib.rand((2, 3))
matrix([[ 0.84682055, 0.73626594, 0.11308016],

[ 0.85429008, 0.3294825 , 0.89139555]]) #random

If the first argument is a tuple, other arguments are ignored:

>>> np.matlib.rand((2, 3), 4)
matrix([[ 0.46898646, 0.15163588, 0.95188261],

[ 0.59208621, 0.09561818, 0.00583606]]) #random

numpy.matlib.randn(*args)
Return a random matrix with data from the “standard normal” distribution.

randn generates a matrix filled with random floats sampled from a univariate “normal” (Gaussian) distribution
of mean 0 and variance 1.

Parameters

*args [Arguments] Shape of the output. If given as N integers, each integer specifies the size of
one dimension. If given as a tuple, this tuple gives the complete shape.

Returns

Z [matrix of floats] A matrix of floating-point samples drawn from the standard normal distri-
bution.

See also:

rand, random.randn

Notes

For random samples from 𝑁(𝜇, 𝜎2), use:

sigma * np.matlib.randn(...) + mu

Examples

>>> import numpy.matlib
>>> np.matlib.randn(1)
matrix([[-0.09542833]]) #random
>>> np.matlib.randn(1, 2, 3)
matrix([[ 0.16198284, 0.0194571 , 0.18312985],

[-0.7509172 , 1.61055 , 0.45298599]]) #random

804 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Two-by-four matrix of samples from 𝑁(3, 6.25):

>>> 2.5 * np.matlib.randn((2, 4)) + 3
matrix([[ 4.74085004, 8.89381862, 4.09042411, 4.83721922],

[ 7.52373709, 5.07933944, -2.64043543, 0.45610557]]) #random

4.21 Miscellaneous routines

4.21.1 Buffer objects

getbuffer
newbuffer

4.21.2 Performance tuning

setbufsize(size) Set the size of the buffer used in ufuncs.
getbufsize() Return the size of the buffer used in ufuncs.

numpy.getbufsize()
Return the size of the buffer used in ufuncs.

Returns

getbufsize [int] Size of ufunc buffer in bytes.

4.21.3 Memory ranges

shares_memory(a, b[, max_work]) Determine if two arrays share memory
may_share_memory(a, b[, max_work]) Determine if two arrays might share memory

numpy.shares_memory(a, b, max_work=None)
Determine if two arrays share memory

Parameters

a, b [ndarray] Input arrays

max_work [int, optional] Effort to spend on solving the overlap problem (maximum number of
candidate solutions to consider). The following special values are recognized:

max_work=MAY_SHARE_EXACT (default) The problem is solved exactly. In this
case, the function returns True only if there is an element shared between the arrays.

max_work=MAY_SHARE_BOUNDS Only the memory bounds of a and b are checked.

Returns

out [bool]

Raises

numpy.TooHardError Exceeded max_work.

4.21. Miscellaneous routines 805



NumPy Reference, Release 1.15.1

See also:

may_share_memory

Examples

>>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
False

numpy.may_share_memory(a, b, max_work=None)
Determine if two arrays might share memory

A return of True does not necessarily mean that the two arrays share any element. It just means that they might.

Only the memory bounds of a and b are checked by default.

Parameters

a, b [ndarray] Input arrays

max_work [int, optional] Effort to spend on solving the overlap problem. See
shares_memory for details. Default for may_share_memory is to do a bounds check.

Returns

out [bool]

See also:

shares_memory

Examples

>>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
False
>>> x = np.zeros([3, 4])
>>> np.may_share_memory(x[:,0], x[:,1])
True

4.21.4 Array mixins

lib.mixins.NDArrayOperatorsMixin Mixin defining all operator special methods using __ar-
ray_ufunc__.

class numpy.lib.mixins.NDArrayOperatorsMixin
Mixin defining all operator special methods using __array_ufunc__.

This class implements the special methods for almost all of Python’s builtin operators defined in the
operator module, including comparisons (==, >, etc.) and arithmetic (+, *, -, etc.), by deferring to the
__array_ufunc__ method, which subclasses must implement.

This class does not yet implement the special operators corresponding to matmul (@), because np.matmul is
not yet a NumPy ufunc.

It is useful for writing classes that do not inherit from numpy.ndarray , but that should support arithmetic
and numpy universal functions like arrays as described in A Mechanism for Overriding Ufuncs.

806 Chapter 4. Routines

https://docs.python.org/dev/library/operator.html#module-operator
../../neps/nep-0013-ufunc-overrides.html


NumPy Reference, Release 1.15.1

As an trivial example, consider this implementation of an ArrayLike class that simply wraps a NumPy array
and ensures that the result of any arithmetic operation is also an ArrayLike object:

class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
def __init__(self, value):

self.value = np.asarray(value)

# One might also consider adding the built-in list type to this
# list, to support operations like np.add(array_like, list)
_HANDLED_TYPES = (np.ndarray, numbers.Number)

def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
out = kwargs.get('out', ())
for x in inputs + out:

# Only support operations with instances of _HANDLED_TYPES.
# Use ArrayLike instead of type(self) for isinstance to
# allow subclasses that don't override __array_ufunc__ to
# handle ArrayLike objects.
if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)):

return NotImplemented

# Defer to the implementation of the ufunc on unwrapped values.
inputs = tuple(x.value if isinstance(x, ArrayLike) else x

for x in inputs)
if out:

kwargs['out'] = tuple(
x.value if isinstance(x, ArrayLike) else x
for x in out)

result = getattr(ufunc, method)(*inputs, **kwargs)

if type(result) is tuple:
# multiple return values
return tuple(type(self)(x) for x in result)

elif method == 'at':
# no return value
return None

else:
# one return value
return type(self)(result)

def __repr__(self):
return '%s(%r)' % (type(self).__name__, self.value)

In interactions between ArrayLike objects and numbers or numpy arrays, the result is always another
ArrayLike:

>>> x = ArrayLike([1, 2, 3])
>>> x - 1
ArrayLike(array([0, 1, 2]))
>>> 1 - x
ArrayLike(array([ 0, -1, -2]))
>>> np.arange(3) - x
ArrayLike(array([-1, -1, -1]))
>>> x - np.arange(3)
ArrayLike(array([1, 1, 1]))

Note that unlike numpy.ndarray, ArrayLike does not allow operations with arbitrary, unrecognized types.
This ensures that interactions with ArrayLike preserve a well-defined casting hierarchy.

4.21. Miscellaneous routines 807



NumPy Reference, Release 1.15.1

New in version 1.13.

4.21.5 NumPy version comparison

lib.NumpyVersion(vstring) Parse and compare numpy version strings.

class numpy.lib.NumpyVersion(vstring)
Parse and compare numpy version strings.

NumPy has the following versioning scheme (numbers given are examples; they can be > 9) in principle):

• Released version: ‘1.8.0’, ‘1.8.1’, etc.

• Alpha: ‘1.8.0a1’, ‘1.8.0a2’, etc.

• Beta: ‘1.8.0b1’, ‘1.8.0b2’, etc.

• Release candidates: ‘1.8.0rc1’, ‘1.8.0rc2’, etc.

• Development versions: ‘1.8.0.dev-f1234afa’ (git commit hash appended)

• Development versions after a1: ‘1.8.0a1.dev-f1234afa’, ‘1.8.0b2.dev-f1234afa’, ‘1.8.1rc1.dev-
f1234afa’, etc.

• Development versions (no git hash available): ‘1.8.0.dev-Unknown’

Comparing needs to be done against a valid version string or other NumpyVersion instance. Note that all
development versions of the same (pre-)release compare equal.

New in version 1.9.0.

Parameters

vstring [str] NumPy version string (np.__version__).

Examples

>>> from numpy.lib import NumpyVersion
>>> if NumpyVersion(np.__version__) < '1.7.0':
... print('skip')
skip

>>> NumpyVersion('1.7') # raises ValueError, add ".0"

4.22 Padding Arrays

pad(array, pad_width, mode, **kwargs) Pads an array.

numpy.pad(array, pad_width, mode, **kwargs)
Pads an array.

Parameters

array [array_like of rank N] Input array

808 Chapter 4. Routines



NumPy Reference, Release 1.15.1

pad_width [{sequence, array_like, int}] Number of values padded to the edges of each axis.
((before_1, after_1), . . . (before_N, after_N)) unique pad widths for each axis. ((before,
after),) yields same before and after pad for each axis. (pad,) or int is a shortcut for before =
after = pad width for all axes.

mode [str or function] One of the following string values or a user supplied function.

‘constant’ Pads with a constant value.

‘edge’ Pads with the edge values of array.

‘linear_ramp’ Pads with the linear ramp between end_value and the array edge value.

‘maximum’ Pads with the maximum value of all or part of the vector along each axis.

‘mean’ Pads with the mean value of all or part of the vector along each axis.

‘median’ Pads with the median value of all or part of the vector along each axis.

‘minimum’ Pads with the minimum value of all or part of the vector along each axis.

‘reflect’ Pads with the reflection of the vector mirrored on the first and last values of the
vector along each axis.

‘symmetric’ Pads with the reflection of the vector mirrored along the edge of the array.

‘wrap’ Pads with the wrap of the vector along the axis. The first values are used to pad the
end and the end values are used to pad the beginning.

<function> Padding function, see Notes.

stat_length [sequence or int, optional] Used in ‘maximum’, ‘mean’, ‘median’, and ‘minimum’.
Number of values at edge of each axis used to calculate the statistic value.

((before_1, after_1), . . . (before_N, after_N)) unique statistic lengths for each axis.

((before, after),) yields same before and after statistic lengths for each axis.

(stat_length,) or int is a shortcut for before = after = statistic length for all axes.

Default is None, to use the entire axis.

constant_values [sequence or int, optional] Used in ‘constant’. The values to set the padded
values for each axis.

((before_1, after_1), . . . (before_N, after_N)) unique pad constants for each axis.

((before, after),) yields same before and after constants for each axis.

(constant,) or int is a shortcut for before = after = constant for all axes.

Default is 0.

end_values [sequence or int, optional] Used in ‘linear_ramp’. The values used for the ending
value of the linear_ramp and that will form the edge of the padded array.

((before_1, after_1), . . . (before_N, after_N)) unique end values for each axis.

((before, after),) yields same before and after end values for each axis.

(constant,) or int is a shortcut for before = after = end value for all axes.

Default is 0.

reflect_type [{‘even’, ‘odd’}, optional] Used in ‘reflect’, and ‘symmetric’. The ‘even’ style
is the default with an unaltered reflection around the edge value. For the ‘odd’ style, the
extended part of the array is created by subtracting the reflected values from two times the
edge value.

4.22. Padding Arrays 809



NumPy Reference, Release 1.15.1

Returns

pad [ndarray] Padded array of rank equal to array with shape increased according to
pad_width.

Notes

New in version 1.7.0.

For an array with rank greater than 1, some of the padding of later axes is calculated from padding of previous
axes. This is easiest to think about with a rank 2 array where the corners of the padded array are calculated by
using padded values from the first axis.

The padding function, if used, should return a rank 1 array equal in length to the vector argument with padded
values replaced. It has the following signature:

padding_func(vector, iaxis_pad_width, iaxis, kwargs)

where

vector [ndarray] A rank 1 array already padded with zeros. Padded values are vector[:pad_tuple[0]]
and vector[-pad_tuple[1]:].

iaxis_pad_width [tuple] A 2-tuple of ints, iaxis_pad_width[0] represents the number of values
padded at the beginning of vector where iaxis_pad_width[1] represents the number of values
padded at the end of vector.

iaxis [int] The axis currently being calculated.

kwargs [dict] Any keyword arguments the function requires.

Examples

>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2,3), 'constant', constant_values=(4, 6))
array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6])

>>> np.pad(a, (2, 3), 'edge')
array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5])

>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4])

>>> np.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])

>>> np.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> np.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

810 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> a = [[1, 2], [3, 4]]
>>> np.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],

[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[3, 3, 3, 4, 3, 3, 3],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1]])

>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])

>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])

>>> np.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])

>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])

>>> np.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])

>>> def pad_with(vector, pad_width, iaxis, kwargs):
... pad_value = kwargs.get('padder', 10)
... vector[:pad_width[0]] = pad_value
... vector[-pad_width[1]:] = pad_value
... return vector
>>> a = np.arange(6)
>>> a = a.reshape((2, 3))
>>> np.pad(a, 2, pad_with)
array([[10, 10, 10, 10, 10, 10, 10],

[10, 10, 10, 10, 10, 10, 10],
[10, 10, 0, 1, 2, 10, 10],
[10, 10, 3, 4, 5, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10]])

>>> np.pad(a, 2, pad_with, padder=100)
array([[100, 100, 100, 100, 100, 100, 100],

[100, 100, 100, 100, 100, 100, 100],
[100, 100, 0, 1, 2, 100, 100],
[100, 100, 3, 4, 5, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100]])

4.23 Polynomials

Polynomials in NumPy can be created, manipulated, and even fitted using the Using the Convenience Classes of the
numpy.polynomial package, introduced in NumPy 1.4.

4.23. Polynomials 811



NumPy Reference, Release 1.15.1

Prior to NumPy 1.4, numpy.poly1d was the class of choice and it is still available in order to maintain backward
compatibility. However, the newer Polynomial package is more complete than numpy.poly1d and its convenience
classes are better behaved in the numpy environment. Therefore Polynomial is recommended for new coding.

4.23.1 Transition notice

The various routines in the Polynomial package all deal with series whose coefficients go from degree zero upward,
which is the reverse order of the Poly1d convention. The easy way to remember this is that indexes correspond to
degree, i.e., coef[i] is the coefficient of the term of degree i.

Polynomial Package

New in version 1.4.0.

Using the Convenience Classes

The convenience classes provided by the polynomial package are:

Name Provides
Polynomial Power series
Chebyshev Chebyshev series
Legendre Legendre series
Laguerre Laguerre series
Hermite Hermite series
HermiteE HermiteE series

The series in this context are finite sums of the corresponding polynomial basis functions multiplied by coefficients.
For instance, a power series looks like

𝑝(𝑥) = 1 + 2𝑥 + 3𝑥2

and has coefficients [1, 2, 3]. The Chebyshev series with the same coefficients looks like

𝑝(𝑥) = 1𝑇0(𝑥) + 2𝑇1(𝑥) + 3𝑇2(𝑥)

and more generally

𝑝(𝑥) =

𝑛∑︁
𝑖=0

𝑐𝑖𝑇𝑖(𝑥)

where in this case the 𝑇𝑛 are the Chebyshev functions of degree 𝑛, but could just as easily be the basis functions of
any of the other classes. The convention for all the classes is that the coefficient 𝑐[𝑖] goes with the basis function of
degree i.

All of the classes have the same methods, and especially they implement the Python numeric operators +, -, *, //, %,
divmod, **, ==, and !=. The last two can be a bit problematic due to floating point roundoff errors. We now give a
quick demonstration of the various operations using NumPy version 1.7.0.

812 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Basics

First we need a polynomial class and a polynomial instance to play with. The classes can be imported directly from
the polynomial package or from the module of the relevant type. Here we import from the package and use the
conventional Polynomial class because of its familiarity:

>>> from numpy.polynomial import Polynomial as P
>>> p = P([1,2,3])
>>> p
Polynomial([ 1., 2., 3.], domain=[-1, 1], window=[-1, 1])

Note that there are three parts to the long version of the printout. The first is the coefficients, the second is the domain,
and the third is the window:

>>> p.coef
array([ 1., 2., 3.])
>>> p.domain
array([-1., 1.])
>>> p.window
array([-1., 1.])

Printing a polynomial yields a shorter form without the domain and window:

>>> print p
poly([ 1. 2. 3.])

We will deal with the domain and window when we get to fitting, for the moment we ignore them and run through the
basic algebraic and arithmetic operations.

Addition and Subtraction:

>>> p + p
Polynomial([ 2., 4., 6.], domain=[-1, 1], window=[-1, 1])
>>> p - p
Polynomial([ 0.], domain=[-1, 1], window=[-1, 1])

Multiplication:

>>> p * p
Polynomial([ 1., 4., 10., 12., 9.], domain=[-1, 1], window=[-1, 1])

Powers:

>>> p**2
Polynomial([ 1., 4., 10., 12., 9.], domain=[-1, 1], window=[-1, 1])

Division:

Floor division, ‘//’, is the division operator for the polynomial classes, polynomials are treated like integers in this
regard. For Python versions < 3.x the ‘/’ operator maps to ‘//’, as it does for Python, for later versions the ‘/’ will only
work for division by scalars. At some point it will be deprecated:

>>> p // P([-1, 1])
Polynomial([ 5., 3.], domain=[-1, 1], window=[-1, 1])

Remainder:

4.23. Polynomials 813



NumPy Reference, Release 1.15.1

>>> p % P([-1, 1])
Polynomial([ 6.], domain=[-1, 1], window=[-1, 1])

Divmod:

>>> quo, rem = divmod(p, P([-1, 1]))
>>> quo
Polynomial([ 5., 3.], domain=[-1, 1], window=[-1, 1])
>>> rem
Polynomial([ 6.], domain=[-1, 1], window=[-1, 1])

Evaluation:

>>> x = np.arange(5)
>>> p(x)
array([ 1., 6., 17., 34., 57.])
>>> x = np.arange(6).reshape(3,2)
>>> p(x)
array([[ 1., 6.],

[ 17., 34.],
[ 57., 86.]])

Substitution:

Substitute a polynomial for x and expand the result. Here we substitute p in itself leading to a new polynomial of
degree 4 after expansion. If the polynomials are regarded as functions this is composition of functions:

>>> p(p)
Polynomial([ 6., 16., 36., 36., 27.], domain=[-1, 1], window=[-1, 1])

Roots:

>>> p.roots()
array([-0.33333333-0.47140452j, -0.33333333+0.47140452j])

It isn’t always convenient to explicitly use Polynomial instances, so tuples, lists, arrays, and scalars are automatically
cast in the arithmetic operations:

>>> p + [1, 2, 3]
Polynomial([ 2., 4., 6.], domain=[-1, 1], window=[-1, 1])
>>> [1, 2, 3] * p
Polynomial([ 1., 4., 10., 12., 9.], domain=[-1, 1], window=[-1, 1])
>>> p / 2
Polynomial([ 0.5, 1. , 1.5], domain=[-1, 1], window=[-1, 1])

Polynomials that differ in domain, window, or class can’t be mixed in arithmetic:

>>> from numpy.polynomial import Chebyshev as T
>>> p + P([1], domain=[0,1])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<string>", line 213, in __add__

TypeError: Domains differ
>>> p + P([1], window=[0,1])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<string>", line 215, in __add__

(continues on next page)

814 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

TypeError: Windows differ
>>> p + T([1])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<string>", line 211, in __add__

TypeError: Polynomial types differ

But different types can be used for substitution. In fact, this is how conversion of Polynomial classes among themselves
is done for type, domain, and window casting:

>>> p(T([0, 1]))
Chebyshev([ 2.5, 2. , 1.5], domain=[-1, 1], window=[-1, 1])

Which gives the polynomial p in Chebyshev form. This works because 𝑇1(𝑥) = 𝑥 and substituting 𝑥 for 𝑥 doesn’t
change the original polynomial. However, all the multiplications and divisions will be done using Chebyshev series,
hence the type of the result.

Calculus

Polynomial instances can be integrated and differentiated.:

>>> from numpy.polynomial import Polynomial as P
>>> p = P([2, 6])
>>> p.integ()
Polynomial([ 0., 2., 3.], domain=[-1, 1], window=[-1, 1])
>>> p.integ(2)
Polynomial([ 0., 0., 1., 1.], domain=[-1, 1], window=[-1, 1])

The first example integrates p once, the second example integrates it twice. By default, the lower bound of the
integration and the integration constant are 0, but both can be specified.:

>>> p.integ(lbnd=-1)
Polynomial([-1., 2., 3.], domain=[-1, 1], window=[-1, 1])
>>> p.integ(lbnd=-1, k=1)
Polynomial([ 0., 2., 3.], domain=[-1, 1], window=[-1, 1])

In the first case the lower bound of the integration is set to -1 and the integration constant is 0. In the second the
constant of integration is set to 1 as well. Differentiation is simpler since the only option is the number of times the
polynomial is differentiated:

>>> p = P([1, 2, 3])
>>> p.deriv(1)
Polynomial([ 2., 6.], domain=[-1, 1], window=[-1, 1])
>>> p.deriv(2)
Polynomial([ 6.], domain=[-1, 1], window=[-1, 1])

Other Polynomial Constructors

Constructing polynomials by specifying coefficients is just one way of obtaining a polynomial instance, they may also
be created by specifying their roots, by conversion from other polynomial types, and by least squares fits. Fitting is
discussed in its own section, the other methods are demonstrated below:

4.23. Polynomials 815



NumPy Reference, Release 1.15.1

>>> from numpy.polynomial import Polynomial as P
>>> from numpy.polynomial import Chebyshev as T
>>> p = P.fromroots([1, 2, 3])
>>> p
Polynomial([ -6., 11., -6., 1.], domain=[-1, 1], window=[-1, 1])
>>> p.convert(kind=T)
Chebyshev([ -9. , 11.75, -3. , 0.25], domain=[-1, 1], window=[-1, 1])

The convert method can also convert domain and window:

>>> p.convert(kind=T, domain=[0, 1])
Chebyshev([-2.4375 , 2.96875, -0.5625 , 0.03125], [ 0., 1.], [-1., 1.])
>>> p.convert(kind=P, domain=[0, 1])
Polynomial([-1.875, 2.875, -1.125, 0.125], [ 0., 1.], [-1., 1.])

In numpy versions >= 1.7.0 the basis and cast class methods are also available. The cast method works like the convert
method while the basis method returns the basis polynomial of given degree:

>>> P.basis(3)
Polynomial([ 0., 0., 0., 1.], domain=[-1, 1], window=[-1, 1])
>>> T.cast(p)
Chebyshev([ -9. , 11.75, -3. , 0.25], domain=[-1, 1], window=[-1, 1])

Conversions between types can be useful, but it is not recommended for routine use. The loss of numerical precision
in passing from a Chebyshev series of degree 50 to a Polynomial series of the same degree can make the results of
numerical evaluation essentially random.

Fitting

Fitting is the reason that the domain and window attributes are part of the convenience classes. To illustrate the
problem, the values of the Chebyshev polynomials up to degree 5 are plotted below.

>>> import matplotlib.pyplot as plt
>>> from numpy.polynomial import Chebyshev as T
>>> x = np.linspace(-1, 1, 100)
>>> for i in range(6): ax = plt.plot(x, T.basis(i)(x), lw=2, label="$T_%d$"%i)
...
>>> plt.legend(loc="upper left")
<matplotlib.legend.Legend object at 0x3b3ee10>
>>> plt.show()

In the range -1 <= x <= 1 they are nice, equiripple functions lying between +/- 1. The same plots over the range -2 <=
x <= 2 look very different:

>>> import matplotlib.pyplot as plt
>>> from numpy.polynomial import Chebyshev as T
>>> x = np.linspace(-2, 2, 100)
>>> for i in range(6): ax = plt.plot(x, T.basis(i)(x), lw=2, label="$T_%d$"%i)
...
>>> plt.legend(loc="lower right")
<matplotlib.legend.Legend object at 0x3b3ee10>
>>> plt.show()

As can be seen, the “good” parts have shrunk to insignificance. In using Chebyshev polynomials for fitting we want
to use the region where x is between -1 and 1 and that is what the window specifies. However, it is unlikely that the
data to be fit has all its data points in that interval, so we use domain to specify the interval where the data points lie.

816 Chapter 4. Routines



NumPy Reference, Release 1.15.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0 T0
T1
T2
T3
T4
T5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
400

300

200

100

0

100

200

300

400

T0
T1
T2
T3
T4
T5

4.23. Polynomials 817



NumPy Reference, Release 1.15.1

When the fit is done, the domain is first mapped to the window by a linear transformation and the usual least squares
fit is done using the mapped data points. The window and domain of the fit are part of the returned series and are
automatically used when computing values, derivatives, and such. If they aren’t specified in the call the fitting routine
will use the default window and the smallest domain that holds all the data points. This is illustrated below for a fit to
a noisy sine curve.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from numpy.polynomial import Chebyshev as T
>>> np.random.seed(11)
>>> x = np.linspace(0, 2*np.pi, 20)
>>> y = np.sin(x) + np.random.normal(scale=.1, size=x.shape)
>>> p = T.fit(x, y, 5)
>>> plt.plot(x, y, 'o')
[<matplotlib.lines.Line2D object at 0x2136c10>]
>>> xx, yy = p.linspace()
>>> plt.plot(xx, yy, lw=2)
[<matplotlib.lines.Line2D object at 0x1cf2890>]
>>> p.domain
array([ 0. , 6.28318531])
>>> p.window
array([-1., 1.])
>>> plt.show()

0 1 2 3 4 5 6

1.0

0.5

0.0

0.5

1.0

Polynomial Module (numpy.polynomial.polynomial)

New in version 1.4.0.

This module provides a number of objects (mostly functions) useful for dealing with Polynomial series, including
a Polynomial class that encapsulates the usual arithmetic operations. (General information on how this module
represents and works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

818 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Polynomial Class

Polynomial(coef[, domain, window]) A power series class.

class numpy.polynomial.polynomial.Polynomial(coef, domain=None, window=None)
A power series class.

The Polynomial class provides the standard Python numerical methods ‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’,
and ‘()’ as well as the attributes and methods listed in the ABCPolyBase documentation.

Parameters

coef [array_like] Polynomial coefficients in order of increasing degree, i.e., (1, 2, 3) give
1 + 2*x + 3*x**2.

domain [(2,) array_like, optional] Domain to use. The interval [domain[0],
domain[1]] is mapped to the interval [window[0], window[1]] by shifting and
scaling. The default value is [-1, 1].

window [(2,) array_like, optional] Window, see domain for its use. The default value is [-1,
1].

New in version 1.6.0.

Methods

__call__(arg) Call self as a function.
basis(deg[, domain, window]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or

window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, window]) Least squares fit to data.
fromroots(roots[, domain, window]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

Polynomial.__call__(arg)
Call self as a function.

classmethod Polynomial.basis(deg, domain=None, window=None)

4.23. Polynomials 819



NumPy Reference, Release 1.15.1

Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

Parameters

deg [int] Degree of the basis polynomial for the series. Must be >= 0.

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] A series with the coefficient of the deg term set to one and all others
zero.

classmethod Polynomial.cast(series, domain=None, window=None)
Convert series to series of this class.

The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

New in version 1.7.0.

Parameters

series [series] The series instance to be converted.

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] A series of the same kind as the calling class and equal to series when
evaluated.

See also:

convert similar instance method

Polynomial.convert(domain=None, kind=None, window=None)
Convert series to a different kind and/or domain and/or window.

Parameters

domain [array_like, optional] The domain of the converted series. If the value is None, the
default domain of kind is used.

kind [class, optional] The polynomial series type class to which the current instance should
be converted. If kind is None, then the class of the current instance is used.

window [array_like, optional] The window of the converted series. If the value is None, the
default window of kind is used.

820 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns

new_series [series] The returned class can be of different type than the current instance
and/or have a different domain and/or different window.

Notes

Conversion between domains and class types can result in numerically ill defined series.

Polynomial.copy()
Return a copy.

Returns

new_series [series] Copy of self.

Polynomial.cutdeg(deg)
Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

New in version 1.5.0.

Parameters

deg [non-negative int] The series is reduced to degree deg by discarding the high order terms.
The value of deg must be a non-negative integer.

Returns

new_series [series] New instance of series with reduced degree.

Polynomial.degree()
The degree of the series.

New in version 1.5.0.

Returns

degree [int] Degree of the series, one less than the number of coefficients.

Polynomial.deriv(m=1)
Differentiate.

Return a series instance of that is the derivative of the current series.

Parameters

m [non-negative int] Find the derivative of order m.

Returns

new_series [series] A new series representing the derivative. The domain is the same as the
domain of the differentiated series.

classmethod Polynomial.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, win-
dow=None)

Least squares fit to data.

Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters

4.23. Polynomials 821



NumPy Reference, Release 1.15.1

x [array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y [array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg [int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all
terms up to and including the deg’th term are included in the fit. For NumPy versions >=
1.11.0 a list of integers specifying the degrees of the terms to include may be used instead.

domain [{None, [beg, end], []}, optional] Domain to use for the returned series. If None,
then a minimal domain that covers the points x is chosen. If [] the class domain is used.
The default value was the class domain in NumPy 1.4 and None in later versions. The []
option was added in numpy 1.5.0.

rcond [float, optional] Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The default value is len(x)*eps,
where eps is the relative precision of the float type, about 2e-16 in most cases.

full [bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w [array_like, shape (M,), optional] Weights. If not None the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

window [{[beg, end]}, optional] Window to use for the returned series. The default value is
the default class domain

New in version 1.6.0.

Returns

new_series [series] A series that represents the least squares fit to the data and has the do-
main specified in the call.

[resid, rank, sv, rcond] [list] These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of the
scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix rcond
– value of rcond.

For more details, see linalg.lstsq.

classmethod Polynomial.fromroots(roots, domain=[], window=None)
Return series instance that has the specified roots.

Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters

roots [array_like] List of roots.

domain [{[], None, array_like}, optional] Domain for the resulting series. If None the do-
main is the interval from the smallest root to the largest. If [] the domain is the class
domain. The default is [].

window [{None, array_like}, optional] Window for the returned series. If None the class
window is used. The default is None.

822 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns

new_series [series] Series with the specified roots.

Polynomial.has_samecoef(other)
Check if coefficients match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the coef attribute.

Returns

bool [boolean] True if the coefficients are the same, False otherwise.

Polynomial.has_samedomain(other)
Check if domains match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the domain attribute.

Returns

bool [boolean] True if the domains are the same, False otherwise.

Polynomial.has_sametype(other)
Check if types match.

New in version 1.7.0.

Parameters

other [object] Class instance.

Returns

bool [boolean] True if other is same class as self

Polynomial.has_samewindow(other)
Check if windows match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the window attribute.

Returns

bool [boolean] True if the windows are the same, False otherwise.

classmethod Polynomial.identity(domain=None, window=None)
Identity function.

If p is the returned series, then p(x) == x for all values of x.

Parameters

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

4.23. Polynomials 823



NumPy Reference, Release 1.15.1

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] Series of representing the identity.

Polynomial.integ(m=1, k=[], lbnd=None)
Integrate.

Return a series instance that is the definite integral of the current series.

Parameters

m [non-negative int] The number of integrations to perform.

k [array_like] Integration constants. The first constant is applied to the first integration, the
second to the second, and so on. The list of values must less than or equal to m in length
and any missing values are set to zero.

lbnd [Scalar] The lower bound of the definite integral.

Returns

new_series [series] A new series representing the integral. The domain is the same as the
domain of the integrated series.

Polynomial.linspace(n=100, domain=None)
Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial
at the points x. By default the domain is the same as that of the series instance. This method is intended
mostly as a plotting aid.

New in version 1.5.0.

Parameters

n [int, optional] Number of point pairs to return. The default value is 100.

domain [{None, array_like}, optional] If not None, the specified domain is used instead of
that of the calling instance. It should be of the form [beg,end]. The default is None
which case the class domain is used.

Returns

x, y [ndarray] x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series
evaluated at element of x.

Polynomial.mapparms()
Return the mapping parameters.

The returned values define a linear map off + scl*x that is applied to the input arguments before
the series is evaluated. The map depends on the domain and window; if the current domain is equal
to the window the resulting map is the identity. If the coefficients of the series instance are to be used
by themselves outside this class, then the linear function must be substituted for the x in the standard
representation of the base polynomials.

Returns

off, scl [float or complex] The mapping function is defined by off + scl*x.

824 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

Polynomial.roots()
Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the roots decrease the further outside the domain
they lie.

Returns

roots [ndarray] Array containing the roots of the series.

Polynomial.trim(tol=0)
Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the
beginning of the series is reached. If all the coefficients would be removed the series is set to [0]. A new
series instance is returned with the new coefficients. The current instance remains unchanged.

Parameters

tol [non-negative number.] All trailing coefficients less than tol will be removed.

Returns

new_series [series] Contains the new set of coefficients.

Polynomial.truncate(size)
Truncate series to length size.

Reduce the series to length size by discarding the high degree terms. The value of size must be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very
small.

Parameters

size [positive int] The series is reduced to length size by discarding the high degree terms.
The value of size must be a positive integer.

Returns

new_series [series] New instance of series with truncated coefficients.

Basics

polyval(x, c[, tensor]) Evaluate a polynomial at points x.
polyval2d(x, y, c) Evaluate a 2-D polynomial at points (x, y).
polyval3d(x, y, z, c) Evaluate a 3-D polynomial at points (x, y, z).
polygrid2d(x, y, c) Evaluate a 2-D polynomial on the Cartesian product of x

and y.
polygrid3d(x, y, z, c) Evaluate a 3-D polynomial on the Cartesian product of x, y

and z.
Continued on next page

4.23. Polynomials 825



NumPy Reference, Release 1.15.1

Table 97 – continued from previous page
polyroots(c) Compute the roots of a polynomial.
polyfromroots(roots) Generate a monic polynomial with given roots.
polyvalfromroots(x, r[, tensor]) Evaluate a polynomial specified by its roots at points x.

numpy.polynomial.polynomial.polyval(x, c, tensor=True)
Evaluate a polynomial at points x.

If c is of length n + 1, this function returns the value

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝑥 + ... + 𝑐𝑛 * 𝑥𝑛

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In
either case, either x or its elements must support multiplication and addition both with themselves and with the
elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the
shape will be c.shape[1:]. Note that scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a
concern.

Parameters

x [array_like, compatible object] If x is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, x or its elements must support
addition and multiplication with with themselves and with the elements of c.

c [array_like] Array of coefficients ordered so that the coefficients for terms of degree n are
contained in c[n]. If c is multidimensional the remaining indices enumerate multiple poly-
nomials. In the two dimensional case the coefficients may be thought of as stored in the
columns of c.

tensor [boolean, optional] If True, the shape of the coefficient array is extended with ones on
the right, one for each dimension of x. Scalars have dimension 0 for this action. The result
is that every column of coefficients in c is evaluated for every element of x. If False, x
is broadcast over the columns of c for the evaluation. This keyword is useful when c is
multidimensional. The default value is True.

New in version 1.7.0.

Returns

values [ndarray, compatible object] The shape of the returned array is described above.

See also:

polyval2d, polygrid2d, polyval3d, polygrid3d

Notes

The evaluation uses Horner’s method.

Examples

826 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> from numpy.polynomial.polynomial import polyval
>>> polyval(1, [1,2,3])
6.0
>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],

[2, 3]])
>>> polyval(a, [1,2,3])
array([[ 1., 6.],

[ 17., 34.]])
>>> coef = np.arange(4).reshape(2,2) # multidimensional coefficients
>>> coef
array([[0, 1],

[2, 3]])
>>> polyval([1,2], coef, tensor=True)
array([[ 2., 4.],

[ 4., 7.]])
>>> polyval([1,2], coef, tensor=False)
array([ 2., 7.])

numpy.polynomial.polynomial.polyval2d(x, y, c)
Evaluate a 2-D polynomial at points (x, y).

This function returns the value

𝑝(𝑥, 𝑦) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝑥𝑖 * 𝑦𝑗

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the
result will be c.shape[2:] + x.shape.

Parameters

x, y [array_like, compatible objects] The two dimensional series is evaluated at the points (x,
y), where x and y must have the same shape. If x or y is a list or tuple, it is first converted to
an ndarray, otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree i,j
is contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the two dimensional polynomial at points
formed with pairs of corresponding values from x and y.

See also:

polyval, polygrid2d, polyval3d, polygrid3d

Notes

New in version 1.7.0.

numpy.polynomial.polynomial.polyval3d(x, y, z, c)
Evaluate a 3-D polynomial at points (x, y, z).

4.23. Polynomials 827



NumPy Reference, Release 1.15.1

This function returns the values:

𝑝(𝑥, 𝑦, 𝑧) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝑥𝑖 * 𝑦𝑗 * 𝑧𝑘

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements
must support multiplication and addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape.

Parameters

x, y, z [array_like, compatible object] The three dimensional series is evaluated at the points (x,
y, z), where x, y, and z must have the same shape. If any of x, y, or z is a list or tuple, it is first
converted to an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated
as a scalar.

c [array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j,k is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the multidimensional polynomial on points
formed with triples of corresponding values from x, y, and z.

See also:

polyval, polyval2d, polygrid2d, polygrid3d

Notes

New in version 1.7.0.

numpy.polynomial.polynomial.polygrid2d(x, y, c)
Evaluate a 2-D polynomial on the Cartesian product of x and y.

This function returns the values:

𝑝(𝑎, 𝑏) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝑎𝑖 * 𝑏𝑗

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x and y or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the
result will be c.shape[2:] + x.shape + y.shape.

Parameters

x, y [array_like, compatible objects] The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

828 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns

values [ndarray, compatible object] The values of the two dimensional polynomial at points in
the Cartesian product of x and y.

See also:

polyval, polyval2d, polyval3d, polygrid3d

Notes

New in version 1.7.0.

numpy.polynomial.polynomial.polygrid3d(x, y, z, c)
Evaluate a 3-D polynomial on the Cartesian product of x, y and z.

This function returns the values:

𝑝(𝑎, 𝑏, 𝑐) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝑎𝑖 * 𝑏𝑗 * 𝑐𝑘

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters

x, y, z [array_like, compatible objects] The three dimensional series is evaluated at the points in
the Cartesian product of x, y, and z. If x,‘y‘, or z is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the two dimensional polynomial at points in
the Cartesian product of x and y.

See also:

polyval, polyval2d, polygrid2d, polyval3d

Notes

New in version 1.7.0.

numpy.polynomial.polynomial.polyroots(c)
Compute the roots of a polynomial.

Return the roots (a.k.a. “zeros”) of the polynomial

𝑝(𝑥) =
∑︁
𝑖

𝑐[𝑖] * 𝑥𝑖.

4.23. Polynomials 829



NumPy Reference, Release 1.15.1

Parameters

c [1-D array_like] 1-D array of polynomial coefficients.

Returns

out [ndarray] Array of the roots of the polynomial. If all the roots are real, then out is also real,
otherwise it is complex.

See also:

chebroots

Notes

The root estimates are obtained as the eigenvalues of the companion matrix, Roots far from the origin of the
complex plane may have large errors due to the numerical instability of the power series for such values. Roots
with multiplicity greater than 1 will also show larger errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s
method.

Examples

>>> import numpy.polynomial.polynomial as poly
>>> poly.polyroots(poly.polyfromroots((-1,0,1)))
array([-1., 0., 1.])
>>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype
dtype('float64')
>>> j = complex(0,1)
>>> poly.polyroots(poly.polyfromroots((-j,0,j)))
array([ 0.00000000e+00+0.j, 0.00000000e+00+1.j, 2.77555756e-17-1.j])

numpy.polynomial.polynomial.polyfromroots(roots)
Generate a monic polynomial with given roots.

Return the coefficients of the polynomial

𝑝(𝑥) = (𝑥− 𝑟0) * (𝑥− 𝑟1) * ... * (𝑥− 𝑟𝑛),

where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must appear in roots n times.
For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots looks something like
[2, 2, 2, 3, 3]. The roots can appear in any order.

If the returned coefficients are c, then

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝑥 + ... + 𝑥𝑛

The coefficient of the last term is 1 for monic polynomials in this form.

Parameters

roots [array_like] Sequence containing the roots.

Returns

out [ndarray] 1-D array of the polynomial’s coefficients If all the roots are real, then out is also
real, otherwise it is complex. (see Examples below).

See also:

chebfromroots, legfromroots, lagfromroots, hermfromroots, hermefromroots

830 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

The coefficients are determined by multiplying together linear factors of the form (x - r_i), i.e.

𝑝(𝑥) = (𝑥− 𝑟0)(𝑥− 𝑟1)...(𝑥− 𝑟𝑛)

where n == len(roots) - 1; note that this implies that 1 is always returned for 𝑎𝑛.

Examples

>>> from numpy.polynomial import polynomial as P
>>> P.polyfromroots((-1,0,1)) # x(x - 1)(x + 1) = x^3 - x
array([ 0., -1., 0., 1.])
>>> j = complex(0,1)
>>> P.polyfromroots((-j,j)) # complex returned, though values are real
array([ 1.+0.j, 0.+0.j, 1.+0.j])

numpy.polynomial.polynomial.polyvalfromroots(x, r, tensor=True)
Evaluate a polynomial specified by its roots at points x.

If r is of length N, this function returns the value

𝑝(𝑥) =

𝑁∏︁
𝑛=1

(𝑥− 𝑟𝑛)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In
either case, either x or its elements must support multiplication and addition both with themselves and with the
elements of r.

If r is a 1-D array, then p(x) will have the same shape as x. If r is multidimensional, then the shape of the
result depends on the value of tensor. If tensor is ‘‘True‘ the shape will be r.shape[1:] + x.shape; that is, each
polynomial is evaluated at every value of x. If tensor is False, the shape will be r.shape[1:]; that is, each
polynomial is evaluated only for the corresponding broadcast value of x. Note that scalars have shape (,).

New in version 1.12.

Parameters

x [array_like, compatible object] If x is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, x or its elements must support
addition and multiplication with with themselves and with the elements of r.

r [array_like] Array of roots. If r is multidimensional the first index is the root index, while the
remaining indices enumerate multiple polynomials. For instance, in the two dimensional
case the roots of each polynomial may be thought of as stored in the columns of r.

tensor [boolean, optional] If True, the shape of the roots array is extended with ones on the
right, one for each dimension of x. Scalars have dimension 0 for this action. The result
is that every column of coefficients in r is evaluated for every element of x. If False, x
is broadcast over the columns of r for the evaluation. This keyword is useful when r is
multidimensional. The default value is True.

Returns

values [ndarray, compatible object] The shape of the returned array is described above.

See also:

polyroots, polyfromroots, polyval

4.23. Polynomials 831



NumPy Reference, Release 1.15.1

Examples

>>> from numpy.polynomial.polynomial import polyvalfromroots
>>> polyvalfromroots(1, [1,2,3])
0.0
>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],

[2, 3]])
>>> polyvalfromroots(a, [-1, 0, 1])
array([[ -0., 0.],

[ 6., 24.]])
>>> r = np.arange(-2, 2).reshape(2,2) # multidimensional coefficients
>>> r # each column of r defines one polynomial
array([[-2, -1],

[ 0, 1]])
>>> b = [-2, 1]
>>> polyvalfromroots(b, r, tensor=True)
array([[-0., 3.],

[ 3., 0.]])
>>> polyvalfromroots(b, r, tensor=False)
array([-0., 0.])

Fitting

polyfit(x, y, deg[, rcond, full, w]) Least-squares fit of a polynomial to data.
polyvander(x, deg) Vandermonde matrix of given degree.
polyvander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
polyvander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.

numpy.polynomial.polynomial.polyfit(x, y, deg, rcond=None, full=False, w=None)
Least-squares fit of a polynomial to data.

Return the coefficients of a polynomial of degree deg that is the least squares fit to the data values y given at
points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each
column of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted
polynomial(s) are in the form

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝑥 + ... + 𝑐𝑛 * 𝑥𝑛,

where n is deg.

Parameters

x [array_like, shape (M,)] x-coordinates of the M sample (data) points (x[i], y[i]).

y [array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several sets of sample
points sharing the same x-coordinates can be (independently) fit with one call to polyfit
by passing in for y a 2-D array that contains one data set per column.

deg [int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all
terms up to and including the deg’th term are included in the fit. For NumPy versions >=
1.11.0 a list of integers specifying the degrees of the terms to include may be used instead.

rcond [float, optional] Relative condition number of the fit. Singular values smaller than rcond,
relative to the largest singular value, will be ignored. The default value is len(x)*eps,

832 Chapter 4. Routines



NumPy Reference, Release 1.15.1

where eps is the relative precision of the platform’s float type, about 2e-16 in most cases.

full [bool, optional] Switch determining the nature of the return value. When False (the
default) just the coefficients are returned; when True, diagnostic information from the
singular value decomposition (used to solve the fit’s matrix equation) is also returned.

w [array_like, shape (M,), optional] Weights. If not None, the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

Returns

coef [ndarray, shape (deg + 1,) or (deg + 1, K)] Polynomial coefficients ordered from low to
high. If y was 2-D, the coefficients in column k of coef represent the polynomial fit to the
data in y’s k-th column.

[residuals, rank, singular_values, rcond] [list] These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of the
scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix rcond –
value of rcond.

For more details, see linalg.lstsq.

Raises

RankWarning Raised if the matrix in the least-squares fit is rank deficient. The warning is only
raised if full == False. The warnings can be turned off by:

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also:

chebfit, legfit, lagfit, hermfit, hermefit

polyval Evaluates a polynomial.

polyvander Vandermonde matrix for powers.

linalg.lstsq Computes a least-squares fit from the matrix.

scipy.interpolate.UnivariateSpline Computes spline fits.

Notes

The solution is the coefficients of the polynomial p that minimizes the sum of the weighted squared errors

𝐸 =
∑︁
𝑗

𝑤2
𝑗 * |𝑦𝑗 − 𝑝(𝑥𝑗)|2,

where the 𝑤𝑗 are the weights. This problem is solved by setting up the (typically) over-determined matrix
equation:

𝑉 (𝑥) * 𝑐 = 𝑤 * 𝑦,

where V is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the
weights, and y are the observed values. This equation is then solved using the singular value decomposition of
V.

4.23. Polynomials 833

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline


NumPy Reference, Release 1.15.1

If some of the singular values of V are so small that they are neglected (and full == False), a RankWarning will
be raised. This means that the coefficient values may be poorly determined. Fitting to a lower order polynomial
will usually get rid of the warning (but may not be what you want, of course; if you have independent reason(s)
for choosing the degree which isn’t working, you may have to: a) reconsider those reasons, and/or b) reconsider
the quality of your data). The rcond parameter can also be set to a value smaller than its default, but the resulting
fit may be spurious and have large contributions from roundoff error.

Polynomial fits using double precision tend to “fail” at about (polynomial) degree 20. Fits using Chebyshev or
Legendre series are generally better conditioned, but much can still depend on the distribution of the sample
points and the smoothness of the data. If the quality of the fit is inadequate, splines may be a good alternative.

Examples

>>> from numpy.polynomial import polynomial as P
>>> x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1]
>>> y = x**3 - x + np.random.randn(len(x)) # x^3 - x + N(0,1) "noise"
>>> c, stats = P.polyfit(x,y,3,full=True)
>>> c # c[0], c[2] should be approx. 0, c[1] approx. -1, c[3] approx. 1
array([ 0.01909725, -1.30598256, -0.00577963, 1.02644286])
>>> stats # note the large SSR, explaining the rather poor results
[array([ 38.06116253]), 4, array([ 1.38446749, 1.32119158, 0.50443316,
0.28853036]), 1.1324274851176597e-014]

Same thing without the added noise

>>> y = x**3 - x
>>> c, stats = P.polyfit(x,y,3,full=True)
>>> c # c[0], c[2] should be "very close to 0", c[1] ~= -1, c[3] ~= 1
array([ -1.73362882e-17, -1.00000000e+00, -2.67471909e-16,

1.00000000e+00])
>>> stats # note the minuscule SSR
[array([ 7.46346754e-31]), 4, array([ 1.38446749, 1.32119158,
0.50443316, 0.28853036]), 1.1324274851176597e-014]

numpy.polynomial.polynomial.polyvander(x, deg)
Vandermonde matrix of given degree.

Returns the Vandermonde matrix of degree deg and sample points x. The Vandermonde matrix is defined by

𝑉 [..., 𝑖] = 𝑥𝑖,

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the power of x.

If c is a 1-D array of coefficients of length n + 1 and V is the matrix V = polyvander(x, n), then np.
dot(V, c) and polyval(x, c) are the same up to roundoff. This equivalence is useful both for least
squares fitting and for the evaluation of a large number of polynomials of the same degree and sample points.

Parameters

x [array_like] Array of points. The dtype is converted to float64 or complex128 depending on
whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg [int] Degree of the resulting matrix.

Returns

vander [ndarray.] The Vandermonde matrix. The shape of the returned matrix is x.shape +
(deg + 1,), where the last index is the power of x. The dtype will be the same as the
converted x.

834 Chapter 4. Routines



NumPy Reference, Release 1.15.1

See also:

polyvander2d, polyvander3d

numpy.polynomial.polynomial.polyvander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

𝑉 [..., (𝑑𝑒𝑔[1] + 1) * 𝑖 + 𝑗] = 𝑥𝑖 * 𝑦𝑗 ,

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y) and the last
index encodes the powers of x and y.

If V = polyvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a
2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

𝑐00, 𝑐01, 𝑐02..., 𝑐10, 𝑐11, 𝑐12...

and np.dot(V, c.flat) and polyval2d(x, y, c) will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 2-D polynomials of the same
degrees and sample points.

Parameters

x, y [array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted
to either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg [list of ints] List of maximum degrees of the form [x_deg, y_deg].

Returns

vander2d [ndarray] The shape of the returned matrix is x.shape + (order,), where
𝑜𝑟𝑑𝑒𝑟 = (𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1). The dtype will be the same as the converted x
and y.

See also:

polyvander, polyvander3d., polyval3d

numpy.polynomial.polynomial.polyvander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by

𝑉 [..., (𝑚 + 1)(𝑛 + 1)𝑖 + (𝑛 + 1)𝑗 + 𝑘] = 𝑥𝑖 * 𝑦𝑗 * 𝑧𝑘,

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x, y, z) and the
last index encodes the powers of x, y, and z.

If V = polyvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

𝑐000, 𝑐001, 𝑐002, ..., 𝑐010, 𝑐011, 𝑐012, ...

and np.dot(V, c.flat) and polyval3d(x, y, z, c) will be the same up to roundoff. This equiv-
alence is useful both for least squares fitting and for the evaluation of a large number of 3-D polynomials of the
same degrees and sample points.

Parameters

4.23. Polynomials 835



NumPy Reference, Release 1.15.1

x, y, z [array_like] Arrays of point coordinates, all of the same shape. The dtypes will be con-
verted to either float64 or complex128 depending on whether any of the elements are com-
plex. Scalars are converted to 1-D arrays.

deg [list of ints] List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns

vander3d [ndarray] The shape of the returned matrix is x.shape + (order,), where
𝑜𝑟𝑑𝑒𝑟 = (𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1) * (𝑑𝑒𝑔[2] + 1). The dtype will be the same as
the converted x, y, and z.

See also:

polyvander, polyvander3d., polyval3d

Notes

New in version 1.7.0.

Calculus

polyder(c[, m, scl, axis]) Differentiate a polynomial.
polyint(c[, m, k, lbnd, scl, axis]) Integrate a polynomial.

numpy.polynomial.polynomial.polyder(c, m=1, scl=1, axis=0)
Differentiate a polynomial.

Returns the polynomial coefficients c differentiated m times along axis. At each iteration the result is multiplied
by scl (the scaling factor is for use in a linear change of variable). The argument c is an array of coefficients
from low to high degree along each axis, e.g., [1,2,3] represents the polynomial 1 + 2*x + 3*x**2 while
[[1,2],[1,2]] represents 1 + 1*x + 2*y + 2*x*y if axis=0 is x and axis=1 is y.

Parameters

c [array_like] Array of polynomial coefficients. If c is multidimensional the different axis cor-
respond to different variables with the degree in each axis given by the corresponding index.

m [int, optional] Number of derivatives taken, must be non-negative. (Default: 1)

scl [scalar, optional] Each differentiation is multiplied by scl. The end result is multiplication
by scl**m. This is for use in a linear change of variable. (Default: 1)

axis [int, optional] Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

Returns

der [ndarray] Polynomial coefficients of the derivative.

See also:

polyint

836 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> from numpy.polynomial import polynomial as P
>>> c = (1,2,3,4) # 1 + 2x + 3x**2 + 4x**3
>>> P.polyder(c) # (d/dx)(c) = 2 + 6x + 12x**2
array([ 2., 6., 12.])
>>> P.polyder(c,3) # (d**3/dx**3)(c) = 24
array([ 24.])
>>> P.polyder(c,scl=-1) # (d/d(-x))(c) = -2 - 6x - 12x**2
array([ -2., -6., -12.])
>>> P.polyder(c,2,-1) # (d**2/d(-x)**2)(c) = 6 + 24x
array([ 6., 24.])

numpy.polynomial.polynomial.polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a polynomial.

Returns the polynomial coefficients c integrated m times from lbnd along axis. At each iteration the resulting
series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a linear
change of variable. (“Buyer beware”: note that, depending on what one is doing, one may want scl to be the
reciprocal of what one might expect; for more information, see the Notes section below.) The argument c is an
array of coefficients, from low to high degree along each axis, e.g., [1,2,3] represents the polynomial 1 + 2*x
+ 3*x**2 while [[1,2],[1,2]] represents 1 + 1*x + 2*y + 2*x*y if axis=0 is x and axis=1 is y.

Parameters

c [array_like] 1-D array of polynomial coefficients, ordered from low to high.

m [int, optional] Order of integration, must be positive. (Default: 1)

k [{[], list, scalar}, optional] Integration constant(s). The value of the first integral at zero is the
first value in the list, the value of the second integral at zero is the second value, etc. If k
== [] (the default), all constants are set to zero. If m == 1, a single scalar can be given
instead of a list.

lbnd [scalar, optional] The lower bound of the integral. (Default: 0)

scl [scalar, optional] Following each integration the result is multiplied by scl before the inte-
gration constant is added. (Default: 1)

axis [int, optional] Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

Returns

S [ndarray] Coefficient array of the integral.

Raises

ValueError If m < 1, len(k) > m, np.ndim(lbnd) != 0, or np.ndim(scl) !=
0.

See also:

polyder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable 𝑢 = 𝑎𝑥 + 𝑏 in an integral relative to x. Then 𝑑𝑥 = 𝑑𝑢/𝑎, so one will need to set scl
equal to 1/𝑎 - perhaps not what one would have first thought.

4.23. Polynomials 837



NumPy Reference, Release 1.15.1

Examples

>>> from numpy.polynomial import polynomial as P
>>> c = (1,2,3)
>>> P.polyint(c) # should return array([0, 1, 1, 1])
array([ 0., 1., 1., 1.])
>>> P.polyint(c,3) # should return array([0, 0, 0, 1/6, 1/12, 1/20])
array([ 0. , 0. , 0. , 0.16666667, 0.08333333,

0.05 ])
>>> P.polyint(c,k=3) # should return array([3, 1, 1, 1])
array([ 3., 1., 1., 1.])
>>> P.polyint(c,lbnd=-2) # should return array([6, 1, 1, 1])
array([ 6., 1., 1., 1.])
>>> P.polyint(c,scl=-2) # should return array([0, -2, -2, -2])
array([ 0., -2., -2., -2.])

Algebra

polyadd(c1, c2) Add one polynomial to another.
polysub(c1, c2) Subtract one polynomial from another.
polymul(c1, c2) Multiply one polynomial by another.
polymulx(c) Multiply a polynomial by x.
polydiv(c1, c2) Divide one polynomial by another.
polypow(c, pow[, maxpower]) Raise a polynomial to a power.

numpy.polynomial.polynomial.polyadd(c1, c2)
Add one polynomial to another.

Returns the sum of two polynomials c1 + c2. The arguments are sequences of coefficients from lowest order
term to highest, i.e., [1,2,3] represents the polynomial 1 + 2*x + 3*x**2.

Parameters

c1, c2 [array_like] 1-D arrays of polynomial coefficients ordered from low to high.

Returns

out [ndarray] The coefficient array representing their sum.

See also:

polysub, polymul, polydiv , polypow

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> sum = P.polyadd(c1,c2); sum
array([ 4., 4., 4.])
>>> P.polyval(2, sum) # 4 + 4(2) + 4(2**2)
28.0

838 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.polynomial.polynomial.polysub(c1, c2)
Subtract one polynomial from another.

Returns the difference of two polynomials c1 - c2. The arguments are sequences of coefficients from lowest
order term to highest, i.e., [1,2,3] represents the polynomial 1 + 2*x + 3*x**2.

Parameters

c1, c2 [array_like] 1-D arrays of polynomial coefficients ordered from low to high.

Returns

out [ndarray] Of coefficients representing their difference.

See also:

polyadd, polymul, polydiv , polypow

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polysub(c1,c2)
array([-2., 0., 2.])
>>> P.polysub(c2,c1) # -P.polysub(c1,c2)
array([ 2., 0., -2.])

numpy.polynomial.polynomial.polymul(c1, c2)
Multiply one polynomial by another.

Returns the product of two polynomials c1 * c2. The arguments are sequences of coefficients, from lowest order
term to highest, e.g., [1,2,3] represents the polynomial 1 + 2*x + 3*x**2.

Parameters

c1, c2 [array_like] 1-D arrays of coefficients representing a polynomial, relative to the “stan-
dard” basis, and ordered from lowest order term to highest.

Returns

out [ndarray] Of the coefficients of their product.

See also:

polyadd, polysub, polydiv , polypow

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polymul(c1,c2)
array([ 3., 8., 14., 8., 3.])

numpy.polynomial.polynomial.polymulx(c)
Multiply a polynomial by x.

Multiply the polynomial c by x, where x is the independent variable.

4.23. Polynomials 839



NumPy Reference, Release 1.15.1

Parameters

c [array_like] 1-D array of polynomial coefficients ordered from low to high.

Returns

out [ndarray] Array representing the result of the multiplication.

Notes

New in version 1.5.0.

numpy.polynomial.polynomial.polydiv(c1, c2)
Divide one polynomial by another.

Returns the quotient-with-remainder of two polynomials c1 / c2. The arguments are sequences of coefficients,
from lowest order term to highest, e.g., [1,2,3] represents 1 + 2*x + 3*x**2.

Parameters

c1, c2 [array_like] 1-D arrays of polynomial coefficients ordered from low to high.

Returns

[quo, rem] [ndarrays] Of coefficient series representing the quotient and remainder.

See also:

polyadd, polysub, polymul, polypow

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polydiv(c1,c2)
(array([ 3.]), array([-8., -4.]))
>>> P.polydiv(c2,c1)
(array([ 0.33333333]), array([ 2.66666667, 1.33333333]))

numpy.polynomial.polynomial.polypow(c, pow, maxpower=None)
Raise a polynomial to a power.

Returns the polynomial c raised to the power pow. The argument c is a sequence of coefficients ordered from
low to high. i.e., [1,2,3] is the series 1 + 2*x + 3*x**2.

Parameters

c [array_like] 1-D array of array of series coefficients ordered from low to high degree.

pow [integer] Power to which the series will be raised

maxpower [integer, optional] Maximum power allowed. This is mainly to limit growth of the
series to unmanageable size. Default is 16

Returns

coef [ndarray] Power series of power.

See also:

polyadd, polysub, polymul, polydiv

840 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Miscellaneous

polycompanion(c) Return the companion matrix of c.
polydomain
polyzero
polyone
polyx
polytrim(c[, tol]) Remove “small” “trailing” coefficients from a polynomial.
polyline(off, scl) Returns an array representing a linear polynomial.

numpy.polynomial.polynomial.polycompanion(c)
Return the companion matrix of c.

The companion matrix for power series cannot be made symmetric by scaling the basis, so this function differs
from those for the orthogonal polynomials.

Parameters

c [array_like] 1-D array of polynomial coefficients ordered from low to high degree.

Returns

mat [ndarray] Companion matrix of dimensions (deg, deg).

Notes

New in version 1.7.0.

numpy.polynomial.polynomial.polydomain = array([-1, 1])

numpy.polynomial.polynomial.polyzero = array([0])

numpy.polynomial.polynomial.polyone = array([1])

numpy.polynomial.polynomial.polyx = array([0, 1])

numpy.polynomial.polynomial.polytrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters

c [array_like] 1-d array of coefficients, ordered from lowest order to highest.

tol [number, optional] Trailing (i.e., highest order) elements with absolute value less than or
equal to tol (default value is zero) are removed.

Returns

trimmed [ndarray] 1-d array with trailing zeros removed. If the resulting series would be empty,
a series containing a single zero is returned.

Raises

ValueError If tol < 0

4.23. Polynomials 841



NumPy Reference, Release 1.15.1

See also:

trimseq

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
array([ 0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([ 0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([ 0.0003+0.j , 0.0010-0.001j])

numpy.polynomial.polynomial.polyline(off, scl)
Returns an array representing a linear polynomial.

Parameters

off, scl [scalars] The “y-intercept” and “slope” of the line, respectively.

Returns

y [ndarray] This module’s representation of the linear polynomial off + scl*x.

See also:

chebline

Examples

>>> from numpy.polynomial import polynomial as P
>>> P.polyline(1,-1)
array([ 1, -1])
>>> P.polyval(1, P.polyline(1,-1)) # should be 0
0.0

Chebyshev Module (numpy.polynomial.chebyshev)

New in version 1.4.0.

This module provides a number of objects (mostly functions) useful for dealing with Chebyshev series, including
a Chebyshev class that encapsulates the usual arithmetic operations. (General information on how this module
represents and works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

Chebyshev Class

Chebyshev(coef[, domain, window]) A Chebyshev series class.

class numpy.polynomial.chebyshev.Chebyshev(coef, domain=None, window=None)
A Chebyshev series class.

842 Chapter 4. Routines



NumPy Reference, Release 1.15.1

The Chebyshev class provides the standard Python numerical methods ‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and
‘()’ as well as the methods listed below.

Parameters

coef [array_like] Chebyshev coefficients in order of increasing degree, i.e., (1, 2, 3) gives
1*T_0(x) + 2*T_1(x) + 3*T_2(x).

domain [(2,) array_like, optional] Domain to use. The interval [domain[0],
domain[1]] is mapped to the interval [window[0], window[1]] by shifting and
scaling. The default value is [-1, 1].

window [(2,) array_like, optional] Window, see domain for its use. The default value is [-1,
1].

New in version 1.6.0.

Methods

__call__(arg) Call self as a function.
basis(deg[, domain, window]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or

window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, window]) Least squares fit to data.
fromroots(roots[, domain, window]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window]) Identity function.
integ([m, k, lbnd]) Integrate.
interpolate(func, deg[, domain, args]) Interpolate a function at the Chebyshev points of the

first kind.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

Chebyshev.__call__(arg)
Call self as a function.

classmethod Chebyshev.basis(deg, domain=None, window=None)
Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

Parameters

4.23. Polynomials 843



NumPy Reference, Release 1.15.1

deg [int] Degree of the basis polynomial for the series. Must be >= 0.

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] A series with the coefficient of the deg term set to one and all others
zero.

classmethod Chebyshev.cast(series, domain=None, window=None)
Convert series to series of this class.

The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

New in version 1.7.0.

Parameters

series [series] The series instance to be converted.

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] A series of the same kind as the calling class and equal to series when
evaluated.

See also:

convert similar instance method

Chebyshev.convert(domain=None, kind=None, window=None)
Convert series to a different kind and/or domain and/or window.

Parameters

domain [array_like, optional] The domain of the converted series. If the value is None, the
default domain of kind is used.

kind [class, optional] The polynomial series type class to which the current instance should
be converted. If kind is None, then the class of the current instance is used.

window [array_like, optional] The window of the converted series. If the value is None, the
default window of kind is used.

Returns

new_series [series] The returned class can be of different type than the current instance
and/or have a different domain and/or different window.

844 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

Conversion between domains and class types can result in numerically ill defined series.

Chebyshev.copy()
Return a copy.

Returns

new_series [series] Copy of self.

Chebyshev.cutdeg(deg)
Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

New in version 1.5.0.

Parameters

deg [non-negative int] The series is reduced to degree deg by discarding the high order terms.
The value of deg must be a non-negative integer.

Returns

new_series [series] New instance of series with reduced degree.

Chebyshev.degree()
The degree of the series.

New in version 1.5.0.

Returns

degree [int] Degree of the series, one less than the number of coefficients.

Chebyshev.deriv(m=1)
Differentiate.

Return a series instance of that is the derivative of the current series.

Parameters

m [non-negative int] Find the derivative of order m.

Returns

new_series [series] A new series representing the derivative. The domain is the same as the
domain of the differentiated series.

classmethod Chebyshev.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, win-
dow=None)

Least squares fit to data.

Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters

x [array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y [array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

4.23. Polynomials 845



NumPy Reference, Release 1.15.1

deg [int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all
terms up to and including the deg’th term are included in the fit. For NumPy versions >=
1.11.0 a list of integers specifying the degrees of the terms to include may be used instead.

domain [{None, [beg, end], []}, optional] Domain to use for the returned series. If None,
then a minimal domain that covers the points x is chosen. If [] the class domain is used.
The default value was the class domain in NumPy 1.4 and None in later versions. The []
option was added in numpy 1.5.0.

rcond [float, optional] Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The default value is len(x)*eps,
where eps is the relative precision of the float type, about 2e-16 in most cases.

full [bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w [array_like, shape (M,), optional] Weights. If not None the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

window [{[beg, end]}, optional] Window to use for the returned series. The default value is
the default class domain

New in version 1.6.0.

Returns

new_series [series] A series that represents the least squares fit to the data and has the do-
main specified in the call.

[resid, rank, sv, rcond] [list] These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of the
scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix rcond
– value of rcond.

For more details, see linalg.lstsq.

classmethod Chebyshev.fromroots(roots, domain=[], window=None)
Return series instance that has the specified roots.

Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters

roots [array_like] List of roots.

domain [{[], None, array_like}, optional] Domain for the resulting series. If None the do-
main is the interval from the smallest root to the largest. If [] the domain is the class
domain. The default is [].

window [{None, array_like}, optional] Window for the returned series. If None the class
window is used. The default is None.

Returns

new_series [series] Series with the specified roots.

Chebyshev.has_samecoef(other)
Check if coefficients match.

846 Chapter 4. Routines



NumPy Reference, Release 1.15.1

New in version 1.6.0.

Parameters

other [class instance] The other class must have the coef attribute.

Returns

bool [boolean] True if the coefficients are the same, False otherwise.

Chebyshev.has_samedomain(other)
Check if domains match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the domain attribute.

Returns

bool [boolean] True if the domains are the same, False otherwise.

Chebyshev.has_sametype(other)
Check if types match.

New in version 1.7.0.

Parameters

other [object] Class instance.

Returns

bool [boolean] True if other is same class as self

Chebyshev.has_samewindow(other)
Check if windows match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the window attribute.

Returns

bool [boolean] True if the windows are the same, False otherwise.

classmethod Chebyshev.identity(domain=None, window=None)
Identity function.

If p is the returned series, then p(x) == x for all values of x.

Parameters

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] Series of representing the identity.

4.23. Polynomials 847



NumPy Reference, Release 1.15.1

Chebyshev.integ(m=1, k=[], lbnd=None)
Integrate.

Return a series instance that is the definite integral of the current series.

Parameters

m [non-negative int] The number of integrations to perform.

k [array_like] Integration constants. The first constant is applied to the first integration, the
second to the second, and so on. The list of values must less than or equal to m in length
and any missing values are set to zero.

lbnd [Scalar] The lower bound of the definite integral.

Returns

new_series [series] A new series representing the integral. The domain is the same as the
domain of the integrated series.

classmethod Chebyshev.interpolate(func, deg, domain=None, args=())
Interpolate a function at the Chebyshev points of the first kind.

Returns the series that interpolates func at the Chebyshev points of the first kind scaled and shifted to the
domain. The resulting series tends to a minmax approximation of func when the function is continuous
in the domain.

New in version 1.14.0.

Parameters

func [function] The function to be interpolated. It must be a function of a single variable of
the form f(x, a, b, c...), where a, b, c... are extra arguments passed in the
args parameter.

deg [int] Degree of the interpolating polynomial.

domain [{None, [beg, end]}, optional] Domain over which func is interpolated. The default
is None, in which case the domain is [-1, 1].

args [tuple, optional] Extra arguments to be used in the function call. Default is no extra
arguments.

Returns

polynomial [Chebyshev instance] Interpolating Chebyshev instance.

Notes

See numpy.polynomial.chebfromfunction for more details.

Chebyshev.linspace(n=100, domain=None)
Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial
at the points x. By default the domain is the same as that of the series instance. This method is intended
mostly as a plotting aid.

New in version 1.5.0.

Parameters

n [int, optional] Number of point pairs to return. The default value is 100.

848 Chapter 4. Routines



NumPy Reference, Release 1.15.1

domain [{None, array_like}, optional] If not None, the specified domain is used instead of
that of the calling instance. It should be of the form [beg,end]. The default is None
which case the class domain is used.

Returns

x, y [ndarray] x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series
evaluated at element of x.

Chebyshev.mapparms()
Return the mapping parameters.

The returned values define a linear map off + scl*x that is applied to the input arguments before
the series is evaluated. The map depends on the domain and window; if the current domain is equal
to the window the resulting map is the identity. If the coefficients of the series instance are to be used
by themselves outside this class, then the linear function must be substituted for the x in the standard
representation of the base polynomials.

Returns

off, scl [float or complex] The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

Chebyshev.roots()
Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the roots decrease the further outside the domain
they lie.

Returns

roots [ndarray] Array containing the roots of the series.

Chebyshev.trim(tol=0)
Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the
beginning of the series is reached. If all the coefficients would be removed the series is set to [0]. A new
series instance is returned with the new coefficients. The current instance remains unchanged.

Parameters

tol [non-negative number.] All trailing coefficients less than tol will be removed.

Returns

new_series [series] Contains the new set of coefficients.

Chebyshev.truncate(size)
Truncate series to length size.

Reduce the series to length size by discarding the high degree terms. The value of size must be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very
small.

4.23. Polynomials 849



NumPy Reference, Release 1.15.1

Parameters

size [positive int] The series is reduced to length size by discarding the high degree terms.
The value of size must be a positive integer.

Returns

new_series [series] New instance of series with truncated coefficients.

Basics

chebval(x, c[, tensor]) Evaluate a Chebyshev series at points x.
chebval2d(x, y, c) Evaluate a 2-D Chebyshev series at points (x, y).
chebval3d(x, y, z, c) Evaluate a 3-D Chebyshev series at points (x, y, z).
chebgrid2d(x, y, c) Evaluate a 2-D Chebyshev series on the Cartesian product

of x and y.
chebgrid3d(x, y, z, c) Evaluate a 3-D Chebyshev series on the Cartesian product

of x, y, and z.
chebroots(c) Compute the roots of a Chebyshev series.
chebfromroots(roots) Generate a Chebyshev series with given roots.

numpy.polynomial.chebyshev.chebval(x, c, tensor=True)
Evaluate a Chebyshev series at points x.

If c is of length n + 1, this function returns the value:

𝑝(𝑥) = 𝑐0 * 𝑇0(𝑥) + 𝑐1 * 𝑇1(𝑥) + ... + 𝑐𝑛 * 𝑇𝑛(𝑥)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In
either case, either x or its elements must support multiplication and addition both with themselves and with the
elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the
shape will be c.shape[1:]. Note that scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a
concern.

Parameters

x [array_like, compatible object] If x is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, x or its elements must support
addition and multiplication with with themselves and with the elements of c.

c [array_like] Array of coefficients ordered so that the coefficients for terms of degree n are
contained in c[n]. If c is multidimensional the remaining indices enumerate multiple poly-
nomials. In the two dimensional case the coefficients may be thought of as stored in the
columns of c.

tensor [boolean, optional] If True, the shape of the coefficient array is extended with ones on
the right, one for each dimension of x. Scalars have dimension 0 for this action. The result
is that every column of coefficients in c is evaluated for every element of x. If False, x
is broadcast over the columns of c for the evaluation. This keyword is useful when c is
multidimensional. The default value is True.

New in version 1.7.0.

850 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns

values [ndarray, algebra_like] The shape of the return value is described above.

See also:

chebval2d, chebgrid2d, chebval3d, chebgrid3d

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

numpy.polynomial.chebyshev.chebval2d(x, y, c)
Evaluate a 2-D Chebyshev series at points (x, y).

This function returns the values:

𝑝(𝑥, 𝑦) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝑇𝑖(𝑥) * 𝑇𝑗(𝑦)

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.

If c is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be
c.shape[2:] + x.shape.

Parameters

x, y [array_like, compatible objects] The two dimensional series is evaluated at the points (x,
y), where x and y must have the same shape. If x or y is a list or tuple, it is first converted to
an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree i,j
is contained in c[i,j]. If c has dimension greater than 2 the remaining indices enumerate
multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the two dimensional Chebyshev series at
points formed from pairs of corresponding values from x and y.

See also:

chebval, chebgrid2d, chebval3d, chebgrid3d

Notes

New in version 1.7.0.

numpy.polynomial.chebyshev.chebval3d(x, y, z, c)
Evaluate a 3-D Chebyshev series at points (x, y, z).

This function returns the values:

𝑝(𝑥, 𝑦, 𝑧) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝑇𝑖(𝑥) * 𝑇𝑗(𝑦) * 𝑇𝑘(𝑧)

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements
must support multiplication and addition both with themselves and with the elements of c.

4.23. Polynomials 851



NumPy Reference, Release 1.15.1

If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape.

Parameters

x, y, z [array_like, compatible object] The three dimensional series is evaluated at the points (x,
y, z), where x, y, and z must have the same shape. If any of x, y, or z is a list or tuple, it is first
converted to an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated
as a scalar.

c [array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j,k is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the multidimensional polynomial on points
formed with triples of corresponding values from x, y, and z.

See also:

chebval, chebval2d, chebgrid2d, chebgrid3d

Notes

New in version 1.7.0.

numpy.polynomial.chebyshev.chebgrid2d(x, y, c)
Evaluate a 2-D Chebyshev series on the Cartesian product of x and y.

This function returns the values:

𝑝(𝑎, 𝑏) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝑇𝑖(𝑎) * 𝑇𝑗(𝑏),

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x and y or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the
result will be c.shape[2:] + x.shape + y.shape.

Parameters

x, y [array_like, compatible objects] The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree i,j
is contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the two dimensional Chebyshev series at
points in the Cartesian product of x and y.

See also:

chebval, chebval2d, chebval3d, chebgrid3d

852 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

New in version 1.7.0.

numpy.polynomial.chebyshev.chebgrid3d(x, y, z, c)
Evaluate a 3-D Chebyshev series on the Cartesian product of x, y, and z.

This function returns the values:

𝑝(𝑎, 𝑏, 𝑐) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝑇𝑖(𝑎) * 𝑇𝑗(𝑏) * 𝑇𝑘(𝑐)

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters

x, y, z [array_like, compatible objects] The three dimensional series is evaluated at the points in
the Cartesian product of x, y, and z. If x,‘y‘, or z is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the two dimensional polynomial at points in
the Cartesian product of x and y.

See also:

chebval, chebval2d, chebgrid2d, chebval3d

Notes

New in version 1.7.0.

numpy.polynomial.chebyshev.chebroots(c)
Compute the roots of a Chebyshev series.

Return the roots (a.k.a. “zeros”) of the polynomial

𝑝(𝑥) =
∑︁
𝑖

𝑐[𝑖] * 𝑇𝑖(𝑥).

Parameters

c [1-D array_like] 1-D array of coefficients.

Returns

out [ndarray] Array of the roots of the series. If all the roots are real, then out is also real,
otherwise it is complex.

4.23. Polynomials 853



NumPy Reference, Release 1.15.1

See also:

polyroots, legroots, lagroots, hermroots, hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companion matrix, Roots far from the origin of the
complex plane may have large errors due to the numerical instability of the series for such values. Roots with
multiplicity greater than 1 will also show larger errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s
method.

The Chebyshev series basis polynomials aren’t powers of x so the results of this function may seem unintuitive.

Examples

>>> import numpy.polynomial.chebyshev as cheb
>>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
array([ -5.00000000e-01, 2.60860684e-17, 1.00000000e+00])

numpy.polynomial.chebyshev.chebfromroots(roots)
Generate a Chebyshev series with given roots.

The function returns the coefficients of the polynomial

𝑝(𝑥) = (𝑥− 𝑟0) * (𝑥− 𝑟1) * ... * (𝑥− 𝑟𝑛),

in Chebyshev form, where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must
appear in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then
roots looks something like [2, 2, 2, 3, 3]. The roots can appear in any order.

If the returned coefficients are c, then

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝑇1(𝑥) + ... + 𝑐𝑛 * 𝑇𝑛(𝑥)

The coefficient of the last term is not generally 1 for monic polynomials in Chebyshev form.

Parameters

roots [array_like] Sequence containing the roots.

Returns

out [ndarray] 1-D array of coefficients. If all roots are real then out is a real array, if some of
the roots are complex, then out is complex even if all the coefficients in the result are real
(see Examples below).

See also:

polyfromroots, legfromroots, lagfromroots, hermfromroots, hermefromroots.

Examples

854 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> import numpy.polynomial.chebyshev as C
>>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis
array([ 0. , -0.25, 0. , 0.25])
>>> j = complex(0,1)
>>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis
array([ 1.5+0.j, 0.0+0.j, 0.5+0.j])

Fitting

chebfit(x, y, deg[, rcond, full, w]) Least squares fit of Chebyshev series to data.
chebvander(x, deg) Pseudo-Vandermonde matrix of given degree.
chebvander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
chebvander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.

numpy.polynomial.chebyshev.chebfit(x, y, deg, rcond=None, full=False, w=None)
Least squares fit of Chebyshev series to data.

Return the coefficients of a Chebyshev series of degree deg that is the least squares fit to the data values y given
at points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each
column of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted
polynomial(s) are in the form

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝑇1(𝑥) + ... + 𝑐𝑛 * 𝑇𝑛(𝑥),

where n is deg.

Parameters

x [array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y [array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg [int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer, all
terms up to and including the deg’th term are included in the fit. For NumPy versions >=
1.11.0 a list of integers specifying the degrees of the terms to include may be used instead.

rcond [float, optional] Relative condition number of the fit. Singular values smaller than this
relative to the largest singular value will be ignored. The default value is len(x)*eps, where
eps is the relative precision of the float type, about 2e-16 in most cases.

full [bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w [array_like, shape (M,), optional] Weights. If not None, the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

Returns

coef [ndarray, shape (M,) or (M, K)] Chebyshev coefficients ordered from low to high. If y was
2-D, the coefficients for the data in column k of y are in column k.

4.23. Polynomials 855



NumPy Reference, Release 1.15.1

[residuals, rank, singular_values, rcond] [list] These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of the
scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix rcond –
value of rcond.

For more details, see linalg.lstsq.

Warns

RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warn-
ing is only raised if full = False. The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also:

polyfit, legfit, lagfit, hermfit, hermefit

chebval Evaluates a Chebyshev series.

chebvander Vandermonde matrix of Chebyshev series.

chebweight Chebyshev weight function.

linalg.lstsq Computes a least-squares fit from the matrix.

scipy.interpolate.UnivariateSpline Computes spline fits.

Notes

The solution is the coefficients of the Chebyshev series p that minimizes the sum of the weighted squared errors

𝐸 =
∑︁
𝑗

𝑤2
𝑗 * |𝑦𝑗 − 𝑝(𝑥𝑗)|2,

where 𝑤𝑗 are the weights. This problem is solved by setting up as the (typically) overdetermined matrix equation

𝑉 (𝑥) * 𝑐 = 𝑤 * 𝑦,

where V is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the
weights, and y are the observed values. This equation is then solved using the singular value decomposition of
V.

If some of the singular values of V are so small that they are neglected, then a RankWarning will be issued. This
means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of the
warning. The rcond parameter can also be set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using Chebyshev series are usually better conditioned than fits using power series, but much can depend on
the distribution of the sample points and the smoothness of the data. If the quality of the fit is inadequate splines
may be a good alternative.

References

[1]

856 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline


NumPy Reference, Release 1.15.1

numpy.polynomial.chebyshev.chebvander(x, deg)
Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix
is defined by

𝑉 [..., 𝑖] = 𝑇𝑖(𝑥),

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the
Chebyshev polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the matrix V = chebvander(x, n), then np.
dot(V, c) and chebval(x, c) are the same up to roundoff. This equivalence is useful both for least
squares fitting and for the evaluation of a large number of Chebyshev series of the same degree and sample
points.

Parameters

x [array_like] Array of points. The dtype is converted to float64 or complex128 depending on
whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg [int] Degree of the resulting matrix.

Returns

vander [ndarray] The pseudo Vandermonde matrix. The shape of the returned matrix is x.
shape + (deg + 1,), where The last index is the degree of the corresponding Cheby-
shev polynomial. The dtype will be the same as the converted x.

numpy.polynomial.chebyshev.chebvander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

𝑉 [..., (𝑑𝑒𝑔[1] + 1) * 𝑖 + 𝑗] = 𝑇𝑖(𝑥) * 𝑇𝑗(𝑦),

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y) and the last
index encodes the degrees of the Chebyshev polynomials.

If V = chebvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a
2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

𝑐00, 𝑐01, 𝑐02..., 𝑐10, 𝑐11, 𝑐12...

and np.dot(V, c.flat) and chebval2d(x, y, c) will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 2-D Chebyshev series of the
same degrees and sample points.

Parameters

x, y [array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted
to either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg [list of ints] List of maximum degrees of the form [x_deg, y_deg].

Returns

vander2d [ndarray] The shape of the returned matrix is x.shape + (order,), where
𝑜𝑟𝑑𝑒𝑟 = (𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1). The dtype will be the same as the converted x
and y.

4.23. Polynomials 857



NumPy Reference, Release 1.15.1

See also:

chebvander, chebvander3d., chebval3d

Notes

New in version 1.7.0.

numpy.polynomial.chebyshev.chebvander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by

𝑉 [..., (𝑚 + 1)(𝑛 + 1)𝑖 + (𝑛 + 1)𝑗 + 𝑘] = 𝑇𝑖(𝑥) * 𝑇𝑗(𝑦) * 𝑇𝑘(𝑧),

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x, y, z) and the
last index encodes the degrees of the Chebyshev polynomials.

If V = chebvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

𝑐000, 𝑐001, 𝑐002, ..., 𝑐010, 𝑐011, 𝑐012, ...

and np.dot(V, c.flat) and chebval3d(x, y, z, c) will be the same up to roundoff. This equiv-
alence is useful both for least squares fitting and for the evaluation of a large number of 3-D Chebyshev series
of the same degrees and sample points.

Parameters

x, y, z [array_like] Arrays of point coordinates, all of the same shape. The dtypes will be con-
verted to either float64 or complex128 depending on whether any of the elements are com-
plex. Scalars are converted to 1-D arrays.

deg [list of ints] List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns

vander3d [ndarray] The shape of the returned matrix is x.shape + (order,), where
𝑜𝑟𝑑𝑒𝑟 = (𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1) * (𝑑𝑒𝑔[2] + 1). The dtype will be the same as
the converted x, y, and z.

See also:

chebvander, chebvander3d., chebval3d

Notes

New in version 1.7.0.

Calculus

chebder(c[, m, scl, axis]) Differentiate a Chebyshev series.
chebint(c[, m, k, lbnd, scl, axis]) Integrate a Chebyshev series.

858 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.polynomial.chebyshev.chebder(c, m=1, scl=1, axis=0)
Differentiate a Chebyshev series.

Returns the Chebyshev series coefficients c differentiated m times along axis. At each iteration the re-
sult is multiplied by scl (the scaling factor is for use in a linear change of variable). The argument c
is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series
1*T_0 + 2*T_1 + 3*T_2 while [[1,2],[1,2]] represents 1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y)
+ 2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y) if axis=0 is x and axis=1 is y.

Parameters

c [array_like] Array of Chebyshev series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding
index.

m [int, optional] Number of derivatives taken, must be non-negative. (Default: 1)

scl [scalar, optional] Each differentiation is multiplied by scl. The end result is multiplication
by scl**m. This is for use in a linear change of variable. (Default: 1)

axis [int, optional] Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

Returns

der [ndarray] Chebyshev series of the derivative.

See also:

chebint

Notes

In general, the result of differentiating a C-series needs to be “reprojected” onto the C-series basis set. Thus,
typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c = (1,2,3,4)
>>> C.chebder(c)
array([ 14., 12., 24.])
>>> C.chebder(c,3)
array([ 96.])
>>> C.chebder(c,scl=-1)
array([-14., -12., -24.])
>>> C.chebder(c,2,-1)
array([ 12., 96.])

numpy.polynomial.chebyshev.chebint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a Chebyshev series.

Returns the Chebyshev series coefficients c integrated m times from lbnd along axis. At each iteration the
resulting series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use
in a linear change of variable. (“Buyer beware”: note that, depending on what one is doing, one may want
scl to be the reciprocal of what one might expect; for more information, see the Notes section below.) The
argument c is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series

4.23. Polynomials 859



NumPy Reference, Release 1.15.1

T_0 + 2*T_1 + 3*T_2 while [[1,2],[1,2]] represents 1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) +
2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y) if axis=0 is x and axis=1 is y.

Parameters

c [array_like] Array of Chebyshev series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding
index.

m [int, optional] Order of integration, must be positive. (Default: 1)

k [{[], list, scalar}, optional] Integration constant(s). The value of the first integral at zero is the
first value in the list, the value of the second integral at zero is the second value, etc. If k
== [] (the default), all constants are set to zero. If m == 1, a single scalar can be given
instead of a list.

lbnd [scalar, optional] The lower bound of the integral. (Default: 0)

scl [scalar, optional] Following each integration the result is multiplied by scl before the inte-
gration constant is added. (Default: 1)

axis [int, optional] Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

Returns

S [ndarray] C-series coefficients of the integral.

Raises

ValueError If m < 1, len(k) > m, np.ndim(lbnd) != 0, or np.ndim(scl) !=
0.

See also:

chebder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable 𝑢 = 𝑎𝑥 + 𝑏 in an integral relative to x. Then 𝑑𝑥 = 𝑑𝑢/𝑎, so one will need to set scl
equal to 1/𝑎- perhaps not what one would have first thought.

Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis
set. Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c = (1,2,3)
>>> C.chebint(c)
array([ 0.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,3)
array([ 0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667,

0.00625 ])
>>> C.chebint(c, k=3)
array([ 3.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,lbnd=-2)

(continues on next page)

860 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

array([ 8.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,scl=-2)
array([-1., 1., -1., -1.])

Algebra

chebadd(c1, c2) Add one Chebyshev series to another.
chebsub(c1, c2) Subtract one Chebyshev series from another.
chebmul(c1, c2) Multiply one Chebyshev series by another.
chebmulx(c) Multiply a Chebyshev series by x.
chebdiv(c1, c2) Divide one Chebyshev series by another.
chebpow(c, pow[, maxpower]) Raise a Chebyshev series to a power.

numpy.polynomial.chebyshev.chebadd(c1, c2)
Add one Chebyshev series to another.

Returns the sum of two Chebyshev series c1 + c2. The arguments are sequences of coefficients ordered from
lowest order term to highest, i.e., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2.

Parameters

c1, c2 [array_like] 1-D arrays of Chebyshev series coefficients ordered from low to high.

Returns

out [ndarray] Array representing the Chebyshev series of their sum.

See also:

chebsub, chebmul, chebdiv , chebpow

Notes

Unlike multiplication, division, etc., the sum of two Chebyshev series is a Chebyshev series (without having
to “reproject” the result onto the basis set) so addition, just like that of “standard” polynomials, is simply
“component-wise.”

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebadd(c1,c2)
array([ 4., 4., 4.])

numpy.polynomial.chebyshev.chebsub(c1, c2)
Subtract one Chebyshev series from another.

Returns the difference of two Chebyshev series c1 - c2. The sequences of coefficients are from lowest order
term to highest, i.e., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2.

Parameters

4.23. Polynomials 861



NumPy Reference, Release 1.15.1

c1, c2 [array_like] 1-D arrays of Chebyshev series coefficients ordered from low to high.

Returns

out [ndarray] Of Chebyshev series coefficients representing their difference.

See also:

chebadd, chebmul, chebdiv , chebpow

Notes

Unlike multiplication, division, etc., the difference of two Chebyshev series is a Chebyshev series (without
having to “reproject” the result onto the basis set) so subtraction, just like that of “standard” polynomials, is
simply “component-wise.”

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebsub(c1,c2)
array([-2., 0., 2.])
>>> C.chebsub(c2,c1) # -C.chebsub(c1,c2)
array([ 2., 0., -2.])

numpy.polynomial.chebyshev.chebmul(c1, c2)
Multiply one Chebyshev series by another.

Returns the product of two Chebyshev series c1 * c2. The arguments are sequences of coefficients, from lowest
order “term” to highest, e.g., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2.

Parameters

c1, c2 [array_like] 1-D arrays of Chebyshev series coefficients ordered from low to high.

Returns

out [ndarray] Of Chebyshev series coefficients representing their product.

See also:

chebadd, chebsub, chebdiv , chebpow

Notes

In general, the (polynomial) product of two C-series results in terms that are not in the Chebyshev polynomial
basis set. Thus, to express the product as a C-series, it is typically necessary to “reproject” the product onto said
basis set, which typically produces “unintuitive live” (but correct) results; see Examples section below.

Examples

862 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebmul(c1,c2) # multiplication requires "reprojection"
array([ 6.5, 12. , 12. , 4. , 1.5])

numpy.polynomial.chebyshev.chebmulx(c)
Multiply a Chebyshev series by x.

Multiply the polynomial c by x, where x is the independent variable.

Parameters

c [array_like] 1-D array of Chebyshev series coefficients ordered from low to high.

Returns

out [ndarray] Array representing the result of the multiplication.

Notes

New in version 1.5.0.

numpy.polynomial.chebyshev.chebdiv(c1, c2)
Divide one Chebyshev series by another.

Returns the quotient-with-remainder of two Chebyshev series c1 / c2. The arguments are sequences of coeffi-
cients from lowest order “term” to highest, e.g., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2.

Parameters

c1, c2 [array_like] 1-D arrays of Chebyshev series coefficients ordered from low to high.

Returns

[quo, rem] [ndarrays] Of Chebyshev series coefficients representing the quotient and remain-
der.

See also:

chebadd, chebsub, chebmul, chebpow

Notes

In general, the (polynomial) division of one C-series by another results in quotient and remainder terms that are
not in the Chebyshev polynomial basis set. Thus, to express these results as C-series, it is typically necessary
to “reproject” the results onto said basis set, which typically produces “unintuitive” (but correct) results; see
Examples section below.

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not
(array([ 3.]), array([-8., -4.]))
>>> c2 = (0,1,2,3)

(continues on next page)

4.23. Polynomials 863



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> C.chebdiv(c2,c1) # neither "intuitive"
(array([ 0., 2.]), array([-2., -4.]))

numpy.polynomial.chebyshev.chebpow(c, pow, maxpower=16)
Raise a Chebyshev series to a power.

Returns the Chebyshev series c raised to the power pow. The argument c is a sequence of coefficients ordered
from low to high. i.e., [1,2,3] is the series T_0 + 2*T_1 + 3*T_2.

Parameters

c [array_like] 1-D array of Chebyshev series coefficients ordered from low to high.

pow [integer] Power to which the series will be raised

maxpower [integer, optional] Maximum power allowed. This is mainly to limit growth of the
series to unmanageable size. Default is 16

Returns

coef [ndarray] Chebyshev series of power.

See also:

chebadd, chebsub, chebmul, chebdiv

Quadrature

chebgauss(deg) Gauss-Chebyshev quadrature.
chebweight(x) The weight function of the Chebyshev polynomials.

numpy.polynomial.chebyshev.chebgauss(deg)
Gauss-Chebyshev quadrature.

Computes the sample points and weights for Gauss-Chebyshev quadrature. These sample points and weights
will correctly integrate polynomials of degree 2*𝑑𝑒𝑔−1 or less over the interval [−1, 1] with the weight function
𝑓(𝑥) = 1/

√
1 − 𝑥2.

Parameters

deg [int] Number of sample points and weights. It must be >= 1.

Returns

x [ndarray] 1-D ndarray containing the sample points.

y [ndarray] 1-D ndarray containing the weights.

Notes

New in version 1.7.0.

The results have only been tested up to degree 100, higher degrees may be problematic. For Gauss-Chebyshev
there are closed form solutions for the sample points and weights. If n = deg, then

𝑥𝑖 = cos(𝜋(2𝑖− 1)/(2𝑛))

𝑤𝑖 = 𝜋/𝑛

864 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.polynomial.chebyshev.chebweight(x)
The weight function of the Chebyshev polynomials.

The weight function is 1/
√

1 − 𝑥2 and the interval of integration is [−1, 1]. The Chebyshev polynomials are
orthogonal, but not normalized, with respect to this weight function.

Parameters

x [array_like] Values at which the weight function will be computed.

Returns

w [ndarray] The weight function at x.

Notes

New in version 1.7.0.

Miscellaneous

chebcompanion(c) Return the scaled companion matrix of c.
chebdomain
chebzero
chebone
chebx
chebtrim(c[, tol]) Remove “small” “trailing” coefficients from a polynomial.
chebline(off, scl) Chebyshev series whose graph is a straight line.
cheb2poly(c) Convert a Chebyshev series to a polynomial.
poly2cheb(pol) Convert a polynomial to a Chebyshev series.

numpy.polynomial.chebyshev.chebcompanion(c)
Return the scaled companion matrix of c.

The basis polynomials are scaled so that the companion matrix is symmetric when c is a Chebyshev basis
polynomial. This provides better eigenvalue estimates than the unscaled case and for basis polynomials the
eigenvalues are guaranteed to be real if numpy.linalg.eigvalsh is used to obtain them.

Parameters

c [array_like] 1-D array of Chebyshev series coefficients ordered from low to high degree.

Returns

mat [ndarray] Scaled companion matrix of dimensions (deg, deg).

Notes

New in version 1.7.0.

numpy.polynomial.chebyshev.chebdomain = array([-1, 1])

numpy.polynomial.chebyshev.chebzero = array([0])

numpy.polynomial.chebyshev.chebone = array([1])

numpy.polynomial.chebyshev.chebx = array([0, 1])

4.23. Polynomials 865



NumPy Reference, Release 1.15.1

numpy.polynomial.chebyshev.chebtrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters

c [array_like] 1-d array of coefficients, ordered from lowest order to highest.

tol [number, optional] Trailing (i.e., highest order) elements with absolute value less than or
equal to tol (default value is zero) are removed.

Returns

trimmed [ndarray] 1-d array with trailing zeros removed. If the resulting series would be empty,
a series containing a single zero is returned.

Raises

ValueError If tol < 0

See also:

trimseq

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
array([ 0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([ 0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([ 0.0003+0.j , 0.0010-0.001j])

numpy.polynomial.chebyshev.chebline(off, scl)
Chebyshev series whose graph is a straight line.

Parameters

off, scl [scalars] The specified line is given by off + scl*x.

Returns

y [ndarray] This module’s representation of the Chebyshev series for off + scl*x.

See also:

polyline

Examples

>>> import numpy.polynomial.chebyshev as C
>>> C.chebline(3,2)
array([3, 2])
>>> C.chebval(-3, C.chebline(3,2)) # should be -3
-3.0

866 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.polynomial.chebyshev.cheb2poly(c)
Convert a Chebyshev series to a polynomial.

Convert an array representing the coefficients of a Chebyshev series, ordered from lowest degree to highest, to
an array of the coefficients of the equivalent polynomial (relative to the “standard” basis) ordered from lowest
to highest degree.

Parameters

c [array_like] 1-D array containing the Chebyshev series coefficients, ordered from lowest order
term to highest.

Returns

pol [ndarray] 1-D array containing the coefficients of the equivalent polynomial (relative to the
“standard” basis) ordered from lowest order term to highest.

See also:

poly2cheb

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy import polynomial as P
>>> c = P.Chebyshev(range(4))
>>> c
Chebyshev([ 0., 1., 2., 3.], [-1., 1.])
>>> p = c.convert(kind=P.Polynomial)
>>> p
Polynomial([ -2., -8., 4., 12.], [-1., 1.])
>>> P.cheb2poly(range(4))
array([ -2., -8., 4., 12.])

numpy.polynomial.chebyshev.poly2cheb(pol)
Convert a polynomial to a Chebyshev series.

Convert an array representing the coefficients of a polynomial (relative to the “standard” basis) ordered from
lowest degree to highest, to an array of the coefficients of the equivalent Chebyshev series, ordered from lowest
to highest degree.

Parameters

pol [array_like] 1-D array containing the polynomial coefficients

Returns

c [ndarray] 1-D array containing the coefficients of the equivalent Chebyshev series.

See also:

cheb2poly

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

4.23. Polynomials 867



NumPy Reference, Release 1.15.1

Examples

>>> from numpy import polynomial as P
>>> p = P.Polynomial(range(4))
>>> p
Polynomial([ 0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
>>> c = p.convert(kind=P.Chebyshev)
>>> c
Chebyshev([ 1. , 3.25, 1. , 0.75], domain=[-1, 1], window=[-1, 1])
>>> P.poly2cheb(range(4))
array([ 1. , 3.25, 1. , 0.75])

Legendre Module (numpy.polynomial.legendre)

New in version 1.6.0.

This module provides a number of objects (mostly functions) useful for dealing with Legendre series, including a
Legendre class that encapsulates the usual arithmetic operations. (General information on how this module repre-
sents and works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

Legendre Class

Legendre(coef[, domain, window]) A Legendre series class.

class numpy.polynomial.legendre.Legendre(coef, domain=None, window=None)
A Legendre series class.

The Legendre class provides the standard Python numerical methods ‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and
‘()’ as well as the attributes and methods listed in the ABCPolyBase documentation.

Parameters

coef [array_like] Legendre coefficients in order of increasing degree, i.e., (1, 2, 3) gives
1*P_0(x) + 2*P_1(x) + 3*P_2(x).

domain [(2,) array_like, optional] Domain to use. The interval [domain[0],
domain[1]] is mapped to the interval [window[0], window[1]] by shifting and
scaling. The default value is [-1, 1].

window [(2,) array_like, optional] Window, see domain for its use. The default value is [-1,
1].

New in version 1.6.0.

Methods

__call__(arg) Call self as a function.
basis(deg[, domain, window]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or

window.
Continued on next page

868 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Table 111 – continued from previous page
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, window]) Least squares fit to data.
fromroots(roots[, domain, window]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

Legendre.__call__(arg)
Call self as a function.

classmethod Legendre.basis(deg, domain=None, window=None)
Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

Parameters

deg [int] Degree of the basis polynomial for the series. Must be >= 0.

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] A series with the coefficient of the deg term set to one and all others
zero.

classmethod Legendre.cast(series, domain=None, window=None)
Convert series to series of this class.

The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

New in version 1.7.0.

Parameters

series [series] The series instance to be converted.

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

4.23. Polynomials 869



NumPy Reference, Release 1.15.1

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] A series of the same kind as the calling class and equal to series when
evaluated.

See also:

convert similar instance method

Legendre.convert(domain=None, kind=None, window=None)
Convert series to a different kind and/or domain and/or window.

Parameters

domain [array_like, optional] The domain of the converted series. If the value is None, the
default domain of kind is used.

kind [class, optional] The polynomial series type class to which the current instance should
be converted. If kind is None, then the class of the current instance is used.

window [array_like, optional] The window of the converted series. If the value is None, the
default window of kind is used.

Returns

new_series [series] The returned class can be of different type than the current instance
and/or have a different domain and/or different window.

Notes

Conversion between domains and class types can result in numerically ill defined series.

Legendre.copy()
Return a copy.

Returns

new_series [series] Copy of self.

Legendre.cutdeg(deg)
Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

New in version 1.5.0.

Parameters

deg [non-negative int] The series is reduced to degree deg by discarding the high order terms.
The value of deg must be a non-negative integer.

Returns

new_series [series] New instance of series with reduced degree.

870 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Legendre.degree()
The degree of the series.

New in version 1.5.0.

Returns

degree [int] Degree of the series, one less than the number of coefficients.

Legendre.deriv(m=1)
Differentiate.

Return a series instance of that is the derivative of the current series.

Parameters

m [non-negative int] Find the derivative of order m.

Returns

new_series [series] A new series representing the derivative. The domain is the same as the
domain of the differentiated series.

classmethod Legendre.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, win-
dow=None)

Least squares fit to data.

Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters

x [array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y [array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg [int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all
terms up to and including the deg’th term are included in the fit. For NumPy versions >=
1.11.0 a list of integers specifying the degrees of the terms to include may be used instead.

domain [{None, [beg, end], []}, optional] Domain to use for the returned series. If None,
then a minimal domain that covers the points x is chosen. If [] the class domain is used.
The default value was the class domain in NumPy 1.4 and None in later versions. The []
option was added in numpy 1.5.0.

rcond [float, optional] Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The default value is len(x)*eps,
where eps is the relative precision of the float type, about 2e-16 in most cases.

full [bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w [array_like, shape (M,), optional] Weights. If not None the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

window [{[beg, end]}, optional] Window to use for the returned series. The default value is
the default class domain

New in version 1.6.0.

4.23. Polynomials 871



NumPy Reference, Release 1.15.1

Returns

new_series [series] A series that represents the least squares fit to the data and has the do-
main specified in the call.

[resid, rank, sv, rcond] [list] These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of the
scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix rcond
– value of rcond.

For more details, see linalg.lstsq.

classmethod Legendre.fromroots(roots, domain=[], window=None)
Return series instance that has the specified roots.

Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters

roots [array_like] List of roots.

domain [{[], None, array_like}, optional] Domain for the resulting series. If None the do-
main is the interval from the smallest root to the largest. If [] the domain is the class
domain. The default is [].

window [{None, array_like}, optional] Window for the returned series. If None the class
window is used. The default is None.

Returns

new_series [series] Series with the specified roots.

Legendre.has_samecoef(other)
Check if coefficients match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the coef attribute.

Returns

bool [boolean] True if the coefficients are the same, False otherwise.

Legendre.has_samedomain(other)
Check if domains match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the domain attribute.

Returns

bool [boolean] True if the domains are the same, False otherwise.

Legendre.has_sametype(other)
Check if types match.

New in version 1.7.0.

Parameters

other [object] Class instance.

872 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns

bool [boolean] True if other is same class as self

Legendre.has_samewindow(other)
Check if windows match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the window attribute.

Returns

bool [boolean] True if the windows are the same, False otherwise.

classmethod Legendre.identity(domain=None, window=None)
Identity function.

If p is the returned series, then p(x) == x for all values of x.

Parameters

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] Series of representing the identity.

Legendre.integ(m=1, k=[], lbnd=None)
Integrate.

Return a series instance that is the definite integral of the current series.

Parameters

m [non-negative int] The number of integrations to perform.

k [array_like] Integration constants. The first constant is applied to the first integration, the
second to the second, and so on. The list of values must less than or equal to m in length
and any missing values are set to zero.

lbnd [Scalar] The lower bound of the definite integral.

Returns

new_series [series] A new series representing the integral. The domain is the same as the
domain of the integrated series.

Legendre.linspace(n=100, domain=None)
Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial
at the points x. By default the domain is the same as that of the series instance. This method is intended
mostly as a plotting aid.

New in version 1.5.0.

Parameters

4.23. Polynomials 873



NumPy Reference, Release 1.15.1

n [int, optional] Number of point pairs to return. The default value is 100.

domain [{None, array_like}, optional] If not None, the specified domain is used instead of
that of the calling instance. It should be of the form [beg,end]. The default is None
which case the class domain is used.

Returns

x, y [ndarray] x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series
evaluated at element of x.

Legendre.mapparms()
Return the mapping parameters.

The returned values define a linear map off + scl*x that is applied to the input arguments before
the series is evaluated. The map depends on the domain and window; if the current domain is equal
to the window the resulting map is the identity. If the coefficients of the series instance are to be used
by themselves outside this class, then the linear function must be substituted for the x in the standard
representation of the base polynomials.

Returns

off, scl [float or complex] The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

Legendre.roots()
Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the roots decrease the further outside the domain
they lie.

Returns

roots [ndarray] Array containing the roots of the series.

Legendre.trim(tol=0)
Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the
beginning of the series is reached. If all the coefficients would be removed the series is set to [0]. A new
series instance is returned with the new coefficients. The current instance remains unchanged.

Parameters

tol [non-negative number.] All trailing coefficients less than tol will be removed.

Returns

new_series [series] Contains the new set of coefficients.

Legendre.truncate(size)
Truncate series to length size.

874 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Reduce the series to length size by discarding the high degree terms. The value of size must be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very
small.

Parameters

size [positive int] The series is reduced to length size by discarding the high degree terms.
The value of size must be a positive integer.

Returns

new_series [series] New instance of series with truncated coefficients.

Basics

legval(x, c[, tensor]) Evaluate a Legendre series at points x.
legval2d(x, y, c) Evaluate a 2-D Legendre series at points (x, y).
legval3d(x, y, z, c) Evaluate a 3-D Legendre series at points (x, y, z).
leggrid2d(x, y, c) Evaluate a 2-D Legendre series on the Cartesian product of

x and y.
leggrid3d(x, y, z, c) Evaluate a 3-D Legendre series on the Cartesian product of

x, y, and z.
legroots(c) Compute the roots of a Legendre series.
legfromroots(roots) Generate a Legendre series with given roots.

numpy.polynomial.legendre.legval(x, c, tensor=True)
Evaluate a Legendre series at points x.

If c is of length n + 1, this function returns the value:

𝑝(𝑥) = 𝑐0 * 𝐿0(𝑥) + 𝑐1 * 𝐿1(𝑥) + ... + 𝑐𝑛 * 𝐿𝑛(𝑥)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In
either case, either x or its elements must support multiplication and addition both with themselves and with the
elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the
shape will be c.shape[1:]. Note that scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a
concern.

Parameters

x [array_like, compatible object] If x is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, x or its elements must support
addition and multiplication with with themselves and with the elements of c.

c [array_like] Array of coefficients ordered so that the coefficients for terms of degree n are
contained in c[n]. If c is multidimensional the remaining indices enumerate multiple poly-
nomials. In the two dimensional case the coefficients may be thought of as stored in the
columns of c.

tensor [boolean, optional] If True, the shape of the coefficient array is extended with ones on
the right, one for each dimension of x. Scalars have dimension 0 for this action. The result
is that every column of coefficients in c is evaluated for every element of x. If False, x

4.23. Polynomials 875



NumPy Reference, Release 1.15.1

is broadcast over the columns of c for the evaluation. This keyword is useful when c is
multidimensional. The default value is True.

New in version 1.7.0.

Returns

values [ndarray, algebra_like] The shape of the return value is described above.

See also:

legval2d, leggrid2d, legval3d, leggrid3d

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

numpy.polynomial.legendre.legval2d(x, y, c)
Evaluate a 2-D Legendre series at points (x, y).

This function returns the values:

𝑝(𝑥, 𝑦) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦)

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.

If c is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be
c.shape[2:] + x.shape.

Parameters

x, y [array_like, compatible objects] The two dimensional series is evaluated at the points (x,
y), where x and y must have the same shape. If x or y is a list or tuple, it is first converted to
an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j is contained in c[i,j]. If c has dimension greater than two the remaining indices
enumerate multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the two dimensional Legendre series at points
formed from pairs of corresponding values from x and y.

See also:

legval, leggrid2d, legval3d, leggrid3d

Notes

New in version 1.7.0.

numpy.polynomial.legendre.legval3d(x, y, z, c)
Evaluate a 3-D Legendre series at points (x, y, z).

This function returns the values:

𝑝(𝑥, 𝑦, 𝑧) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦) * 𝐿𝑘(𝑧)

876 Chapter 4. Routines



NumPy Reference, Release 1.15.1

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements
must support multiplication and addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape.

Parameters

x, y, z [array_like, compatible object] The three dimensional series is evaluated at the points (x,
y, z), where x, y, and z must have the same shape. If any of x, y, or z is a list or tuple, it is first
converted to an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated
as a scalar.

c [array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j,k is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the multidimensional polynomial on points
formed with triples of corresponding values from x, y, and z.

See also:

legval, legval2d, leggrid2d, leggrid3d

Notes

New in version 1.7.0.

numpy.polynomial.legendre.leggrid2d(x, y, c)
Evaluate a 2-D Legendre series on the Cartesian product of x and y.

This function returns the values:

𝑝(𝑎, 𝑏) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝐿𝑖(𝑎) * 𝐿𝑗(𝑏)

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x and y or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the
result will be c.shape[2:] + x.shape + y.shape.

Parameters

x, y [array_like, compatible objects] The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree i,j
is contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns

4.23. Polynomials 877



NumPy Reference, Release 1.15.1

values [ndarray, compatible object] The values of the two dimensional Chebyshev series at
points in the Cartesian product of x and y.

See also:

legval, legval2d, legval3d, leggrid3d

Notes

New in version 1.7.0.

numpy.polynomial.legendre.leggrid3d(x, y, z, c)
Evaluate a 3-D Legendre series on the Cartesian product of x, y, and z.

This function returns the values:

𝑝(𝑎, 𝑏, 𝑐) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝐿𝑖(𝑎) * 𝐿𝑗(𝑏) * 𝐿𝑘(𝑐)

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters

x, y, z [array_like, compatible objects] The three dimensional series is evaluated at the points in
the Cartesian product of x, y, and z. If x,‘y‘, or z is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the two dimensional polynomial at points in
the Cartesian product of x and y.

See also:

legval, legval2d, leggrid2d, legval3d

Notes

New in version 1.7.0.

numpy.polynomial.legendre.legroots(c)
Compute the roots of a Legendre series.

Return the roots (a.k.a. “zeros”) of the polynomial

𝑝(𝑥) =
∑︁
𝑖

𝑐[𝑖] * 𝐿𝑖(𝑥).

Parameters

878 Chapter 4. Routines



NumPy Reference, Release 1.15.1

c [1-D array_like] 1-D array of coefficients.

Returns

out [ndarray] Array of the roots of the series. If all the roots are real, then out is also real,
otherwise it is complex.

See also:

polyroots, chebroots, lagroots, hermroots, hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companion matrix, Roots far from the origin of the
complex plane may have large errors due to the numerical instability of the series for such values. Roots with
multiplicity greater than 1 will also show larger errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s
method.

The Legendre series basis polynomials aren’t powers of x so the results of this function may seem unintuitive.

Examples

>>> import numpy.polynomial.legendre as leg
>>> leg.legroots((1, 2, 3, 4)) # 4L_3 + 3L_2 + 2L_1 + 1L_0, all real roots
array([-0.85099543, -0.11407192, 0.51506735])

numpy.polynomial.legendre.legfromroots(roots)
Generate a Legendre series with given roots.

The function returns the coefficients of the polynomial

𝑝(𝑥) = (𝑥− 𝑟0) * (𝑥− 𝑟1) * ... * (𝑥− 𝑟𝑛),

in Legendre form, where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must appear
in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots looks
something like [2, 2, 2, 3, 3]. The roots can appear in any order.

If the returned coefficients are c, then

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝐿1(𝑥) + ... + 𝑐𝑛 * 𝐿𝑛(𝑥)

The coefficient of the last term is not generally 1 for monic polynomials in Legendre form.

Parameters

roots [array_like] Sequence containing the roots.

Returns

out [ndarray] 1-D array of coefficients. If all roots are real then out is a real array, if some of
the roots are complex, then out is complex even if all the coefficients in the result are real
(see Examples below).

See also:

polyfromroots, chebfromroots, lagfromroots, hermfromroots, hermefromroots.

4.23. Polynomials 879



NumPy Reference, Release 1.15.1

Examples

>>> import numpy.polynomial.legendre as L
>>> L.legfromroots((-1,0,1)) # x^3 - x relative to the standard basis
array([ 0. , -0.4, 0. , 0.4])
>>> j = complex(0,1)
>>> L.legfromroots((-j,j)) # x^2 + 1 relative to the standard basis
array([ 1.33333333+0.j, 0.00000000+0.j, 0.66666667+0.j])

Fitting

legfit(x, y, deg[, rcond, full, w]) Least squares fit of Legendre series to data.
legvander(x, deg) Pseudo-Vandermonde matrix of given degree.
legvander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
legvander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.

numpy.polynomial.legendre.legfit(x, y, deg, rcond=None, full=False, w=None)
Least squares fit of Legendre series to data.

Return the coefficients of a Legendre series of degree deg that is the least squares fit to the data values y given
at points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each
column of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted
polynomial(s) are in the form

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝐿1(𝑥) + ... + 𝑐𝑛 * 𝐿𝑛(𝑥),

where n is deg.

Parameters

x [array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y [array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg [int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all
terms up to and including the deg’th term are included in the fit. For NumPy versions >=
1.11.0 a list of integers specifying the degrees of the terms to include may be used instead.

rcond [float, optional] Relative condition number of the fit. Singular values smaller than this
relative to the largest singular value will be ignored. The default value is len(x)*eps, where
eps is the relative precision of the float type, about 2e-16 in most cases.

full [bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w [array_like, shape (M,), optional] Weights. If not None, the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

Returns

880 Chapter 4. Routines



NumPy Reference, Release 1.15.1

coef [ndarray, shape (M,) or (M, K)] Legendre coefficients ordered from low to high. If y was
2-D, the coefficients for the data in column k of y are in column k. If deg is specified as a
list, coefficients for terms not included in the fit are set equal to zero in the returned coef.

[residuals, rank, singular_values, rcond] [list] These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of the
scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix rcond –
value of rcond.

For more details, see linalg.lstsq.

Warns

RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warn-
ing is only raised if full = False. The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also:

chebfit, polyfit, lagfit, hermfit, hermefit

legval Evaluates a Legendre series.

legvander Vandermonde matrix of Legendre series.

legweight Legendre weight function (= 1).

linalg.lstsq Computes a least-squares fit from the matrix.

scipy.interpolate.UnivariateSpline Computes spline fits.

Notes

The solution is the coefficients of the Legendre series p that minimizes the sum of the weighted squared errors

𝐸 =
∑︁
𝑗

𝑤2
𝑗 * |𝑦𝑗 − 𝑝(𝑥𝑗)|2,

where 𝑤𝑗 are the weights. This problem is solved by setting up as the (typically) overdetermined matrix equation

𝑉 (𝑥) * 𝑐 = 𝑤 * 𝑦,

where V is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the
weights, and y are the observed values. This equation is then solved using the singular value decomposition of
V.

If some of the singular values of V are so small that they are neglected, then a RankWarning will be issued. This
means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of the
warning. The rcond parameter can also be set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using Legendre series are usually better conditioned than fits using power series, but much can depend on
the distribution of the sample points and the smoothness of the data. If the quality of the fit is inadequate splines
may be a good alternative.

4.23. Polynomials 881

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline


NumPy Reference, Release 1.15.1

References

[1]

numpy.polynomial.legendre.legvander(x, deg)
Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix
is defined by

𝑉 [..., 𝑖] = 𝐿𝑖(𝑥)

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the
Legendre polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the array V = legvander(x, n), then np.
dot(V, c) and legval(x, c) are the same up to roundoff. This equivalence is useful both for least
squares fitting and for the evaluation of a large number of Legendre series of the same degree and sample points.

Parameters

x [array_like] Array of points. The dtype is converted to float64 or complex128 depending on
whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg [int] Degree of the resulting matrix.

Returns

vander [ndarray] The pseudo-Vandermonde matrix. The shape of the returned matrix is x.
shape + (deg + 1,), where The last index is the degree of the corresponding Legen-
dre polynomial. The dtype will be the same as the converted x.

numpy.polynomial.legendre.legvander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

𝑉 [..., (𝑑𝑒𝑔[1] + 1) * 𝑖 + 𝑗] = 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦),

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y) and the last
index encodes the degrees of the Legendre polynomials.

If V = legvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a
2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

𝑐00, 𝑐01, 𝑐02..., 𝑐10, 𝑐11, 𝑐12...

and np.dot(V, c.flat) and legval2d(x, y, c) will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 2-D Legendre series of the
same degrees and sample points.

Parameters

x, y [array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted
to either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg [list of ints] List of maximum degrees of the form [x_deg, y_deg].

Returns

882 Chapter 4. Routines



NumPy Reference, Release 1.15.1

vander2d [ndarray] The shape of the returned matrix is x.shape + (order,), where
𝑜𝑟𝑑𝑒𝑟 = (𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1). The dtype will be the same as the converted x
and y.

See also:

legvander, legvander3d., legval3d

Notes

New in version 1.7.0.

numpy.polynomial.legendre.legvander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by

𝑉 [..., (𝑚 + 1)(𝑛 + 1)𝑖 + (𝑛 + 1)𝑗 + 𝑘] = 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦) * 𝐿𝑘(𝑧),

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x, y, z) and the
last index encodes the degrees of the Legendre polynomials.

If V = legvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

𝑐000, 𝑐001, 𝑐002, ..., 𝑐010, 𝑐011, 𝑐012, ...

and np.dot(V, c.flat) and legval3d(x, y, z, c) will be the same up to roundoff. This equiva-
lence is useful both for least squares fitting and for the evaluation of a large number of 3-D Legendre series of
the same degrees and sample points.

Parameters

x, y, z [array_like] Arrays of point coordinates, all of the same shape. The dtypes will be con-
verted to either float64 or complex128 depending on whether any of the elements are com-
plex. Scalars are converted to 1-D arrays.

deg [list of ints] List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns

vander3d [ndarray] The shape of the returned matrix is x.shape + (order,), where
𝑜𝑟𝑑𝑒𝑟 = (𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1) * (𝑑𝑒𝑔[2] + 1). The dtype will be the same as
the converted x, y, and z.

See also:

legvander, legvander3d., legval3d

Notes

New in version 1.7.0.

Calculus

4.23. Polynomials 883



NumPy Reference, Release 1.15.1

legder(c[, m, scl, axis]) Differentiate a Legendre series.
legint(c[, m, k, lbnd, scl, axis]) Integrate a Legendre series.

numpy.polynomial.legendre.legder(c, m=1, scl=1, axis=0)
Differentiate a Legendre series.

Returns the Legendre series coefficients c differentiated m times along axis. At each iteration the result is mul-
tiplied by scl (the scaling factor is for use in a linear change of variable). The argument c is an array of coeffi-
cients from low to high degree along each axis, e.g., [1,2,3] represents the series 1*L_0 + 2*L_1 + 3*L_2
while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) +
2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is y.

Parameters

c [array_like] Array of Legendre series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding
index.

m [int, optional] Number of derivatives taken, must be non-negative. (Default: 1)

scl [scalar, optional] Each differentiation is multiplied by scl. The end result is multiplication
by scl**m. This is for use in a linear change of variable. (Default: 1)

axis [int, optional] Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

Returns

der [ndarray] Legendre series of the derivative.

See also:

legint

Notes

In general, the result of differentiating a Legendre series does not resemble the same operation on a power series.
Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial import legendre as L
>>> c = (1,2,3,4)
>>> L.legder(c)
array([ 6., 9., 20.])
>>> L.legder(c, 3)
array([ 60.])
>>> L.legder(c, scl=-1)
array([ -6., -9., -20.])
>>> L.legder(c, 2,-1)
array([ 9., 60.])

numpy.polynomial.legendre.legint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a Legendre series.

884 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns the Legendre series coefficients c integrated m times from lbnd along axis. At each iteration the re-
sulting series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a
linear change of variable. (“Buyer beware”: note that, depending on what one is doing, one may want scl to
be the reciprocal of what one might expect; for more information, see the Notes section below.) The argu-
ment c is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series
L_0 + 2*L_1 + 3*L_2 while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) +
2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is y.

Parameters

c [array_like] Array of Legendre series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding
index.

m [int, optional] Order of integration, must be positive. (Default: 1)

k [{[], list, scalar}, optional] Integration constant(s). The value of the first integral at lbnd is
the first value in the list, the value of the second integral at lbnd is the second value, etc.
If k == [] (the default), all constants are set to zero. If m == 1, a single scalar can be
given instead of a list.

lbnd [scalar, optional] The lower bound of the integral. (Default: 0)

scl [scalar, optional] Following each integration the result is multiplied by scl before the inte-
gration constant is added. (Default: 1)

axis [int, optional] Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

Returns

S [ndarray] Legendre series coefficient array of the integral.

Raises

ValueError If m < 0, len(k) > m, np.ndim(lbnd) != 0, or np.ndim(scl) !=
0.

See also:

legder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable 𝑢 = 𝑎𝑥 + 𝑏 in an integral relative to x. Then 𝑑𝑥 = 𝑑𝑢/𝑎, so one will need to set scl
equal to 1/𝑎 - perhaps not what one would have first thought.

Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis
set. Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial import legendre as L
>>> c = (1,2,3)
>>> L.legint(c)
array([ 0.33333333, 0.4 , 0.66666667, 0.6 ])
>>> L.legint(c, 3)

(continues on next page)

4.23. Polynomials 885



NumPy Reference, Release 1.15.1

(continued from previous page)

array([ 1.66666667e-02, -1.78571429e-02, 4.76190476e-02,
-1.73472348e-18, 1.90476190e-02, 9.52380952e-03])

>>> L.legint(c, k=3)
array([ 3.33333333, 0.4 , 0.66666667, 0.6 ])
>>> L.legint(c, lbnd=-2)
array([ 7.33333333, 0.4 , 0.66666667, 0.6 ])
>>> L.legint(c, scl=2)
array([ 0.66666667, 0.8 , 1.33333333, 1.2 ])

Algebra

legadd(c1, c2) Add one Legendre series to another.
legsub(c1, c2) Subtract one Legendre series from another.
legmul(c1, c2) Multiply one Legendre series by another.
legmulx(c) Multiply a Legendre series by x.
legdiv(c1, c2) Divide one Legendre series by another.
legpow(c, pow[, maxpower]) Raise a Legendre series to a power.

numpy.polynomial.legendre.legadd(c1, c2)
Add one Legendre series to another.

Returns the sum of two Legendre series c1 + c2. The arguments are sequences of coefficients ordered from
lowest order term to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters

c1, c2 [array_like] 1-D arrays of Legendre series coefficients ordered from low to high.

Returns

out [ndarray] Array representing the Legendre series of their sum.

See also:

legsub, legmul, legdiv , legpow

Notes

Unlike multiplication, division, etc., the sum of two Legendre series is a Legendre series (without having to “re-
project” the result onto the basis set) so addition, just like that of “standard” polynomials, is simply “component-
wise.”

Examples

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> L.legadd(c1,c2)
array([ 4., 4., 4.])

numpy.polynomial.legendre.legsub(c1, c2)
Subtract one Legendre series from another.

886 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns the difference of two Legendre series c1 - c2. The sequences of coefficients are from lowest order term
to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters

c1, c2 [array_like] 1-D arrays of Legendre series coefficients ordered from low to high.

Returns

out [ndarray] Of Legendre series coefficients representing their difference.

See also:

legadd, legmul, legdiv , legpow

Notes

Unlike multiplication, division, etc., the difference of two Legendre series is a Legendre series (without having
to “reproject” the result onto the basis set) so subtraction, just like that of “standard” polynomials, is simply
“component-wise.”

Examples

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> L.legsub(c1,c2)
array([-2., 0., 2.])
>>> L.legsub(c2,c1) # -C.legsub(c1,c2)
array([ 2., 0., -2.])

numpy.polynomial.legendre.legmul(c1, c2)
Multiply one Legendre series by another.

Returns the product of two Legendre series c1 * c2. The arguments are sequences of coefficients, from lowest
order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters

c1, c2 [array_like] 1-D arrays of Legendre series coefficients ordered from low to high.

Returns

out [ndarray] Of Legendre series coefficients representing their product.

See also:

legadd, legsub, legdiv , legpow

Notes

In general, the (polynomial) product of two C-series results in terms that are not in the Legendre polynomial
basis set. Thus, to express the product as a Legendre series, it is necessary to “reproject” the product onto said
basis set, which may produce “unintuitive” (but correct) results; see Examples section below.

4.23. Polynomials 887



NumPy Reference, Release 1.15.1

Examples

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2)
>>> P.legmul(c1,c2) # multiplication requires "reprojection"
array([ 4.33333333, 10.4 , 11.66666667, 3.6 ])

numpy.polynomial.legendre.legmulx(c)
Multiply a Legendre series by x.

Multiply the Legendre series c by x, where x is the independent variable.

Parameters

c [array_like] 1-D array of Legendre series coefficients ordered from low to high.

Returns

out [ndarray] Array representing the result of the multiplication.

Notes

The multiplication uses the recursion relationship for Legendre polynomials in the form

𝑥𝑃𝑖(𝑥) = ((𝑖 + 1) * 𝑃𝑖+1(𝑥) + 𝑖 * 𝑃𝑖−1(𝑥))/(2𝑖 + 1)

numpy.polynomial.legendre.legdiv(c1, c2)
Divide one Legendre series by another.

Returns the quotient-with-remainder of two Legendre series c1 / c2. The arguments are sequences of coefficients
from lowest order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters

c1, c2 [array_like] 1-D arrays of Legendre series coefficients ordered from low to high.

Returns

quo, rem [ndarrays] Of Legendre series coefficients representing the quotient and remainder.

See also:

legadd, legsub, legmul, legpow

Notes

In general, the (polynomial) division of one Legendre series by another results in quotient and remainder terms
that are not in the Legendre polynomial basis set. Thus, to express these results as a Legendre series, it is
necessary to “reproject” the results onto the Legendre basis set, which may produce “unintuitive” (but correct)
results; see Examples section below.

Examples

888 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> L.legdiv(c1,c2) # quotient "intuitive," remainder not
(array([ 3.]), array([-8., -4.]))
>>> c2 = (0,1,2,3)
>>> L.legdiv(c2,c1) # neither "intuitive"
(array([-0.07407407, 1.66666667]), array([-1.03703704, -2.51851852]))

numpy.polynomial.legendre.legpow(c, pow, maxpower=16)
Raise a Legendre series to a power.

Returns the Legendre series c raised to the power pow. The argument c is a sequence of coefficients ordered
from low to high. i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

Parameters

c [array_like] 1-D array of Legendre series coefficients ordered from low to high.

pow [integer] Power to which the series will be raised

maxpower [integer, optional] Maximum power allowed. This is mainly to limit growth of the
series to unmanageable size. Default is 16

Returns

coef [ndarray] Legendre series of power.

See also:

legadd, legsub, legmul, legdiv

Quadrature

leggauss(deg) Gauss-Legendre quadrature.
legweight(x) Weight function of the Legendre polynomials.

numpy.polynomial.legendre.leggauss(deg)
Gauss-Legendre quadrature.

Computes the sample points and weights for Gauss-Legendre quadrature. These sample points and weights will
correctly integrate polynomials of degree 2 * 𝑑𝑒𝑔 − 1 or less over the interval [−1, 1] with the weight function
𝑓(𝑥) = 1.

Parameters

deg [int] Number of sample points and weights. It must be >= 1.

Returns

x [ndarray] 1-D ndarray containing the sample points.

y [ndarray] 1-D ndarray containing the weights.

Notes

New in version 1.7.0.

4.23. Polynomials 889



NumPy Reference, Release 1.15.1

The results have only been tested up to degree 100, higher degrees may be problematic. The weights are
determined by using the fact that

𝑤𝑘 = 𝑐/(𝐿′
𝑛(𝑥𝑘) * 𝐿𝑛−1(𝑥𝑘))

where 𝑐 is a constant independent of 𝑘 and 𝑥𝑘 is the k’th root of 𝐿𝑛, and then scaling the results to get the right
value when integrating 1.

numpy.polynomial.legendre.legweight(x)
Weight function of the Legendre polynomials.

The weight function is 1 and the interval of integration is [−1, 1]. The Legendre polynomials are orthogonal,
but not normalized, with respect to this weight function.

Parameters

x [array_like] Values at which the weight function will be computed.

Returns

w [ndarray] The weight function at x.

Notes

New in version 1.7.0.

Miscellaneous

legcompanion(c) Return the scaled companion matrix of c.
legdomain
legzero
legone
legx
legtrim(c[, tol]) Remove “small” “trailing” coefficients from a polynomial.
legline(off, scl) Legendre series whose graph is a straight line.
leg2poly(c) Convert a Legendre series to a polynomial.
poly2leg(pol) Convert a polynomial to a Legendre series.

numpy.polynomial.legendre.legcompanion(c)
Return the scaled companion matrix of c.

The basis polynomials are scaled so that the companion matrix is symmetric when c is an Legendre basis
polynomial. This provides better eigenvalue estimates than the unscaled case and for basis polynomials the
eigenvalues are guaranteed to be real if numpy.linalg.eigvalsh is used to obtain them.

Parameters

c [array_like] 1-D array of Legendre series coefficients ordered from low to high degree.

Returns

mat [ndarray] Scaled companion matrix of dimensions (deg, deg).

890 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

New in version 1.7.0.

numpy.polynomial.legendre.legdomain = array([-1, 1])

numpy.polynomial.legendre.legzero = array([0])

numpy.polynomial.legendre.legone = array([1])

numpy.polynomial.legendre.legx = array([0, 1])

numpy.polynomial.legendre.legtrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters

c [array_like] 1-d array of coefficients, ordered from lowest order to highest.

tol [number, optional] Trailing (i.e., highest order) elements with absolute value less than or
equal to tol (default value is zero) are removed.

Returns

trimmed [ndarray] 1-d array with trailing zeros removed. If the resulting series would be empty,
a series containing a single zero is returned.

Raises

ValueError If tol < 0

See also:

trimseq

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
array([ 0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([ 0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([ 0.0003+0.j , 0.0010-0.001j])

numpy.polynomial.legendre.legline(off, scl)
Legendre series whose graph is a straight line.

Parameters

off, scl [scalars] The specified line is given by off + scl*x.

Returns

y [ndarray] This module’s representation of the Legendre series for off + scl*x.

See also:

polyline, chebline

4.23. Polynomials 891



NumPy Reference, Release 1.15.1

Examples

>>> import numpy.polynomial.legendre as L
>>> L.legline(3,2)
array([3, 2])
>>> L.legval(-3, L.legline(3,2)) # should be -3
-3.0

numpy.polynomial.legendre.leg2poly(c)
Convert a Legendre series to a polynomial.

Convert an array representing the coefficients of a Legendre series, ordered from lowest degree to highest, to an
array of the coefficients of the equivalent polynomial (relative to the “standard” basis) ordered from lowest to
highest degree.

Parameters

c [array_like] 1-D array containing the Legendre series coefficients, ordered from lowest order
term to highest.

Returns

pol [ndarray] 1-D array containing the coefficients of the equivalent polynomial (relative to the
“standard” basis) ordered from lowest order term to highest.

See also:

poly2leg

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> c = P.Legendre(range(4))
>>> c
Legendre([ 0., 1., 2., 3.], [-1., 1.])
>>> p = c.convert(kind=P.Polynomial)
>>> p
Polynomial([-1. , -3.5, 3. , 7.5], [-1., 1.])
>>> P.leg2poly(range(4))
array([-1. , -3.5, 3. , 7.5])

numpy.polynomial.legendre.poly2leg(pol)
Convert a polynomial to a Legendre series.

Convert an array representing the coefficients of a polynomial (relative to the “standard” basis) ordered from
lowest degree to highest, to an array of the coefficients of the equivalent Legendre series, ordered from lowest
to highest degree.

Parameters

pol [array_like] 1-D array containing the polynomial coefficients

Returns

c [ndarray] 1-D array containing the coefficients of the equivalent Legendre series.

892 Chapter 4. Routines



NumPy Reference, Release 1.15.1

See also:

leg2poly

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy import polynomial as P
>>> p = P.Polynomial(np.arange(4))
>>> p
Polynomial([ 0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
>>> c = P.Legendre(P.legendre.poly2leg(p.coef))
>>> c
Legendre([ 1. , 3.25, 1. , 0.75], domain=[-1, 1], window=[-1, 1])

Laguerre Module (numpy.polynomial.laguerre)

New in version 1.6.0.

This module provides a number of objects (mostly functions) useful for dealing with Laguerre series, including a
Laguerre class that encapsulates the usual arithmetic operations. (General information on how this module repre-
sents and works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

Laguerre Class

Laguerre(coef[, domain, window]) A Laguerre series class.

class numpy.polynomial.laguerre.Laguerre(coef, domain=None, window=None)
A Laguerre series class.

The Laguerre class provides the standard Python numerical methods ‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and
‘()’ as well as the attributes and methods listed in the ABCPolyBase documentation.

Parameters

coef [array_like] Laguerre coefficients in order of increasing degree, i.e, (1, 2, 3) gives
1*L_0(x) + 2*L_1(X) + 3*L_2(x).

domain [(2,) array_like, optional] Domain to use. The interval [domain[0],
domain[1]] is mapped to the interval [window[0], window[1]] by shifting and
scaling. The default value is [0, 1].

window [(2,) array_like, optional] Window, see domain for its use. The default value is [0, 1].

New in version 1.6.0.

Methods

4.23. Polynomials 893



NumPy Reference, Release 1.15.1

__call__(arg) Call self as a function.
basis(deg[, domain, window]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or

window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, window]) Least squares fit to data.
fromroots(roots[, domain, window]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

Laguerre.__call__(arg)
Call self as a function.

classmethod Laguerre.basis(deg, domain=None, window=None)
Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

Parameters

deg [int] Degree of the basis polynomial for the series. Must be >= 0.

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] A series with the coefficient of the deg term set to one and all others
zero.

classmethod Laguerre.cast(series, domain=None, window=None)
Convert series to series of this class.

The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

New in version 1.7.0.

Parameters

894 Chapter 4. Routines



NumPy Reference, Release 1.15.1

series [series] The series instance to be converted.

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] A series of the same kind as the calling class and equal to series when
evaluated.

See also:

convert similar instance method

Laguerre.convert(domain=None, kind=None, window=None)
Convert series to a different kind and/or domain and/or window.

Parameters

domain [array_like, optional] The domain of the converted series. If the value is None, the
default domain of kind is used.

kind [class, optional] The polynomial series type class to which the current instance should
be converted. If kind is None, then the class of the current instance is used.

window [array_like, optional] The window of the converted series. If the value is None, the
default window of kind is used.

Returns

new_series [series] The returned class can be of different type than the current instance
and/or have a different domain and/or different window.

Notes

Conversion between domains and class types can result in numerically ill defined series.

Laguerre.copy()
Return a copy.

Returns

new_series [series] Copy of self.

Laguerre.cutdeg(deg)
Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

New in version 1.5.0.

Parameters

deg [non-negative int] The series is reduced to degree deg by discarding the high order terms.
The value of deg must be a non-negative integer.

4.23. Polynomials 895



NumPy Reference, Release 1.15.1

Returns

new_series [series] New instance of series with reduced degree.

Laguerre.degree()
The degree of the series.

New in version 1.5.0.

Returns

degree [int] Degree of the series, one less than the number of coefficients.

Laguerre.deriv(m=1)
Differentiate.

Return a series instance of that is the derivative of the current series.

Parameters

m [non-negative int] Find the derivative of order m.

Returns

new_series [series] A new series representing the derivative. The domain is the same as the
domain of the differentiated series.

classmethod Laguerre.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, win-
dow=None)

Least squares fit to data.

Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters

x [array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y [array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg [int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all
terms up to and including the deg’th term are included in the fit. For NumPy versions >=
1.11.0 a list of integers specifying the degrees of the terms to include may be used instead.

domain [{None, [beg, end], []}, optional] Domain to use for the returned series. If None,
then a minimal domain that covers the points x is chosen. If [] the class domain is used.
The default value was the class domain in NumPy 1.4 and None in later versions. The []
option was added in numpy 1.5.0.

rcond [float, optional] Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The default value is len(x)*eps,
where eps is the relative precision of the float type, about 2e-16 in most cases.

full [bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w [array_like, shape (M,), optional] Weights. If not None the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

896 Chapter 4. Routines



NumPy Reference, Release 1.15.1

window [{[beg, end]}, optional] Window to use for the returned series. The default value is
the default class domain

New in version 1.6.0.

Returns

new_series [series] A series that represents the least squares fit to the data and has the do-
main specified in the call.

[resid, rank, sv, rcond] [list] These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of the
scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix rcond
– value of rcond.

For more details, see linalg.lstsq.

classmethod Laguerre.fromroots(roots, domain=[], window=None)
Return series instance that has the specified roots.

Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters

roots [array_like] List of roots.

domain [{[], None, array_like}, optional] Domain for the resulting series. If None the do-
main is the interval from the smallest root to the largest. If [] the domain is the class
domain. The default is [].

window [{None, array_like}, optional] Window for the returned series. If None the class
window is used. The default is None.

Returns

new_series [series] Series with the specified roots.

Laguerre.has_samecoef(other)
Check if coefficients match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the coef attribute.

Returns

bool [boolean] True if the coefficients are the same, False otherwise.

Laguerre.has_samedomain(other)
Check if domains match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the domain attribute.

Returns

bool [boolean] True if the domains are the same, False otherwise.

4.23. Polynomials 897



NumPy Reference, Release 1.15.1

Laguerre.has_sametype(other)
Check if types match.

New in version 1.7.0.

Parameters

other [object] Class instance.

Returns

bool [boolean] True if other is same class as self

Laguerre.has_samewindow(other)
Check if windows match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the window attribute.

Returns

bool [boolean] True if the windows are the same, False otherwise.

classmethod Laguerre.identity(domain=None, window=None)
Identity function.

If p is the returned series, then p(x) == x for all values of x.

Parameters

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] Series of representing the identity.

Laguerre.integ(m=1, k=[], lbnd=None)
Integrate.

Return a series instance that is the definite integral of the current series.

Parameters

m [non-negative int] The number of integrations to perform.

k [array_like] Integration constants. The first constant is applied to the first integration, the
second to the second, and so on. The list of values must less than or equal to m in length
and any missing values are set to zero.

lbnd [Scalar] The lower bound of the definite integral.

Returns

new_series [series] A new series representing the integral. The domain is the same as the
domain of the integrated series.

898 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Laguerre.linspace(n=100, domain=None)
Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial
at the points x. By default the domain is the same as that of the series instance. This method is intended
mostly as a plotting aid.

New in version 1.5.0.

Parameters

n [int, optional] Number of point pairs to return. The default value is 100.

domain [{None, array_like}, optional] If not None, the specified domain is used instead of
that of the calling instance. It should be of the form [beg,end]. The default is None
which case the class domain is used.

Returns

x, y [ndarray] x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series
evaluated at element of x.

Laguerre.mapparms()
Return the mapping parameters.

The returned values define a linear map off + scl*x that is applied to the input arguments before
the series is evaluated. The map depends on the domain and window; if the current domain is equal
to the window the resulting map is the identity. If the coefficients of the series instance are to be used
by themselves outside this class, then the linear function must be substituted for the x in the standard
representation of the base polynomials.

Returns

off, scl [float or complex] The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

Laguerre.roots()
Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the roots decrease the further outside the domain
they lie.

Returns

roots [ndarray] Array containing the roots of the series.

Laguerre.trim(tol=0)
Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the
beginning of the series is reached. If all the coefficients would be removed the series is set to [0]. A new
series instance is returned with the new coefficients. The current instance remains unchanged.

Parameters

4.23. Polynomials 899



NumPy Reference, Release 1.15.1

tol [non-negative number.] All trailing coefficients less than tol will be removed.

Returns

new_series [series] Contains the new set of coefficients.

Laguerre.truncate(size)
Truncate series to length size.

Reduce the series to length size by discarding the high degree terms. The value of size must be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very
small.

Parameters

size [positive int] The series is reduced to length size by discarding the high degree terms.
The value of size must be a positive integer.

Returns

new_series [series] New instance of series with truncated coefficients.

Basics

lagval(x, c[, tensor]) Evaluate a Laguerre series at points x.
lagval2d(x, y, c) Evaluate a 2-D Laguerre series at points (x, y).
lagval3d(x, y, z, c) Evaluate a 3-D Laguerre series at points (x, y, z).
laggrid2d(x, y, c) Evaluate a 2-D Laguerre series on the Cartesian product of

x and y.
laggrid3d(x, y, z, c) Evaluate a 3-D Laguerre series on the Cartesian product of

x, y, and z.
lagroots(c) Compute the roots of a Laguerre series.
lagfromroots(roots) Generate a Laguerre series with given roots.

numpy.polynomial.laguerre.lagval(x, c, tensor=True)
Evaluate a Laguerre series at points x.

If c is of length n + 1, this function returns the value:

𝑝(𝑥) = 𝑐0 * 𝐿0(𝑥) + 𝑐1 * 𝐿1(𝑥) + ... + 𝑐𝑛 * 𝐿𝑛(𝑥)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In
either case, either x or its elements must support multiplication and addition both with themselves and with the
elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the
shape will be c.shape[1:]. Note that scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a
concern.

Parameters

x [array_like, compatible object] If x is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, x or its elements must support
addition and multiplication with with themselves and with the elements of c.

900 Chapter 4. Routines



NumPy Reference, Release 1.15.1

c [array_like] Array of coefficients ordered so that the coefficients for terms of degree n are
contained in c[n]. If c is multidimensional the remaining indices enumerate multiple poly-
nomials. In the two dimensional case the coefficients may be thought of as stored in the
columns of c.

tensor [boolean, optional] If True, the shape of the coefficient array is extended with ones on
the right, one for each dimension of x. Scalars have dimension 0 for this action. The result
is that every column of coefficients in c is evaluated for every element of x. If False, x
is broadcast over the columns of c for the evaluation. This keyword is useful when c is
multidimensional. The default value is True.

New in version 1.7.0.

Returns

values [ndarray, algebra_like] The shape of the return value is described above.

See also:

lagval2d, laggrid2d, lagval3d, laggrid3d

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

Examples

>>> from numpy.polynomial.laguerre import lagval
>>> coef = [1,2,3]
>>> lagval(1, coef)
-0.5
>>> lagval([[1,2],[3,4]], coef)
array([[-0.5, -4. ],

[-4.5, -2. ]])

numpy.polynomial.laguerre.lagval2d(x, y, c)
Evaluate a 2-D Laguerre series at points (x, y).

This function returns the values:

𝑝(𝑥, 𝑦) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦)

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.

If c is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be
c.shape[2:] + x.shape.

Parameters

x, y [array_like, compatible objects] The two dimensional series is evaluated at the points (x,
y), where x and y must have the same shape. If x or y is a list or tuple, it is first converted to
an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j is contained in c[i,j]. If c has dimension greater than two the remaining indices
enumerate multiple sets of coefficients.

4.23. Polynomials 901



NumPy Reference, Release 1.15.1

Returns

values [ndarray, compatible object] The values of the two dimensional polynomial at points
formed with pairs of corresponding values from x and y.

See also:

lagval, laggrid2d, lagval3d, laggrid3d

Notes

New in version 1.7.0.

numpy.polynomial.laguerre.lagval3d(x, y, z, c)
Evaluate a 3-D Laguerre series at points (x, y, z).

This function returns the values:

𝑝(𝑥, 𝑦, 𝑧) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦) * 𝐿𝑘(𝑧)

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements
must support multiplication and addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape.

Parameters

x, y, z [array_like, compatible object] The three dimensional series is evaluated at the points (x,
y, z), where x, y, and z must have the same shape. If any of x, y, or z is a list or tuple, it is first
converted to an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated
as a scalar.

c [array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j,k is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the multidimension polynomial on points
formed with triples of corresponding values from x, y, and z.

See also:

lagval, lagval2d, laggrid2d, laggrid3d

Notes

New in version 1.7.0.

numpy.polynomial.laguerre.laggrid2d(x, y, c)
Evaluate a 2-D Laguerre series on the Cartesian product of x and y.

This function returns the values:

𝑝(𝑎, 𝑏) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝐿𝑖(𝑎) * 𝐿𝑗(𝑏)

902 Chapter 4. Routines



NumPy Reference, Release 1.15.1

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x and y or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the
result will be c.shape[2:] + x.shape + y.shape.

Parameters

x, y [array_like, compatible objects] The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree i,j
is contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the two dimensional Chebyshev series at
points in the Cartesian product of x and y.

See also:

lagval, lagval2d, lagval3d, laggrid3d

Notes

New in version 1.7.0.

numpy.polynomial.laguerre.laggrid3d(x, y, z, c)
Evaluate a 3-D Laguerre series on the Cartesian product of x, y, and z.

This function returns the values:

𝑝(𝑎, 𝑏, 𝑐) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝐿𝑖(𝑎) * 𝐿𝑗(𝑏) * 𝐿𝑘(𝑐)

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters

x, y, z [array_like, compatible objects] The three dimensional series is evaluated at the points in
the Cartesian product of x, y, and z. If x,‘y‘, or z is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns

4.23. Polynomials 903



NumPy Reference, Release 1.15.1

values [ndarray, compatible object] The values of the two dimensional polynomial at points in
the Cartesian product of x and y.

See also:

lagval, lagval2d, laggrid2d, lagval3d

Notes

New in version 1.7.0.

numpy.polynomial.laguerre.lagroots(c)
Compute the roots of a Laguerre series.

Return the roots (a.k.a. “zeros”) of the polynomial

𝑝(𝑥) =
∑︁
𝑖

𝑐[𝑖] * 𝐿𝑖(𝑥).

Parameters

c [1-D array_like] 1-D array of coefficients.

Returns

out [ndarray] Array of the roots of the series. If all the roots are real, then out is also real,
otherwise it is complex.

See also:

polyroots, legroots, chebroots, hermroots, hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companion matrix, Roots far from the origin of the
complex plane may have large errors due to the numerical instability of the series for such values. Roots with
multiplicity greater than 1 will also show larger errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s
method.

The Laguerre series basis polynomials aren’t powers of x so the results of this function may seem unintuitive.

Examples

>>> from numpy.polynomial.laguerre import lagroots, lagfromroots
>>> coef = lagfromroots([0, 1, 2])
>>> coef
array([ 2., -8., 12., -6.])
>>> lagroots(coef)
array([ -4.44089210e-16, 1.00000000e+00, 2.00000000e+00])

numpy.polynomial.laguerre.lagfromroots(roots)
Generate a Laguerre series with given roots.

The function returns the coefficients of the polynomial

𝑝(𝑥) = (𝑥− 𝑟0) * (𝑥− 𝑟1) * ... * (𝑥− 𝑟𝑛),

904 Chapter 4. Routines



NumPy Reference, Release 1.15.1

in Laguerre form, where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must appear
in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots looks
something like [2, 2, 2, 3, 3]. The roots can appear in any order.

If the returned coefficients are c, then

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝐿1(𝑥) + ... + 𝑐𝑛 * 𝐿𝑛(𝑥)

The coefficient of the last term is not generally 1 for monic polynomials in Laguerre form.

Parameters

roots [array_like] Sequence containing the roots.

Returns

out [ndarray] 1-D array of coefficients. If all roots are real then out is a real array, if some of
the roots are complex, then out is complex even if all the coefficients in the result are real
(see Examples below).

See also:

polyfromroots, legfromroots, chebfromroots, hermfromroots, hermefromroots.

Examples

>>> from numpy.polynomial.laguerre import lagfromroots, lagval
>>> coef = lagfromroots((-1, 0, 1))
>>> lagval((-1, 0, 1), coef)
array([ 0., 0., 0.])
>>> coef = lagfromroots((-1j, 1j))
>>> lagval((-1j, 1j), coef)
array([ 0.+0.j, 0.+0.j])

Fitting

lagfit(x, y, deg[, rcond, full, w]) Least squares fit of Laguerre series to data.
lagvander(x, deg) Pseudo-Vandermonde matrix of given degree.
lagvander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
lagvander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.

numpy.polynomial.laguerre.lagfit(x, y, deg, rcond=None, full=False, w=None)
Least squares fit of Laguerre series to data.

Return the coefficients of a Laguerre series of degree deg that is the least squares fit to the data values y given
at points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each
column of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted
polynomial(s) are in the form

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝐿1(𝑥) + ... + 𝑐𝑛 * 𝐿𝑛(𝑥),

where n is deg.

Parameters

x [array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

4.23. Polynomials 905



NumPy Reference, Release 1.15.1

y [array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg [int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all
terms up to and including the deg’th term are included in the fit. For NumPy versions >=
1.11.0 a list of integers specifying the degrees of the terms to include may be used instead.

rcond [float, optional] Relative condition number of the fit. Singular values smaller than this
relative to the largest singular value will be ignored. The default value is len(x)*eps, where
eps is the relative precision of the float type, about 2e-16 in most cases.

full [bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w [array_like, shape (M,), optional] Weights. If not None, the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. The default value is None.

Returns

coef [ndarray, shape (M,) or (M, K)] Laguerre coefficients ordered from low to high. If y was
2-D, the coefficients for the data in column k of y are in column k.

[residuals, rank, singular_values, rcond] [list] These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of the
scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix rcond –
value of rcond.

For more details, see linalg.lstsq.

Warns

RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warn-
ing is only raised if full = False. The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also:

chebfit, legfit, polyfit, hermfit, hermefit

lagval Evaluates a Laguerre series.

lagvander pseudo Vandermonde matrix of Laguerre series.

lagweight Laguerre weight function.

linalg.lstsq Computes a least-squares fit from the matrix.

scipy.interpolate.UnivariateSpline Computes spline fits.

Notes

The solution is the coefficients of the Laguerre series p that minimizes the sum of the weighted squared errors

𝐸 =
∑︁
𝑗

𝑤2
𝑗 * |𝑦𝑗 − 𝑝(𝑥𝑗)|2,

906 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline


NumPy Reference, Release 1.15.1

where the 𝑤𝑗 are the weights. This problem is solved by setting up as the (typically) overdetermined matrix
equation

𝑉 (𝑥) * 𝑐 = 𝑤 * 𝑦,

where V is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the
weights, and y are the observed values. This equation is then solved using the singular value decomposition of
V.

If some of the singular values of V are so small that they are neglected, then a RankWarning will be issued. This
means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of the
warning. The rcond parameter can also be set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using Laguerre series are probably most useful when the data can be approximated by sqrt(w(x)) *
p(x), where w(x) is the Laguerre weight. In that case the weight sqrt(w(x[i]) should be used together
with data values y[i]/sqrt(w(x[i]). The weight function is available as lagweight.

References

[1]

Examples

>>> from numpy.polynomial.laguerre import lagfit, lagval
>>> x = np.linspace(0, 10)
>>> err = np.random.randn(len(x))/10
>>> y = lagval(x, [1, 2, 3]) + err
>>> lagfit(x, y, 2)
array([ 0.96971004, 2.00193749, 3.00288744])

numpy.polynomial.laguerre.lagvander(x, deg)
Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix
is defined by

𝑉 [..., 𝑖] = 𝐿𝑖(𝑥)

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the
Laguerre polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the array V = lagvander(x, n), then np.
dot(V, c) and lagval(x, c) are the same up to roundoff. This equivalence is useful both for least
squares fitting and for the evaluation of a large number of Laguerre series of the same degree and sample points.

Parameters

x [array_like] Array of points. The dtype is converted to float64 or complex128 depending on
whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg [int] Degree of the resulting matrix.

Returns

vander [ndarray] The pseudo-Vandermonde matrix. The shape of the returned matrix is x.
shape + (deg + 1,), where The last index is the degree of the corresponding La-
guerre polynomial. The dtype will be the same as the converted x.

4.23. Polynomials 907



NumPy Reference, Release 1.15.1

Examples

>>> from numpy.polynomial.laguerre import lagvander
>>> x = np.array([0, 1, 2])
>>> lagvander(x, 3)
array([[ 1. , 1. , 1. , 1. ],

[ 1. , 0. , -0.5 , -0.66666667],
[ 1. , -1. , -1. , -0.33333333]])

numpy.polynomial.laguerre.lagvander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

𝑉 [..., (𝑑𝑒𝑔[1] + 1) * 𝑖 + 𝑗] = 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦),

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y) and the last
index encodes the degrees of the Laguerre polynomials.

If V = lagvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a
2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

𝑐00, 𝑐01, 𝑐02..., 𝑐10, 𝑐11, 𝑐12...

and np.dot(V, c.flat) and lagval2d(x, y, c) will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 2-D Laguerre series of the
same degrees and sample points.

Parameters

x, y [array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted
to either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg [list of ints] List of maximum degrees of the form [x_deg, y_deg].

Returns

vander2d [ndarray] The shape of the returned matrix is x.shape + (order,), where
𝑜𝑟𝑑𝑒𝑟 = (𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1). The dtype will be the same as the converted x
and y.

See also:

lagvander, lagvander3d., lagval3d

Notes

New in version 1.7.0.

numpy.polynomial.laguerre.lagvander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by

𝑉 [..., (𝑚 + 1)(𝑛 + 1)𝑖 + (𝑛 + 1)𝑗 + 𝑘] = 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦) * 𝐿𝑘(𝑧),

908 Chapter 4. Routines



NumPy Reference, Release 1.15.1

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x, y, z) and the
last index encodes the degrees of the Laguerre polynomials.

If V = lagvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

𝑐000, 𝑐001, 𝑐002, ..., 𝑐010, 𝑐011, 𝑐012, ...

and np.dot(V, c.flat) and lagval3d(x, y, z, c) will be the same up to roundoff. This equiva-
lence is useful both for least squares fitting and for the evaluation of a large number of 3-D Laguerre series of
the same degrees and sample points.

Parameters

x, y, z [array_like] Arrays of point coordinates, all of the same shape. The dtypes will be con-
verted to either float64 or complex128 depending on whether any of the elements are com-
plex. Scalars are converted to 1-D arrays.

deg [list of ints] List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns

vander3d [ndarray] The shape of the returned matrix is x.shape + (order,), where
𝑜𝑟𝑑𝑒𝑟 = (𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1) * (𝑑𝑒𝑔[2] + 1). The dtype will be the same as
the converted x, y, and z.

See also:

lagvander, lagvander3d., lagval3d

Notes

New in version 1.7.0.

Calculus

lagder(c[, m, scl, axis]) Differentiate a Laguerre series.
lagint(c[, m, k, lbnd, scl, axis]) Integrate a Laguerre series.

numpy.polynomial.laguerre.lagder(c, m=1, scl=1, axis=0)
Differentiate a Laguerre series.

Returns the Laguerre series coefficients c differentiated m times along axis. At each iteration the result is mul-
tiplied by scl (the scaling factor is for use in a linear change of variable). The argument c is an array of coeffi-
cients from low to high degree along each axis, e.g., [1,2,3] represents the series 1*L_0 + 2*L_1 + 3*L_2
while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) +
2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is y.

Parameters

c [array_like] Array of Laguerre series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding
index.

m [int, optional] Number of derivatives taken, must be non-negative. (Default: 1)

scl [scalar, optional] Each differentiation is multiplied by scl. The end result is multiplication

4.23. Polynomials 909



NumPy Reference, Release 1.15.1

by scl**m. This is for use in a linear change of variable. (Default: 1)

axis [int, optional] Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

Returns

der [ndarray] Laguerre series of the derivative.

See also:

lagint

Notes

In general, the result of differentiating a Laguerre series does not resemble the same operation on a power series.
Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.laguerre import lagder
>>> lagder([ 1., 1., 1., -3.])
array([ 1., 2., 3.])
>>> lagder([ 1., 0., 0., -4., 3.], m=2)
array([ 1., 2., 3.])

numpy.polynomial.laguerre.lagint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a Laguerre series.

Returns the Laguerre series coefficients c integrated m times from lbnd along axis. At each iteration the re-
sulting series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a
linear change of variable. (“Buyer beware”: note that, depending on what one is doing, one may want scl to
be the reciprocal of what one might expect; for more information, see the Notes section below.) The argu-
ment c is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series
L_0 + 2*L_1 + 3*L_2 while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) +
2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is y.

Parameters

c [array_like] Array of Laguerre series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding
index.

m [int, optional] Order of integration, must be positive. (Default: 1)

k [{[], list, scalar}, optional] Integration constant(s). The value of the first integral at lbnd is
the first value in the list, the value of the second integral at lbnd is the second value, etc.
If k == [] (the default), all constants are set to zero. If m == 1, a single scalar can be
given instead of a list.

lbnd [scalar, optional] The lower bound of the integral. (Default: 0)

scl [scalar, optional] Following each integration the result is multiplied by scl before the inte-
gration constant is added. (Default: 1)

axis [int, optional] Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

910 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns

S [ndarray] Laguerre series coefficients of the integral.

Raises

ValueError If m < 0, len(k) > m, np.ndim(lbnd) != 0, or np.ndim(scl) !=
0.

See also:

lagder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable 𝑢 = 𝑎𝑥 + 𝑏 in an integral relative to x. Then 𝑑𝑥 = 𝑑𝑢/𝑎, so one will need to set scl
equal to 1/𝑎 - perhaps not what one would have first thought.

Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis
set. Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.laguerre import lagint
>>> lagint([1,2,3])
array([ 1., 1., 1., -3.])
>>> lagint([1,2,3], m=2)
array([ 1., 0., 0., -4., 3.])
>>> lagint([1,2,3], k=1)
array([ 2., 1., 1., -3.])
>>> lagint([1,2,3], lbnd=-1)
array([ 11.5, 1. , 1. , -3. ])
>>> lagint([1,2], m=2, k=[1,2], lbnd=-1)
array([ 11.16666667, -5. , -3. , 2. ])

Algebra

lagadd(c1, c2) Add one Laguerre series to another.
lagsub(c1, c2) Subtract one Laguerre series from another.
lagmul(c1, c2) Multiply one Laguerre series by another.
lagmulx(c) Multiply a Laguerre series by x.
lagdiv(c1, c2) Divide one Laguerre series by another.
lagpow(c, pow[, maxpower]) Raise a Laguerre series to a power.

numpy.polynomial.laguerre.lagadd(c1, c2)
Add one Laguerre series to another.

Returns the sum of two Laguerre series c1 + c2. The arguments are sequences of coefficients ordered from
lowest order term to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters

c1, c2 [array_like] 1-D arrays of Laguerre series coefficients ordered from low to high.

4.23. Polynomials 911



NumPy Reference, Release 1.15.1

Returns

out [ndarray] Array representing the Laguerre series of their sum.

See also:

lagsub, lagmul, lagdiv , lagpow

Notes

Unlike multiplication, division, etc., the sum of two Laguerre series is a Laguerre series (without having to “re-
project” the result onto the basis set) so addition, just like that of “standard” polynomials, is simply “component-
wise.”

Examples

>>> from numpy.polynomial.laguerre import lagadd
>>> lagadd([1, 2, 3], [1, 2, 3, 4])
array([ 2., 4., 6., 4.])

numpy.polynomial.laguerre.lagsub(c1, c2)
Subtract one Laguerre series from another.

Returns the difference of two Laguerre series c1 - c2. The sequences of coefficients are from lowest order term
to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters

c1, c2 [array_like] 1-D arrays of Laguerre series coefficients ordered from low to high.

Returns

out [ndarray] Of Laguerre series coefficients representing their difference.

See also:

lagadd, lagmul, lagdiv , lagpow

Notes

Unlike multiplication, division, etc., the difference of two Laguerre series is a Laguerre series (without having
to “reproject” the result onto the basis set) so subtraction, just like that of “standard” polynomials, is simply
“component-wise.”

Examples

>>> from numpy.polynomial.laguerre import lagsub
>>> lagsub([1, 2, 3, 4], [1, 2, 3])
array([ 0., 0., 0., 4.])

numpy.polynomial.laguerre.lagmul(c1, c2)
Multiply one Laguerre series by another.

Returns the product of two Laguerre series c1 * c2. The arguments are sequences of coefficients, from lowest
order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

912 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Parameters

c1, c2 [array_like] 1-D arrays of Laguerre series coefficients ordered from low to high.

Returns

out [ndarray] Of Laguerre series coefficients representing their product.

See also:

lagadd, lagsub, lagdiv , lagpow

Notes

In general, the (polynomial) product of two C-series results in terms that are not in the Laguerre polynomial
basis set. Thus, to express the product as a Laguerre series, it is necessary to “reproject” the product onto said
basis set, which may produce “unintuitive” (but correct) results; see Examples section below.

Examples

>>> from numpy.polynomial.laguerre import lagmul
>>> lagmul([1, 2, 3], [0, 1, 2])
array([ 8., -13., 38., -51., 36.])

numpy.polynomial.laguerre.lagmulx(c)
Multiply a Laguerre series by x.

Multiply the Laguerre series c by x, where x is the independent variable.

Parameters

c [array_like] 1-D array of Laguerre series coefficients ordered from low to high.

Returns

out [ndarray] Array representing the result of the multiplication.

Notes

The multiplication uses the recursion relationship for Laguerre polynomials in the form

xP_i(x) = (-(i + 1)*P_{i + 1}(x) + (2i + 1)P_{i}(x) - iP_{i - 1}(x))

Examples

>>> from numpy.polynomial.laguerre import lagmulx
>>> lagmulx([1, 2, 3])
array([ -1., -1., 11., -9.])

numpy.polynomial.laguerre.lagdiv(c1, c2)
Divide one Laguerre series by another.

Returns the quotient-with-remainder of two Laguerre series c1 / c2. The arguments are sequences of coefficients
from lowest order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters

4.23. Polynomials 913



NumPy Reference, Release 1.15.1

c1, c2 [array_like] 1-D arrays of Laguerre series coefficients ordered from low to high.

Returns

[quo, rem] [ndarrays] Of Laguerre series coefficients representing the quotient and remainder.

See also:

lagadd, lagsub, lagmul, lagpow

Notes

In general, the (polynomial) division of one Laguerre series by another results in quotient and remainder terms
that are not in the Laguerre polynomial basis set. Thus, to express these results as a Laguerre series, it is
necessary to “reproject” the results onto the Laguerre basis set, which may produce “unintuitive” (but correct)
results; see Examples section below.

Examples

>>> from numpy.polynomial.laguerre import lagdiv
>>> lagdiv([ 8., -13., 38., -51., 36.], [0, 1, 2])
(array([ 1., 2., 3.]), array([ 0.]))
>>> lagdiv([ 9., -12., 38., -51., 36.], [0, 1, 2])
(array([ 1., 2., 3.]), array([ 1., 1.]))

numpy.polynomial.laguerre.lagpow(c, pow, maxpower=16)
Raise a Laguerre series to a power.

Returns the Laguerre series c raised to the power pow. The argument c is a sequence of coefficients ordered
from low to high. i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

Parameters

c [array_like] 1-D array of Laguerre series coefficients ordered from low to high.

pow [integer] Power to which the series will be raised

maxpower [integer, optional] Maximum power allowed. This is mainly to limit growth of the
series to unmanageable size. Default is 16

Returns

coef [ndarray] Laguerre series of power.

See also:

lagadd, lagsub, lagmul, lagdiv

Examples

>>> from numpy.polynomial.laguerre import lagpow
>>> lagpow([1, 2, 3], 2)
array([ 14., -16., 56., -72., 54.])

914 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Quadrature

laggauss(deg) Gauss-Laguerre quadrature.
lagweight(x) Weight function of the Laguerre polynomials.

numpy.polynomial.laguerre.laggauss(deg)
Gauss-Laguerre quadrature.

Computes the sample points and weights for Gauss-Laguerre quadrature. These sample points and weights will
correctly integrate polynomials of degree 2 * 𝑑𝑒𝑔 − 1 or less over the interval [0, inf] with the weight function
𝑓(𝑥) = exp(−𝑥).

Parameters

deg [int] Number of sample points and weights. It must be >= 1.

Returns

x [ndarray] 1-D ndarray containing the sample points.

y [ndarray] 1-D ndarray containing the weights.

Notes

New in version 1.7.0.

The results have only been tested up to degree 100 higher degrees may be problematic. The weights are deter-
mined by using the fact that

𝑤𝑘 = 𝑐/(𝐿′
𝑛(𝑥𝑘) * 𝐿𝑛−1(𝑥𝑘))

where 𝑐 is a constant independent of 𝑘 and 𝑥𝑘 is the k’th root of 𝐿𝑛, and then scaling the results to get the right
value when integrating 1.

numpy.polynomial.laguerre.lagweight(x)
Weight function of the Laguerre polynomials.

The weight function is 𝑒𝑥𝑝(−𝑥) and the interval of integration is [0, inf]. The Laguerre polynomials are orthog-
onal, but not normalized, with respect to this weight function.

Parameters

x [array_like] Values at which the weight function will be computed.

Returns

w [ndarray] The weight function at x.

Notes

New in version 1.7.0.

Miscellaneous

4.23. Polynomials 915



NumPy Reference, Release 1.15.1

lagcompanion(c) Return the companion matrix of c.
lagdomain
lagzero
lagone
lagx
lagtrim(c[, tol]) Remove “small” “trailing” coefficients from a polynomial.
lagline(off, scl) Laguerre series whose graph is a straight line.
lag2poly(c) Convert a Laguerre series to a polynomial.
poly2lag(pol) Convert a polynomial to a Laguerre series.

numpy.polynomial.laguerre.lagcompanion(c)
Return the companion matrix of c.

The usual companion matrix of the Laguerre polynomials is already symmetric when c is a basis Laguerre
polynomial, so no scaling is applied.

Parameters

c [array_like] 1-D array of Laguerre series coefficients ordered from low to high degree.

Returns

mat [ndarray] Companion matrix of dimensions (deg, deg).

Notes

New in version 1.7.0.

numpy.polynomial.laguerre.lagdomain = array([0, 1])

numpy.polynomial.laguerre.lagzero = array([0])

numpy.polynomial.laguerre.lagone = array([1])

numpy.polynomial.laguerre.lagx = array([ 1, -1])

numpy.polynomial.laguerre.lagtrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters

c [array_like] 1-d array of coefficients, ordered from lowest order to highest.

tol [number, optional] Trailing (i.e., highest order) elements with absolute value less than or
equal to tol (default value is zero) are removed.

Returns

trimmed [ndarray] 1-d array with trailing zeros removed. If the resulting series would be empty,
a series containing a single zero is returned.

Raises

ValueError If tol < 0

See also:

trimseq

916 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
array([ 0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([ 0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([ 0.0003+0.j , 0.0010-0.001j])

numpy.polynomial.laguerre.lagline(off, scl)
Laguerre series whose graph is a straight line.

Parameters

off, scl [scalars] The specified line is given by off + scl*x.

Returns

y [ndarray] This module’s representation of the Laguerre series for off + scl*x.

See also:

polyline, chebline

Examples

>>> from numpy.polynomial.laguerre import lagline, lagval
>>> lagval(0,lagline(3, 2))
3.0
>>> lagval(1,lagline(3, 2))
5.0

numpy.polynomial.laguerre.lag2poly(c)
Convert a Laguerre series to a polynomial.

Convert an array representing the coefficients of a Laguerre series, ordered from lowest degree to highest, to an
array of the coefficients of the equivalent polynomial (relative to the “standard” basis) ordered from lowest to
highest degree.

Parameters

c [array_like] 1-D array containing the Laguerre series coefficients, ordered from lowest order
term to highest.

Returns

pol [ndarray] 1-D array containing the coefficients of the equivalent polynomial (relative to the
“standard” basis) ordered from lowest order term to highest.

See also:

poly2lag

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

4.23. Polynomials 917



NumPy Reference, Release 1.15.1

Examples

>>> from numpy.polynomial.laguerre import lag2poly
>>> lag2poly([ 23., -63., 58., -18.])
array([ 0., 1., 2., 3.])

numpy.polynomial.laguerre.poly2lag(pol)
Convert a polynomial to a Laguerre series.

Convert an array representing the coefficients of a polynomial (relative to the “standard” basis) ordered from
lowest degree to highest, to an array of the coefficients of the equivalent Laguerre series, ordered from lowest to
highest degree.

Parameters

pol [array_like] 1-D array containing the polynomial coefficients

Returns

c [ndarray] 1-D array containing the coefficients of the equivalent Laguerre series.

See also:

lag2poly

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.laguerre import poly2lag
>>> poly2lag(np.arange(4))
array([ 23., -63., 58., -18.])

Hermite Module, “Physicists’” (numpy.polynomial.hermite)

New in version 1.6.0.

This module provides a number of objects (mostly functions) useful for dealing with Hermite series, including a
Hermite class that encapsulates the usual arithmetic operations. (General information on how this module represents
and works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

Hermite Class

Hermite(coef[, domain, window]) An Hermite series class.

class numpy.polynomial.hermite.Hermite(coef, domain=None, window=None)
An Hermite series class.

The Hermite class provides the standard Python numerical methods ‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and
‘()’ as well as the attributes and methods listed in the ABCPolyBase documentation.

918 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Parameters

coef [array_like] Hermite coefficients in order of increasing degree, i.e, (1, 2, 3) gives
1*H_0(x) + 2*H_1(X) + 3*H_2(x).

domain [(2,) array_like, optional] Domain to use. The interval [domain[0],
domain[1]] is mapped to the interval [window[0], window[1]] by shifting and
scaling. The default value is [-1, 1].

window [(2,) array_like, optional] Window, see domain for its use. The default value is [-1,
1].

New in version 1.6.0.

Methods

__call__(arg) Call self as a function.
basis(deg[, domain, window]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or

window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, window]) Least squares fit to data.
fromroots(roots[, domain, window]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

Hermite.__call__(arg)
Call self as a function.

classmethod Hermite.basis(deg, domain=None, window=None)
Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

Parameters

deg [int] Degree of the basis polynomial for the series. Must be >= 0.

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

4.23. Polynomials 919



NumPy Reference, Release 1.15.1

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] A series with the coefficient of the deg term set to one and all others
zero.

classmethod Hermite.cast(series, domain=None, window=None)
Convert series to series of this class.

The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

New in version 1.7.0.

Parameters

series [series] The series instance to be converted.

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] A series of the same kind as the calling class and equal to series when
evaluated.

See also:

convert similar instance method

Hermite.convert(domain=None, kind=None, window=None)
Convert series to a different kind and/or domain and/or window.

Parameters

domain [array_like, optional] The domain of the converted series. If the value is None, the
default domain of kind is used.

kind [class, optional] The polynomial series type class to which the current instance should
be converted. If kind is None, then the class of the current instance is used.

window [array_like, optional] The window of the converted series. If the value is None, the
default window of kind is used.

Returns

new_series [series] The returned class can be of different type than the current instance
and/or have a different domain and/or different window.

Notes

Conversion between domains and class types can result in numerically ill defined series.

920 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Hermite.copy()
Return a copy.

Returns

new_series [series] Copy of self.

Hermite.cutdeg(deg)
Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

New in version 1.5.0.

Parameters

deg [non-negative int] The series is reduced to degree deg by discarding the high order terms.
The value of deg must be a non-negative integer.

Returns

new_series [series] New instance of series with reduced degree.

Hermite.degree()
The degree of the series.

New in version 1.5.0.

Returns

degree [int] Degree of the series, one less than the number of coefficients.

Hermite.deriv(m=1)
Differentiate.

Return a series instance of that is the derivative of the current series.

Parameters

m [non-negative int] Find the derivative of order m.

Returns

new_series [series] A new series representing the derivative. The domain is the same as the
domain of the differentiated series.

classmethod Hermite.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, win-
dow=None)

Least squares fit to data.

Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters

x [array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y [array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg [int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all
terms up to and including the deg’th term are included in the fit. For NumPy versions >=
1.11.0 a list of integers specifying the degrees of the terms to include may be used instead.

4.23. Polynomials 921



NumPy Reference, Release 1.15.1

domain [{None, [beg, end], []}, optional] Domain to use for the returned series. If None,
then a minimal domain that covers the points x is chosen. If [] the class domain is used.
The default value was the class domain in NumPy 1.4 and None in later versions. The []
option was added in numpy 1.5.0.

rcond [float, optional] Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The default value is len(x)*eps,
where eps is the relative precision of the float type, about 2e-16 in most cases.

full [bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w [array_like, shape (M,), optional] Weights. If not None the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

window [{[beg, end]}, optional] Window to use for the returned series. The default value is
the default class domain

New in version 1.6.0.

Returns

new_series [series] A series that represents the least squares fit to the data and has the do-
main specified in the call.

[resid, rank, sv, rcond] [list] These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of the
scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix rcond
– value of rcond.

For more details, see linalg.lstsq.

classmethod Hermite.fromroots(roots, domain=[], window=None)
Return series instance that has the specified roots.

Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters

roots [array_like] List of roots.

domain [{[], None, array_like}, optional] Domain for the resulting series. If None the do-
main is the interval from the smallest root to the largest. If [] the domain is the class
domain. The default is [].

window [{None, array_like}, optional] Window for the returned series. If None the class
window is used. The default is None.

Returns

new_series [series] Series with the specified roots.

Hermite.has_samecoef(other)
Check if coefficients match.

New in version 1.6.0.

Parameters

922 Chapter 4. Routines



NumPy Reference, Release 1.15.1

other [class instance] The other class must have the coef attribute.

Returns

bool [boolean] True if the coefficients are the same, False otherwise.

Hermite.has_samedomain(other)
Check if domains match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the domain attribute.

Returns

bool [boolean] True if the domains are the same, False otherwise.

Hermite.has_sametype(other)
Check if types match.

New in version 1.7.0.

Parameters

other [object] Class instance.

Returns

bool [boolean] True if other is same class as self

Hermite.has_samewindow(other)
Check if windows match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the window attribute.

Returns

bool [boolean] True if the windows are the same, False otherwise.

classmethod Hermite.identity(domain=None, window=None)
Identity function.

If p is the returned series, then p(x) == x for all values of x.

Parameters

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] Series of representing the identity.

Hermite.integ(m=1, k=[], lbnd=None)
Integrate.

Return a series instance that is the definite integral of the current series.

4.23. Polynomials 923



NumPy Reference, Release 1.15.1

Parameters

m [non-negative int] The number of integrations to perform.

k [array_like] Integration constants. The first constant is applied to the first integration, the
second to the second, and so on. The list of values must less than or equal to m in length
and any missing values are set to zero.

lbnd [Scalar] The lower bound of the definite integral.

Returns

new_series [series] A new series representing the integral. The domain is the same as the
domain of the integrated series.

Hermite.linspace(n=100, domain=None)
Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial
at the points x. By default the domain is the same as that of the series instance. This method is intended
mostly as a plotting aid.

New in version 1.5.0.

Parameters

n [int, optional] Number of point pairs to return. The default value is 100.

domain [{None, array_like}, optional] If not None, the specified domain is used instead of
that of the calling instance. It should be of the form [beg,end]. The default is None
which case the class domain is used.

Returns

x, y [ndarray] x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series
evaluated at element of x.

Hermite.mapparms()
Return the mapping parameters.

The returned values define a linear map off + scl*x that is applied to the input arguments before
the series is evaluated. The map depends on the domain and window; if the current domain is equal
to the window the resulting map is the identity. If the coefficients of the series instance are to be used
by themselves outside this class, then the linear function must be substituted for the x in the standard
representation of the base polynomials.

Returns

off, scl [float or complex] The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

Hermite.roots()
Return the roots of the series polynomial.

924 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Compute the roots for the series. Note that the accuracy of the roots decrease the further outside the domain
they lie.

Returns

roots [ndarray] Array containing the roots of the series.

Hermite.trim(tol=0)
Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the
beginning of the series is reached. If all the coefficients would be removed the series is set to [0]. A new
series instance is returned with the new coefficients. The current instance remains unchanged.

Parameters

tol [non-negative number.] All trailing coefficients less than tol will be removed.

Returns

new_series [series] Contains the new set of coefficients.

Hermite.truncate(size)
Truncate series to length size.

Reduce the series to length size by discarding the high degree terms. The value of size must be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very
small.

Parameters

size [positive int] The series is reduced to length size by discarding the high degree terms.
The value of size must be a positive integer.

Returns

new_series [series] New instance of series with truncated coefficients.

Basics

hermval(x, c[, tensor]) Evaluate an Hermite series at points x.
hermval2d(x, y, c) Evaluate a 2-D Hermite series at points (x, y).
hermval3d(x, y, z, c) Evaluate a 3-D Hermite series at points (x, y, z).
hermgrid2d(x, y, c) Evaluate a 2-D Hermite series on the Cartesian product of

x and y.
hermgrid3d(x, y, z, c) Evaluate a 3-D Hermite series on the Cartesian product of

x, y, and z.
hermroots(c) Compute the roots of a Hermite series.
hermfromroots(roots) Generate a Hermite series with given roots.

numpy.polynomial.hermite.hermval(x, c, tensor=True)
Evaluate an Hermite series at points x.

If c is of length n + 1, this function returns the value:

𝑝(𝑥) = 𝑐0 *𝐻0(𝑥) + 𝑐1 *𝐻1(𝑥) + ... + 𝑐𝑛 *𝐻𝑛(𝑥)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In
either case, either x or its elements must support multiplication and addition both with themselves and with the
elements of c.

4.23. Polynomials 925



NumPy Reference, Release 1.15.1

If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the
shape will be c.shape[1:]. Note that scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a
concern.

Parameters

x [array_like, compatible object] If x is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, x or its elements must support
addition and multiplication with with themselves and with the elements of c.

c [array_like] Array of coefficients ordered so that the coefficients for terms of degree n are
contained in c[n]. If c is multidimensional the remaining indices enumerate multiple poly-
nomials. In the two dimensional case the coefficients may be thought of as stored in the
columns of c.

tensor [boolean, optional] If True, the shape of the coefficient array is extended with ones on
the right, one for each dimension of x. Scalars have dimension 0 for this action. The result
is that every column of coefficients in c is evaluated for every element of x. If False, x
is broadcast over the columns of c for the evaluation. This keyword is useful when c is
multidimensional. The default value is True.

New in version 1.7.0.

Returns

values [ndarray, algebra_like] The shape of the return value is described above.

See also:

hermval2d, hermgrid2d, hermval3d, hermgrid3d

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

Examples

>>> from numpy.polynomial.hermite import hermval
>>> coef = [1,2,3]
>>> hermval(1, coef)
11.0
>>> hermval([[1,2],[3,4]], coef)
array([[ 11., 51.],

[ 115., 203.]])

numpy.polynomial.hermite.hermval2d(x, y, c)
Evaluate a 2-D Hermite series at points (x, y).

This function returns the values:

𝑝(𝑥, 𝑦) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 *𝐻𝑖(𝑥) *𝐻𝑗(𝑦)

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.

926 Chapter 4. Routines



NumPy Reference, Release 1.15.1

If c is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be
c.shape[2:] + x.shape.

Parameters

x, y [array_like, compatible objects] The two dimensional series is evaluated at the points (x,
y), where x and y must have the same shape. If x or y is a list or tuple, it is first converted to
an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j is contained in c[i,j]. If c has dimension greater than two the remaining indices
enumerate multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the two dimensional polynomial at points
formed with pairs of corresponding values from x and y.

See also:

hermval, hermgrid2d, hermval3d, hermgrid3d

Notes

New in version 1.7.0.

numpy.polynomial.hermite.hermval3d(x, y, z, c)
Evaluate a 3-D Hermite series at points (x, y, z).

This function returns the values:

𝑝(𝑥, 𝑦, 𝑧) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 *𝐻𝑖(𝑥) *𝐻𝑗(𝑦) *𝐻𝑘(𝑧)

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements
must support multiplication and addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape.

Parameters

x, y, z [array_like, compatible object] The three dimensional series is evaluated at the points (x,
y, z), where x, y, and z must have the same shape. If any of x, y, or z is a list or tuple, it is first
converted to an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated
as a scalar.

c [array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j,k is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the multidimensional polynomial on points
formed with triples of corresponding values from x, y, and z.

See also:

hermval, hermval2d, hermgrid2d, hermgrid3d

4.23. Polynomials 927



NumPy Reference, Release 1.15.1

Notes

New in version 1.7.0.

numpy.polynomial.hermite.hermgrid2d(x, y, c)
Evaluate a 2-D Hermite series on the Cartesian product of x and y.

This function returns the values:

𝑝(𝑎, 𝑏) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 *𝐻𝑖(𝑎) *𝐻𝑗(𝑏)

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x and y or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the
result will be c.shape[2:] + x.shape.

Parameters

x, y [array_like, compatible objects] The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the two dimensional polynomial at points in
the Cartesian product of x and y.

See also:

hermval, hermval2d, hermval3d, hermgrid3d

Notes

New in version 1.7.0.

numpy.polynomial.hermite.hermgrid3d(x, y, z, c)
Evaluate a 3-D Hermite series on the Cartesian product of x, y, and z.

This function returns the values:

𝑝(𝑎, 𝑏, 𝑐) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 *𝐻𝑖(𝑎) *𝐻𝑗(𝑏) *𝐻𝑘(𝑐)

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

928 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Parameters

x, y, z [array_like, compatible objects] The three dimensional series is evaluated at the points in
the Cartesian product of x, y, and z. If x,‘y‘, or z is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the two dimensional polynomial at points in
the Cartesian product of x and y.

See also:

hermval, hermval2d, hermgrid2d, hermval3d

Notes

New in version 1.7.0.

numpy.polynomial.hermite.hermroots(c)
Compute the roots of a Hermite series.

Return the roots (a.k.a. “zeros”) of the polynomial

𝑝(𝑥) =
∑︁
𝑖

𝑐[𝑖] *𝐻𝑖(𝑥).

Parameters

c [1-D array_like] 1-D array of coefficients.

Returns

out [ndarray] Array of the roots of the series. If all the roots are real, then out is also real,
otherwise it is complex.

See also:

polyroots, legroots, lagroots, chebroots, hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companion matrix, Roots far from the origin of the
complex plane may have large errors due to the numerical instability of the series for such values. Roots with
multiplicity greater than 1 will also show larger errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s
method.

The Hermite series basis polynomials aren’t powers of x so the results of this function may seem unintuitive.

Examples

4.23. Polynomials 929



NumPy Reference, Release 1.15.1

>>> from numpy.polynomial.hermite import hermroots, hermfromroots
>>> coef = hermfromroots([-1, 0, 1])
>>> coef
array([ 0. , 0.25 , 0. , 0.125])
>>> hermroots(coef)
array([ -1.00000000e+00, -1.38777878e-17, 1.00000000e+00])

numpy.polynomial.hermite.hermfromroots(roots)
Generate a Hermite series with given roots.

The function returns the coefficients of the polynomial

𝑝(𝑥) = (𝑥− 𝑟0) * (𝑥− 𝑟1) * ... * (𝑥− 𝑟𝑛),

in Hermite form, where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must appear
in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots looks
something like [2, 2, 2, 3, 3]. The roots can appear in any order.

If the returned coefficients are c, then

𝑝(𝑥) = 𝑐0 + 𝑐1 *𝐻1(𝑥) + ... + 𝑐𝑛 *𝐻𝑛(𝑥)

The coefficient of the last term is not generally 1 for monic polynomials in Hermite form.

Parameters

roots [array_like] Sequence containing the roots.

Returns

out [ndarray] 1-D array of coefficients. If all roots are real then out is a real array, if some of
the roots are complex, then out is complex even if all the coefficients in the result are real
(see Examples below).

See also:

polyfromroots, legfromroots, lagfromroots, chebfromroots, hermefromroots.

Examples

>>> from numpy.polynomial.hermite import hermfromroots, hermval
>>> coef = hermfromroots((-1, 0, 1))
>>> hermval((-1, 0, 1), coef)
array([ 0., 0., 0.])
>>> coef = hermfromroots((-1j, 1j))
>>> hermval((-1j, 1j), coef)
array([ 0.+0.j, 0.+0.j])

Fitting

hermfit(x, y, deg[, rcond, full, w]) Least squares fit of Hermite series to data.
hermvander(x, deg) Pseudo-Vandermonde matrix of given degree.
hermvander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
hermvander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.

930 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.polynomial.hermite.hermfit(x, y, deg, rcond=None, full=False, w=None)
Least squares fit of Hermite series to data.

Return the coefficients of a Hermite series of degree deg that is the least squares fit to the data values y given
at points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each
column of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted
polynomial(s) are in the form

𝑝(𝑥) = 𝑐0 + 𝑐1 *𝐻1(𝑥) + ... + 𝑐𝑛 *𝐻𝑛(𝑥),

where n is deg.

Parameters

x [array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y [array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg [int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all
terms up to and including the deg’th term are included in the fit. For NumPy versions >=
1.11.0 a list of integers specifying the degrees of the terms to include may be used instead.

rcond [float, optional] Relative condition number of the fit. Singular values smaller than this
relative to the largest singular value will be ignored. The default value is len(x)*eps, where
eps is the relative precision of the float type, about 2e-16 in most cases.

full [bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w [array_like, shape (M,), optional] Weights. If not None, the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. The default value is None.

Returns

coef [ndarray, shape (M,) or (M, K)] Hermite coefficients ordered from low to high. If y was
2-D, the coefficients for the data in column k of y are in column k.

[residuals, rank, singular_values, rcond] [list] These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of the
scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix rcond –
value of rcond.

For more details, see linalg.lstsq.

Warns

RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warn-
ing is only raised if full = False. The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also:

chebfit, legfit, lagfit, polyfit, hermefit

hermval Evaluates a Hermite series.

hermvander Vandermonde matrix of Hermite series.

4.23. Polynomials 931



NumPy Reference, Release 1.15.1

hermweight Hermite weight function

linalg.lstsq Computes a least-squares fit from the matrix.

scipy.interpolate.UnivariateSpline Computes spline fits.

Notes

The solution is the coefficients of the Hermite series p that minimizes the sum of the weighted squared errors

𝐸 =
∑︁
𝑗

𝑤2
𝑗 * |𝑦𝑗 − 𝑝(𝑥𝑗)|2,

where the 𝑤𝑗 are the weights. This problem is solved by setting up the (typically) overdetermined matrix
equation

𝑉 (𝑥) * 𝑐 = 𝑤 * 𝑦,

where V is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the
weights, y are the observed values. This equation is then solved using the singular value decomposition of V.

If some of the singular values of V are so small that they are neglected, then a RankWarning will be issued. This
means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of the
warning. The rcond parameter can also be set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using Hermite series are probably most useful when the data can be approximated by sqrt(w(x)) *
p(x), where w(x) is the Hermite weight. In that case the weight sqrt(w(x[i]) should be used together
with data values y[i]/sqrt(w(x[i]). The weight function is available as hermweight.

References

[1]

Examples

>>> from numpy.polynomial.hermite import hermfit, hermval
>>> x = np.linspace(-10, 10)
>>> err = np.random.randn(len(x))/10
>>> y = hermval(x, [1, 2, 3]) + err
>>> hermfit(x, y, 2)
array([ 0.97902637, 1.99849131, 3.00006 ])

numpy.polynomial.hermite.hermvander(x, deg)
Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix
is defined by

𝑉 [..., 𝑖] = 𝐻𝑖(𝑥),

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the
Hermite polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the array V = hermvander(x, n), then np.
dot(V, c) and hermval(x, c) are the same up to roundoff. This equivalence is useful both for least
squares fitting and for the evaluation of a large number of Hermite series of the same degree and sample points.

932 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline


NumPy Reference, Release 1.15.1

Parameters

x [array_like] Array of points. The dtype is converted to float64 or complex128 depending on
whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg [int] Degree of the resulting matrix.

Returns

vander [ndarray] The pseudo-Vandermonde matrix. The shape of the returned matrix is x.
shape + (deg + 1,), where The last index is the degree of the corresponding Hermite
polynomial. The dtype will be the same as the converted x.

Examples

>>> from numpy.polynomial.hermite import hermvander
>>> x = np.array([-1, 0, 1])
>>> hermvander(x, 3)
array([[ 1., -2., 2., 4.],

[ 1., 0., -2., -0.],
[ 1., 2., 2., -4.]])

numpy.polynomial.hermite.hermvander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

𝑉 [..., (𝑑𝑒𝑔[1] + 1) * 𝑖 + 𝑗] = 𝐻𝑖(𝑥) *𝐻𝑗(𝑦),

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y) and the last
index encodes the degrees of the Hermite polynomials.

If V = hermvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a
2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

𝑐00, 𝑐01, 𝑐02..., 𝑐10, 𝑐11, 𝑐12...

and np.dot(V, c.flat) and hermval2d(x, y, c) will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 2-D Hermite series of the same
degrees and sample points.

Parameters

x, y [array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted
to either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg [list of ints] List of maximum degrees of the form [x_deg, y_deg].

Returns

vander2d [ndarray] The shape of the returned matrix is x.shape + (order,), where
𝑜𝑟𝑑𝑒𝑟 = (𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1). The dtype will be the same as the converted x
and y.

See also:

hermvander, hermvander3d., hermval3d

4.23. Polynomials 933



NumPy Reference, Release 1.15.1

Notes

New in version 1.7.0.

numpy.polynomial.hermite.hermvander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by

𝑉 [..., (𝑚 + 1)(𝑛 + 1)𝑖 + (𝑛 + 1)𝑗 + 𝑘] = 𝐻𝑖(𝑥) *𝐻𝑗(𝑦) *𝐻𝑘(𝑧),

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x, y, z) and the
last index encodes the degrees of the Hermite polynomials.

If V = hermvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

𝑐000, 𝑐001, 𝑐002, ..., 𝑐010, 𝑐011, 𝑐012, ...

and np.dot(V, c.flat) and hermval3d(x, y, z, c) will be the same up to roundoff. This equiv-
alence is useful both for least squares fitting and for the evaluation of a large number of 3-D Hermite series of
the same degrees and sample points.

Parameters

x, y, z [array_like] Arrays of point coordinates, all of the same shape. The dtypes will be con-
verted to either float64 or complex128 depending on whether any of the elements are com-
plex. Scalars are converted to 1-D arrays.

deg [list of ints] List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns

vander3d [ndarray] The shape of the returned matrix is x.shape + (order,), where
𝑜𝑟𝑑𝑒𝑟 = (𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1) * (𝑑𝑒𝑔[2] + 1). The dtype will be the same as
the converted x, y, and z.

See also:

hermvander, hermvander3d., hermval3d

Notes

New in version 1.7.0.

Calculus

hermder(c[, m, scl, axis]) Differentiate a Hermite series.
hermint(c[, m, k, lbnd, scl, axis]) Integrate a Hermite series.

numpy.polynomial.hermite.hermder(c, m=1, scl=1, axis=0)
Differentiate a Hermite series.

Returns the Hermite series coefficients c differentiated m times along axis. At each iteration the result is mul-
tiplied by scl (the scaling factor is for use in a linear change of variable). The argument c is an array of coeffi-

934 Chapter 4. Routines



NumPy Reference, Release 1.15.1

cients from low to high degree along each axis, e.g., [1,2,3] represents the series 1*H_0 + 2*H_1 + 3*H_2
while [[1,2],[1,2]] represents 1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) +
2*H_1(x)*H_1(y) if axis=0 is x and axis=1 is y.

Parameters

c [array_like] Array of Hermite series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding
index.

m [int, optional] Number of derivatives taken, must be non-negative. (Default: 1)

scl [scalar, optional] Each differentiation is multiplied by scl. The end result is multiplication
by scl**m. This is for use in a linear change of variable. (Default: 1)

axis [int, optional] Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

Returns

der [ndarray] Hermite series of the derivative.

See also:

hermint

Notes

In general, the result of differentiating a Hermite series does not resemble the same operation on a power series.
Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.hermite import hermder
>>> hermder([ 1. , 0.5, 0.5, 0.5])
array([ 1., 2., 3.])
>>> hermder([-0.5, 1./2., 1./8., 1./12., 1./16.], m=2)
array([ 1., 2., 3.])

numpy.polynomial.hermite.hermint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a Hermite series.

Returns the Hermite series coefficients c integrated m times from lbnd along axis. At each iteration the re-
sulting series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a
linear change of variable. (“Buyer beware”: note that, depending on what one is doing, one may want scl to
be the reciprocal of what one might expect; for more information, see the Notes section below.) The argu-
ment c is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series
H_0 + 2*H_1 + 3*H_2 while [[1,2],[1,2]] represents 1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) +
2*H_0(x)*H_1(y) + 2*H_1(x)*H_1(y) if axis=0 is x and axis=1 is y.

Parameters

c [array_like] Array of Hermite series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding
index.

m [int, optional] Order of integration, must be positive. (Default: 1)

4.23. Polynomials 935



NumPy Reference, Release 1.15.1

k [{[], list, scalar}, optional] Integration constant(s). The value of the first integral at lbnd is
the first value in the list, the value of the second integral at lbnd is the second value, etc.
If k == [] (the default), all constants are set to zero. If m == 1, a single scalar can be
given instead of a list.

lbnd [scalar, optional] The lower bound of the integral. (Default: 0)

scl [scalar, optional] Following each integration the result is multiplied by scl before the inte-
gration constant is added. (Default: 1)

axis [int, optional] Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

Returns

S [ndarray] Hermite series coefficients of the integral.

Raises

ValueError If m < 0, len(k) > m, np.ndim(lbnd) != 0, or np.ndim(scl) !=
0.

See also:

hermder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable 𝑢 = 𝑎𝑥 + 𝑏 in an integral relative to x. Then 𝑑𝑥 = 𝑑𝑢/𝑎, so one will need to set scl
equal to 1/𝑎 - perhaps not what one would have first thought.

Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis
set. Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.hermite import hermint
>>> hermint([1,2,3]) # integrate once, value 0 at 0.
array([ 1. , 0.5, 0.5, 0.5])
>>> hermint([1,2,3], m=2) # integrate twice, value & deriv 0 at 0
array([-0.5 , 0.5 , 0.125 , 0.08333333, 0.0625 ])
>>> hermint([1,2,3], k=1) # integrate once, value 1 at 0.
array([ 2. , 0.5, 0.5, 0.5])
>>> hermint([1,2,3], lbnd=-1) # integrate once, value 0 at -1
array([-2. , 0.5, 0.5, 0.5])
>>> hermint([1,2,3], m=2, k=[1,2], lbnd=-1)
array([ 1.66666667, -0.5 , 0.125 , 0.08333333, 0.0625 ])

Algebra

hermadd(c1, c2) Add one Hermite series to another.
hermsub(c1, c2) Subtract one Hermite series from another.
hermmul(c1, c2) Multiply one Hermite series by another.

Continued on next page

936 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Table 131 – continued from previous page
hermmulx(c) Multiply a Hermite series by x.
hermdiv(c1, c2) Divide one Hermite series by another.
hermpow(c, pow[, maxpower]) Raise a Hermite series to a power.

numpy.polynomial.hermite.hermadd(c1, c2)
Add one Hermite series to another.

Returns the sum of two Hermite series c1 + c2. The arguments are sequences of coefficients ordered from lowest
order term to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters

c1, c2 [array_like] 1-D arrays of Hermite series coefficients ordered from low to high.

Returns

out [ndarray] Array representing the Hermite series of their sum.

See also:

hermsub, hermmul, hermdiv , hermpow

Notes

Unlike multiplication, division, etc., the sum of two Hermite series is a Hermite series (without having to “re-
project” the result onto the basis set) so addition, just like that of “standard” polynomials, is simply “component-
wise.”

Examples

>>> from numpy.polynomial.hermite import hermadd
>>> hermadd([1, 2, 3], [1, 2, 3, 4])
array([ 2., 4., 6., 4.])

numpy.polynomial.hermite.hermsub(c1, c2)
Subtract one Hermite series from another.

Returns the difference of two Hermite series c1 - c2. The sequences of coefficients are from lowest order term
to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters

c1, c2 [array_like] 1-D arrays of Hermite series coefficients ordered from low to high.

Returns

out [ndarray] Of Hermite series coefficients representing their difference.

See also:

hermadd, hermmul, hermdiv , hermpow

Notes

Unlike multiplication, division, etc., the difference of two Hermite series is a Hermite series (without having
to “reproject” the result onto the basis set) so subtraction, just like that of “standard” polynomials, is simply
“component-wise.”

4.23. Polynomials 937



NumPy Reference, Release 1.15.1

Examples

>>> from numpy.polynomial.hermite import hermsub
>>> hermsub([1, 2, 3, 4], [1, 2, 3])
array([ 0., 0., 0., 4.])

numpy.polynomial.hermite.hermmul(c1, c2)
Multiply one Hermite series by another.

Returns the product of two Hermite series c1 * c2. The arguments are sequences of coefficients, from lowest
order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters

c1, c2 [array_like] 1-D arrays of Hermite series coefficients ordered from low to high.

Returns

out [ndarray] Of Hermite series coefficients representing their product.

See also:

hermadd, hermsub, hermdiv , hermpow

Notes

In general, the (polynomial) product of two C-series results in terms that are not in the Hermite polynomial basis
set. Thus, to express the product as a Hermite series, it is necessary to “reproject” the product onto said basis
set, which may produce “unintuitive” (but correct) results; see Examples section below.

Examples

>>> from numpy.polynomial.hermite import hermmul
>>> hermmul([1, 2, 3], [0, 1, 2])
array([ 52., 29., 52., 7., 6.])

numpy.polynomial.hermite.hermmulx(c)
Multiply a Hermite series by x.

Multiply the Hermite series c by x, where x is the independent variable.

Parameters

c [array_like] 1-D array of Hermite series coefficients ordered from low to high.

Returns

out [ndarray] Array representing the result of the multiplication.

Notes

The multiplication uses the recursion relationship for Hermite polynomials in the form

xP_i(x) = (P_{i + 1}(x)/2 + i*P_{i - 1}(x))

938 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> from numpy.polynomial.hermite import hermmulx
>>> hermmulx([1, 2, 3])
array([ 2. , 6.5, 1. , 1.5])

numpy.polynomial.hermite.hermdiv(c1, c2)
Divide one Hermite series by another.

Returns the quotient-with-remainder of two Hermite series c1 / c2. The arguments are sequences of coefficients
from lowest order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters

c1, c2 [array_like] 1-D arrays of Hermite series coefficients ordered from low to high.

Returns

[quo, rem] [ndarrays] Of Hermite series coefficients representing the quotient and remainder.

See also:

hermadd, hermsub, hermmul, hermpow

Notes

In general, the (polynomial) division of one Hermite series by another results in quotient and remainder terms
that are not in the Hermite polynomial basis set. Thus, to express these results as a Hermite series, it is necessary
to “reproject” the results onto the Hermite basis set, which may produce “unintuitive” (but correct) results; see
Examples section below.

Examples

>>> from numpy.polynomial.hermite import hermdiv
>>> hermdiv([ 52., 29., 52., 7., 6.], [0, 1, 2])
(array([ 1., 2., 3.]), array([ 0.]))
>>> hermdiv([ 54., 31., 52., 7., 6.], [0, 1, 2])
(array([ 1., 2., 3.]), array([ 2., 2.]))
>>> hermdiv([ 53., 30., 52., 7., 6.], [0, 1, 2])
(array([ 1., 2., 3.]), array([ 1., 1.]))

numpy.polynomial.hermite.hermpow(c, pow, maxpower=16)
Raise a Hermite series to a power.

Returns the Hermite series c raised to the power pow. The argument c is a sequence of coefficients ordered from
low to high. i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

Parameters

c [array_like] 1-D array of Hermite series coefficients ordered from low to high.

pow [integer] Power to which the series will be raised

maxpower [integer, optional] Maximum power allowed. This is mainly to limit growth of the
series to unmanageable size. Default is 16

Returns

coef [ndarray] Hermite series of power.

4.23. Polynomials 939



NumPy Reference, Release 1.15.1

See also:

hermadd, hermsub, hermmul, hermdiv

Examples

>>> from numpy.polynomial.hermite import hermpow
>>> hermpow([1, 2, 3], 2)
array([ 81., 52., 82., 12., 9.])

Quadrature

hermgauss(deg) Gauss-Hermite quadrature.
hermweight(x) Weight function of the Hermite polynomials.

numpy.polynomial.hermite.hermgauss(deg)
Gauss-Hermite quadrature.

Computes the sample points and weights for Gauss-Hermite quadrature. These sample points and weights will
correctly integrate polynomials of degree 2*𝑑𝑒𝑔−1 or less over the interval [− inf, inf] with the weight function
𝑓(𝑥) = exp(−𝑥2).

Parameters

deg [int] Number of sample points and weights. It must be >= 1.

Returns

x [ndarray] 1-D ndarray containing the sample points.

y [ndarray] 1-D ndarray containing the weights.

Notes

New in version 1.7.0.

The results have only been tested up to degree 100, higher degrees may be problematic. The weights are
determined by using the fact that

𝑤𝑘 = 𝑐/(𝐻 ′
𝑛(𝑥𝑘) *𝐻𝑛−1(𝑥𝑘))

where 𝑐 is a constant independent of 𝑘 and 𝑥𝑘 is the k’th root of 𝐻𝑛, and then scaling the results to get the right
value when integrating 1.

numpy.polynomial.hermite.hermweight(x)
Weight function of the Hermite polynomials.

The weight function is exp(−𝑥2) and the interval of integration is [− inf, inf]. the Hermite polynomials are
orthogonal, but not normalized, with respect to this weight function.

Parameters

x [array_like] Values at which the weight function will be computed.

Returns

w [ndarray] The weight function at x.

940 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

New in version 1.7.0.

Miscellaneous

hermcompanion(c) Return the scaled companion matrix of c.
hermdomain
hermzero
hermone
hermx
hermtrim(c[, tol]) Remove “small” “trailing” coefficients from a polynomial.
hermline(off, scl) Hermite series whose graph is a straight line.
herm2poly(c) Convert a Hermite series to a polynomial.
poly2herm(pol) Convert a polynomial to a Hermite series.

numpy.polynomial.hermite.hermcompanion(c)
Return the scaled companion matrix of c.

The basis polynomials are scaled so that the companion matrix is symmetric when c is an Hermite basis polyno-
mial. This provides better eigenvalue estimates than the unscaled case and for basis polynomials the eigenvalues
are guaranteed to be real if numpy.linalg.eigvalsh is used to obtain them.

Parameters

c [array_like] 1-D array of Hermite series coefficients ordered from low to high degree.

Returns

mat [ndarray] Scaled companion matrix of dimensions (deg, deg).

Notes

New in version 1.7.0.

numpy.polynomial.hermite.hermdomain = array([-1, 1])

numpy.polynomial.hermite.hermzero = array([0])

numpy.polynomial.hermite.hermone = array([1])

numpy.polynomial.hermite.hermx = array([0. , 0.5])

numpy.polynomial.hermite.hermtrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters

c [array_like] 1-d array of coefficients, ordered from lowest order to highest.

tol [number, optional] Trailing (i.e., highest order) elements with absolute value less than or
equal to tol (default value is zero) are removed.

Returns

4.23. Polynomials 941



NumPy Reference, Release 1.15.1

trimmed [ndarray] 1-d array with trailing zeros removed. If the resulting series would be empty,
a series containing a single zero is returned.

Raises

ValueError If tol < 0

See also:

trimseq

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
array([ 0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([ 0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([ 0.0003+0.j , 0.0010-0.001j])

numpy.polynomial.hermite.hermline(off, scl)
Hermite series whose graph is a straight line.

Parameters

off, scl [scalars] The specified line is given by off + scl*x.

Returns

y [ndarray] This module’s representation of the Hermite series for off + scl*x.

See also:

polyline, chebline

Examples

>>> from numpy.polynomial.hermite import hermline, hermval
>>> hermval(0,hermline(3, 2))
3.0
>>> hermval(1,hermline(3, 2))
5.0

numpy.polynomial.hermite.herm2poly(c)
Convert a Hermite series to a polynomial.

Convert an array representing the coefficients of a Hermite series, ordered from lowest degree to highest, to an
array of the coefficients of the equivalent polynomial (relative to the “standard” basis) ordered from lowest to
highest degree.

Parameters

c [array_like] 1-D array containing the Hermite series coefficients, ordered from lowest order
term to highest.

Returns

942 Chapter 4. Routines



NumPy Reference, Release 1.15.1

pol [ndarray] 1-D array containing the coefficients of the equivalent polynomial (relative to the
“standard” basis) ordered from lowest order term to highest.

See also:

poly2herm

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.hermite import herm2poly
>>> herm2poly([ 1. , 2.75 , 0.5 , 0.375])
array([ 0., 1., 2., 3.])

numpy.polynomial.hermite.poly2herm(pol)
Convert a polynomial to a Hermite series.

Convert an array representing the coefficients of a polynomial (relative to the “standard” basis) ordered from
lowest degree to highest, to an array of the coefficients of the equivalent Hermite series, ordered from lowest to
highest degree.

Parameters

pol [array_like] 1-D array containing the polynomial coefficients

Returns

c [ndarray] 1-D array containing the coefficients of the equivalent Hermite series.

See also:

herm2poly

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.hermite import poly2herm
>>> poly2herm(np.arange(4))
array([ 1. , 2.75 , 0.5 , 0.375])

HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

New in version 1.6.0.

This module provides a number of objects (mostly functions) useful for dealing with HermiteE series, including a
HermiteE class that encapsulates the usual arithmetic operations. (General information on how this module repre-
sents and works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

4.23. Polynomials 943



NumPy Reference, Release 1.15.1

HermiteE Class

HermiteE(coef[, domain, window]) An HermiteE series class.

class numpy.polynomial.hermite_e.HermiteE(coef, domain=None, window=None)
An HermiteE series class.

The HermiteE class provides the standard Python numerical methods ‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and
‘()’ as well as the attributes and methods listed in the ABCPolyBase documentation.

Parameters

coef [array_like] HermiteE coefficients in order of increasing degree, i.e, (1, 2, 3) gives
1*He_0(x) + 2*He_1(X) + 3*He_2(x).

domain [(2,) array_like, optional] Domain to use. The interval [domain[0],
domain[1]] is mapped to the interval [window[0], window[1]] by shifting and
scaling. The default value is [-1, 1].

window [(2,) array_like, optional] Window, see domain for its use. The default value is [-1,
1].

New in version 1.6.0.

Methods

__call__(arg) Call self as a function.
basis(deg[, domain, window]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or

window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, window]) Least squares fit to data.
fromroots(roots[, domain, window]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

HermiteE.__call__(arg)
Call self as a function.

classmethod HermiteE.basis(deg, domain=None, window=None)

944 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

Parameters

deg [int] Degree of the basis polynomial for the series. Must be >= 0.

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] A series with the coefficient of the deg term set to one and all others
zero.

classmethod HermiteE.cast(series, domain=None, window=None)
Convert series to series of this class.

The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

New in version 1.7.0.

Parameters

series [series] The series instance to be converted.

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] A series of the same kind as the calling class and equal to series when
evaluated.

See also:

convert similar instance method

HermiteE.convert(domain=None, kind=None, window=None)
Convert series to a different kind and/or domain and/or window.

Parameters

domain [array_like, optional] The domain of the converted series. If the value is None, the
default domain of kind is used.

kind [class, optional] The polynomial series type class to which the current instance should
be converted. If kind is None, then the class of the current instance is used.

window [array_like, optional] The window of the converted series. If the value is None, the
default window of kind is used.

4.23. Polynomials 945



NumPy Reference, Release 1.15.1

Returns

new_series [series] The returned class can be of different type than the current instance
and/or have a different domain and/or different window.

Notes

Conversion between domains and class types can result in numerically ill defined series.

HermiteE.copy()
Return a copy.

Returns

new_series [series] Copy of self.

HermiteE.cutdeg(deg)
Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

New in version 1.5.0.

Parameters

deg [non-negative int] The series is reduced to degree deg by discarding the high order terms.
The value of deg must be a non-negative integer.

Returns

new_series [series] New instance of series with reduced degree.

HermiteE.degree()
The degree of the series.

New in version 1.5.0.

Returns

degree [int] Degree of the series, one less than the number of coefficients.

HermiteE.deriv(m=1)
Differentiate.

Return a series instance of that is the derivative of the current series.

Parameters

m [non-negative int] Find the derivative of order m.

Returns

new_series [series] A new series representing the derivative. The domain is the same as the
domain of the differentiated series.

classmethod HermiteE.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, win-
dow=None)

Least squares fit to data.

Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters

946 Chapter 4. Routines



NumPy Reference, Release 1.15.1

x [array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y [array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg [int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all
terms up to and including the deg’th term are included in the fit. For NumPy versions >=
1.11.0 a list of integers specifying the degrees of the terms to include may be used instead.

domain [{None, [beg, end], []}, optional] Domain to use for the returned series. If None,
then a minimal domain that covers the points x is chosen. If [] the class domain is used.
The default value was the class domain in NumPy 1.4 and None in later versions. The []
option was added in numpy 1.5.0.

rcond [float, optional] Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The default value is len(x)*eps,
where eps is the relative precision of the float type, about 2e-16 in most cases.

full [bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w [array_like, shape (M,), optional] Weights. If not None the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

window [{[beg, end]}, optional] Window to use for the returned series. The default value is
the default class domain

New in version 1.6.0.

Returns

new_series [series] A series that represents the least squares fit to the data and has the do-
main specified in the call.

[resid, rank, sv, rcond] [list] These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of the
scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix rcond
– value of rcond.

For more details, see linalg.lstsq.

classmethod HermiteE.fromroots(roots, domain=[], window=None)
Return series instance that has the specified roots.

Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters

roots [array_like] List of roots.

domain [{[], None, array_like}, optional] Domain for the resulting series. If None the do-
main is the interval from the smallest root to the largest. If [] the domain is the class
domain. The default is [].

window [{None, array_like}, optional] Window for the returned series. If None the class
window is used. The default is None.

4.23. Polynomials 947



NumPy Reference, Release 1.15.1

Returns

new_series [series] Series with the specified roots.

HermiteE.has_samecoef(other)
Check if coefficients match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the coef attribute.

Returns

bool [boolean] True if the coefficients are the same, False otherwise.

HermiteE.has_samedomain(other)
Check if domains match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the domain attribute.

Returns

bool [boolean] True if the domains are the same, False otherwise.

HermiteE.has_sametype(other)
Check if types match.

New in version 1.7.0.

Parameters

other [object] Class instance.

Returns

bool [boolean] True if other is same class as self

HermiteE.has_samewindow(other)
Check if windows match.

New in version 1.6.0.

Parameters

other [class instance] The other class must have the window attribute.

Returns

bool [boolean] True if the windows are the same, False otherwise.

classmethod HermiteE.identity(domain=None, window=None)
Identity function.

If p is the returned series, then p(x) == x for all values of x.

Parameters

domain [{None, array_like}, optional] If given, the array must be of the form [beg,
end], where beg and end are the endpoints of the domain. If None is given then the
class domain is used. The default is None.

948 Chapter 4. Routines



NumPy Reference, Release 1.15.1

window [{None, array_like}, optional] If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of the window. If None is given
then the class window is used. The default is None.

Returns

new_series [series] Series of representing the identity.

HermiteE.integ(m=1, k=[], lbnd=None)
Integrate.

Return a series instance that is the definite integral of the current series.

Parameters

m [non-negative int] The number of integrations to perform.

k [array_like] Integration constants. The first constant is applied to the first integration, the
second to the second, and so on. The list of values must less than or equal to m in length
and any missing values are set to zero.

lbnd [Scalar] The lower bound of the definite integral.

Returns

new_series [series] A new series representing the integral. The domain is the same as the
domain of the integrated series.

HermiteE.linspace(n=100, domain=None)
Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial
at the points x. By default the domain is the same as that of the series instance. This method is intended
mostly as a plotting aid.

New in version 1.5.0.

Parameters

n [int, optional] Number of point pairs to return. The default value is 100.

domain [{None, array_like}, optional] If not None, the specified domain is used instead of
that of the calling instance. It should be of the form [beg,end]. The default is None
which case the class domain is used.

Returns

x, y [ndarray] x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series
evaluated at element of x.

HermiteE.mapparms()
Return the mapping parameters.

The returned values define a linear map off + scl*x that is applied to the input arguments before
the series is evaluated. The map depends on the domain and window; if the current domain is equal
to the window the resulting map is the identity. If the coefficients of the series instance are to be used
by themselves outside this class, then the linear function must be substituted for the x in the standard
representation of the base polynomials.

Returns

off, scl [float or complex] The mapping function is defined by off + scl*x.

4.23. Polynomials 949



NumPy Reference, Release 1.15.1

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

HermiteE.roots()
Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the roots decrease the further outside the domain
they lie.

Returns

roots [ndarray] Array containing the roots of the series.

HermiteE.trim(tol=0)
Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the
beginning of the series is reached. If all the coefficients would be removed the series is set to [0]. A new
series instance is returned with the new coefficients. The current instance remains unchanged.

Parameters

tol [non-negative number.] All trailing coefficients less than tol will be removed.

Returns

new_series [series] Contains the new set of coefficients.

HermiteE.truncate(size)
Truncate series to length size.

Reduce the series to length size by discarding the high degree terms. The value of size must be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very
small.

Parameters

size [positive int] The series is reduced to length size by discarding the high degree terms.
The value of size must be a positive integer.

Returns

new_series [series] New instance of series with truncated coefficients.

Basics

hermeval(x, c[, tensor]) Evaluate an HermiteE series at points x.
hermeval2d(x, y, c) Evaluate a 2-D HermiteE series at points (x, y).
hermeval3d(x, y, z, c) Evaluate a 3-D Hermite_e series at points (x, y, z).
hermegrid2d(x, y, c) Evaluate a 2-D HermiteE series on the Cartesian product of

x and y.
hermegrid3d(x, y, z, c) Evaluate a 3-D HermiteE series on the Cartesian product of

x, y, and z.
Continued on next page

950 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Table 136 – continued from previous page
hermeroots(c) Compute the roots of a HermiteE series.
hermefromroots(roots) Generate a HermiteE series with given roots.

numpy.polynomial.hermite_e.hermeval(x, c, tensor=True)
Evaluate an HermiteE series at points x.

If c is of length n + 1, this function returns the value:

𝑝(𝑥) = 𝑐0 *𝐻𝑒0(𝑥) + 𝑐1 *𝐻𝑒1(𝑥) + ... + 𝑐𝑛 *𝐻𝑒𝑛(𝑥)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In
either case, either x or its elements must support multiplication and addition both with themselves and with the
elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the
shape will be c.shape[1:]. Note that scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a
concern.

Parameters

x [array_like, compatible object] If x is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, x or its elements must support
addition and multiplication with with themselves and with the elements of c.

c [array_like] Array of coefficients ordered so that the coefficients for terms of degree n are
contained in c[n]. If c is multidimensional the remaining indices enumerate multiple poly-
nomials. In the two dimensional case the coefficients may be thought of as stored in the
columns of c.

tensor [boolean, optional] If True, the shape of the coefficient array is extended with ones on
the right, one for each dimension of x. Scalars have dimension 0 for this action. The result
is that every column of coefficients in c is evaluated for every element of x. If False, x
is broadcast over the columns of c for the evaluation. This keyword is useful when c is
multidimensional. The default value is True.

New in version 1.7.0.

Returns

values [ndarray, algebra_like] The shape of the return value is described above.

See also:

hermeval2d, hermegrid2d, hermeval3d, hermegrid3d

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

Examples

4.23. Polynomials 951



NumPy Reference, Release 1.15.1

>>> from numpy.polynomial.hermite_e import hermeval
>>> coef = [1,2,3]
>>> hermeval(1, coef)
3.0
>>> hermeval([[1,2],[3,4]], coef)
array([[ 3., 14.],

[ 31., 54.]])

numpy.polynomial.hermite_e.hermeval2d(x, y, c)
Evaluate a 2-D HermiteE series at points (x, y).

This function returns the values:

𝑝(𝑥, 𝑦) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 *𝐻𝑒𝑖(𝑥) *𝐻𝑒𝑗(𝑦)

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.

If c is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be
c.shape[2:] + x.shape.

Parameters

x, y [array_like, compatible objects] The two dimensional series is evaluated at the points (x,
y), where x and y must have the same shape. If x or y is a list or tuple, it is first converted to
an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j is contained in c[i,j]. If c has dimension greater than two the remaining indices
enumerate multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the two dimensional polynomial at points
formed with pairs of corresponding values from x and y.

See also:

hermeval, hermegrid2d, hermeval3d, hermegrid3d

Notes

New in version 1.7.0.

numpy.polynomial.hermite_e.hermeval3d(x, y, z, c)
Evaluate a 3-D Hermite_e series at points (x, y, z).

This function returns the values:

𝑝(𝑥, 𝑦, 𝑧) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 *𝐻𝑒𝑖(𝑥) *𝐻𝑒𝑗(𝑦) *𝐻𝑒𝑘(𝑧)

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements
must support multiplication and addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape.

952 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Parameters

x, y, z [array_like, compatible object] The three dimensional series is evaluated at the points (x,
y, z), where x, y, and z must have the same shape. If any of x, y, or z is a list or tuple, it is first
converted to an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated
as a scalar.

c [array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j,k is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the multidimensional polynomial on points
formed with triples of corresponding values from x, y, and z.

See also:

hermeval, hermeval2d, hermegrid2d, hermegrid3d

Notes

New in version 1.7.0.

numpy.polynomial.hermite_e.hermegrid2d(x, y, c)
Evaluate a 2-D HermiteE series on the Cartesian product of x and y.

This function returns the values:

𝑝(𝑎, 𝑏) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 *𝐻𝑖(𝑎) *𝐻𝑗(𝑏)

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x and y or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the
result will be c.shape[2:] + x.shape.

Parameters

x, y [array_like, compatible objects] The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the two dimensional polynomial at points in
the Cartesian product of x and y.

See also:

hermeval, hermeval2d, hermeval3d, hermegrid3d

4.23. Polynomials 953



NumPy Reference, Release 1.15.1

Notes

New in version 1.7.0.

numpy.polynomial.hermite_e.hermegrid3d(x, y, z, c)
Evaluate a 3-D HermiteE series on the Cartesian product of x, y, and z.

This function returns the values:

𝑝(𝑎, 𝑏, 𝑐) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 *𝐻𝑒𝑖(𝑎) *𝐻𝑒𝑗(𝑏) *𝐻𝑒𝑘(𝑐)

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters

x, y, z [array_like, compatible objects] The three dimensional series is evaluated at the points in
the Cartesian product of x, y, and z. If x,‘y‘, or z is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c [array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns

values [ndarray, compatible object] The values of the two dimensional polynomial at points in
the Cartesian product of x and y.

See also:

hermeval, hermeval2d, hermegrid2d, hermeval3d

Notes

New in version 1.7.0.

numpy.polynomial.hermite_e.hermeroots(c)
Compute the roots of a HermiteE series.

Return the roots (a.k.a. “zeros”) of the polynomial

𝑝(𝑥) =
∑︁
𝑖

𝑐[𝑖] *𝐻𝑒𝑖(𝑥).

Parameters

c [1-D array_like] 1-D array of coefficients.

Returns

out [ndarray] Array of the roots of the series. If all the roots are real, then out is also real,
otherwise it is complex.

954 Chapter 4. Routines



NumPy Reference, Release 1.15.1

See also:

polyroots, legroots, lagroots, hermroots, chebroots

Notes

The root estimates are obtained as the eigenvalues of the companion matrix, Roots far from the origin of the
complex plane may have large errors due to the numerical instability of the series for such values. Roots with
multiplicity greater than 1 will also show larger errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s
method.

The HermiteE series basis polynomials aren’t powers of x so the results of this function may seem unintuitive.

Examples

>>> from numpy.polynomial.hermite_e import hermeroots, hermefromroots
>>> coef = hermefromroots([-1, 0, 1])
>>> coef
array([ 0., 2., 0., 1.])
>>> hermeroots(coef)
array([-1., 0., 1.])

numpy.polynomial.hermite_e.hermefromroots(roots)
Generate a HermiteE series with given roots.

The function returns the coefficients of the polynomial

𝑝(𝑥) = (𝑥− 𝑟0) * (𝑥− 𝑟1) * ... * (𝑥− 𝑟𝑛),

in HermiteE form, where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must appear
in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots looks
something like [2, 2, 2, 3, 3]. The roots can appear in any order.

If the returned coefficients are c, then

𝑝(𝑥) = 𝑐0 + 𝑐1 *𝐻𝑒1(𝑥) + ... + 𝑐𝑛 *𝐻𝑒𝑛(𝑥)

The coefficient of the last term is not generally 1 for monic polynomials in HermiteE form.

Parameters

roots [array_like] Sequence containing the roots.

Returns

out [ndarray] 1-D array of coefficients. If all roots are real then out is a real array, if some of
the roots are complex, then out is complex even if all the coefficients in the result are real
(see Examples below).

See also:

polyfromroots, legfromroots, lagfromroots, hermfromroots, chebfromroots.

Examples

4.23. Polynomials 955



NumPy Reference, Release 1.15.1

>>> from numpy.polynomial.hermite_e import hermefromroots, hermeval
>>> coef = hermefromroots((-1, 0, 1))
>>> hermeval((-1, 0, 1), coef)
array([ 0., 0., 0.])
>>> coef = hermefromroots((-1j, 1j))
>>> hermeval((-1j, 1j), coef)
array([ 0.+0.j, 0.+0.j])

Fitting

hermefit(x, y, deg[, rcond, full, w]) Least squares fit of Hermite series to data.
hermevander(x, deg) Pseudo-Vandermonde matrix of given degree.
hermevander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
hermevander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.

numpy.polynomial.hermite_e.hermefit(x, y, deg, rcond=None, full=False, w=None)
Least squares fit of Hermite series to data.

Return the coefficients of a HermiteE series of degree deg that is the least squares fit to the data values y given
at points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each
column of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted
polynomial(s) are in the form

𝑝(𝑥) = 𝑐0 + 𝑐1 *𝐻𝑒1(𝑥) + ... + 𝑐𝑛 *𝐻𝑒𝑛(𝑥),

where n is deg.

Parameters

x [array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y [array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg [int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all
terms up to and including the deg’th term are included in the fit. For NumPy versions >=
1.11.0 a list of integers specifying the degrees of the terms to include may be used instead.

rcond [float, optional] Relative condition number of the fit. Singular values smaller than this
relative to the largest singular value will be ignored. The default value is len(x)*eps, where
eps is the relative precision of the float type, about 2e-16 in most cases.

full [bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w [array_like, shape (M,), optional] Weights. If not None, the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. The default value is None.

Returns

coef [ndarray, shape (M,) or (M, K)] Hermite coefficients ordered from low to high. If y was
2-D, the coefficients for the data in column k of y are in column k.

956 Chapter 4. Routines



NumPy Reference, Release 1.15.1

[residuals, rank, singular_values, rcond] [list] These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of the
scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix rcond –
value of rcond.

For more details, see linalg.lstsq.

Warns

RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warn-
ing is only raised if full = False. The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also:

chebfit, legfit, polyfit, hermfit, polyfit

hermeval Evaluates a Hermite series.

hermevander pseudo Vandermonde matrix of Hermite series.

hermeweight HermiteE weight function.

linalg.lstsq Computes a least-squares fit from the matrix.

scipy.interpolate.UnivariateSpline Computes spline fits.

Notes

The solution is the coefficients of the HermiteE series p that minimizes the sum of the weighted squared errors

𝐸 =
∑︁
𝑗

𝑤2
𝑗 * |𝑦𝑗 − 𝑝(𝑥𝑗)|2,

where the 𝑤𝑗 are the weights. This problem is solved by setting up the (typically) overdetermined matrix
equation

𝑉 (𝑥) * 𝑐 = 𝑤 * 𝑦,

where V is the pseudo Vandermonde matrix of x, the elements of c are the coefficients to be solved for, and the
elements of y are the observed values. This equation is then solved using the singular value decomposition of V.

If some of the singular values of V are so small that they are neglected, then a RankWarning will be issued. This
means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of the
warning. The rcond parameter can also be set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using HermiteE series are probably most useful when the data can be approximated by sqrt(w(x)) *
p(x), where w(x) is the HermiteE weight. In that case the weight sqrt(w(x[i]) should be used together
with data values y[i]/sqrt(w(x[i]). The weight function is available as hermeweight.

References

[1]

4.23. Polynomials 957

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline


NumPy Reference, Release 1.15.1

Examples

>>> from numpy.polynomial.hermite_e import hermefit, hermeval
>>> x = np.linspace(-10, 10)
>>> err = np.random.randn(len(x))/10
>>> y = hermeval(x, [1, 2, 3]) + err
>>> hermefit(x, y, 2)
array([ 1.01690445, 1.99951418, 2.99948696])

numpy.polynomial.hermite_e.hermevander(x, deg)
Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix
is defined by

𝑉 [..., 𝑖] = 𝐻𝑒𝑖(𝑥),

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the
HermiteE polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the array V = hermevander(x, n), then np.
dot(V, c) and hermeval(x, c) are the same up to roundoff. This equivalence is useful both for least
squares fitting and for the evaluation of a large number of HermiteE series of the same degree and sample points.

Parameters

x [array_like] Array of points. The dtype is converted to float64 or complex128 depending on
whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg [int] Degree of the resulting matrix.

Returns

vander [ndarray] The pseudo-Vandermonde matrix. The shape of the returned matrix is x.
shape + (deg + 1,), where The last index is the degree of the corresponding Hermi-
teE polynomial. The dtype will be the same as the converted x.

Examples

>>> from numpy.polynomial.hermite_e import hermevander
>>> x = np.array([-1, 0, 1])
>>> hermevander(x, 3)
array([[ 1., -1., 0., 2.],

[ 1., 0., -1., -0.],
[ 1., 1., 0., -2.]])

numpy.polynomial.hermite_e.hermevander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

𝑉 [..., (𝑑𝑒𝑔[1] + 1) * 𝑖 + 𝑗] = 𝐻𝑒𝑖(𝑥) *𝐻𝑒𝑗(𝑦),

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y) and the last
index encodes the degrees of the HermiteE polynomials.

958 Chapter 4. Routines



NumPy Reference, Release 1.15.1

If V = hermevander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of
a 2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

𝑐00, 𝑐01, 𝑐02..., 𝑐10, 𝑐11, 𝑐12...

and np.dot(V, c.flat) and hermeval2d(x, y, c) will be the same up to roundoff. This equiva-
lence is useful both for least squares fitting and for the evaluation of a large number of 2-D HermiteE series of
the same degrees and sample points.

Parameters

x, y [array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted
to either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg [list of ints] List of maximum degrees of the form [x_deg, y_deg].

Returns

vander2d [ndarray] The shape of the returned matrix is x.shape + (order,), where
𝑜𝑟𝑑𝑒𝑟 = (𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1). The dtype will be the same as the converted x
and y.

See also:

hermevander, hermevander3d., hermeval3d

Notes

New in version 1.7.0.

numpy.polynomial.hermite_e.hermevander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then Hehe pseudo-Vandermonde matrix is defined by

𝑉 [..., (𝑚 + 1)(𝑛 + 1)𝑖 + (𝑛 + 1)𝑗 + 𝑘] = 𝐻𝑒𝑖(𝑥) *𝐻𝑒𝑗(𝑦) *𝐻𝑒𝑘(𝑧),

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x, y, z) and the
last index encodes the degrees of the HermiteE polynomials.

If V = hermevander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to
the elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

𝑐000, 𝑐001, 𝑐002, ..., 𝑐010, 𝑐011, 𝑐012, ...

and np.dot(V, c.flat) and hermeval3d(x, y, z, c)will be the same up to roundoff. This equiv-
alence is useful both for least squares fitting and for the evaluation of a large number of 3-D HermiteE series of
the same degrees and sample points.

Parameters

x, y, z [array_like] Arrays of point coordinates, all of the same shape. The dtypes will be con-
verted to either float64 or complex128 depending on whether any of the elements are com-
plex. Scalars are converted to 1-D arrays.

deg [list of ints] List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns

4.23. Polynomials 959



NumPy Reference, Release 1.15.1

vander3d [ndarray] The shape of the returned matrix is x.shape + (order,), where
𝑜𝑟𝑑𝑒𝑟 = (𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1) * (𝑑𝑒𝑔[2] + 1). The dtype will be the same as
the converted x, y, and z.

See also:

hermevander, hermevander3d., hermeval3d

Notes

New in version 1.7.0.

Calculus

hermeder(c[, m, scl, axis]) Differentiate a Hermite_e series.
hermeint(c[, m, k, lbnd, scl, axis]) Integrate a Hermite_e series.

numpy.polynomial.hermite_e.hermeder(c, m=1, scl=1, axis=0)
Differentiate a Hermite_e series.

Returns the series coefficients c differentiated m times along axis. At each iteration the result is mul-
tiplied by scl (the scaling factor is for use in a linear change of variable). The argument c is an ar-
ray of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series 1*He_0 +
2*He_1 + 3*He_2 while [[1,2],[1,2]] represents 1*He_0(x)*He_0(y) + 1*He_1(x)*He_0(y) +
2*He_0(x)*He_1(y) + 2*He_1(x)*He_1(y) if axis=0 is x and axis=1 is y.

Parameters

c [array_like] Array of Hermite_e series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding
index.

m [int, optional] Number of derivatives taken, must be non-negative. (Default: 1)

scl [scalar, optional] Each differentiation is multiplied by scl. The end result is multiplication
by scl**m. This is for use in a linear change of variable. (Default: 1)

axis [int, optional] Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

Returns

der [ndarray] Hermite series of the derivative.

See also:

hermeint

Notes

In general, the result of differentiating a Hermite series does not resemble the same operation on a power series.
Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.

960 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> from numpy.polynomial.hermite_e import hermeder
>>> hermeder([ 1., 1., 1., 1.])
array([ 1., 2., 3.])
>>> hermeder([-0.25, 1., 1./2., 1./3., 1./4 ], m=2)
array([ 1., 2., 3.])

numpy.polynomial.hermite_e.hermeint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a Hermite_e series.

Returns the Hermite_e series coefficients c integrated m times from lbnd along axis. At each iteration the
resulting series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use
in a linear change of variable. (“Buyer beware”: note that, depending on what one is doing, one may want
scl to be the reciprocal of what one might expect; for more information, see the Notes section below.) The
argument c is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series
H_0 + 2*H_1 + 3*H_2 while [[1,2],[1,2]] represents 1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) +
2*H_0(x)*H_1(y) + 2*H_1(x)*H_1(y) if axis=0 is x and axis=1 is y.

Parameters

c [array_like] Array of Hermite_e series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding
index.

m [int, optional] Order of integration, must be positive. (Default: 1)

k [{[], list, scalar}, optional] Integration constant(s). The value of the first integral at lbnd is
the first value in the list, the value of the second integral at lbnd is the second value, etc.
If k == [] (the default), all constants are set to zero. If m == 1, a single scalar can be
given instead of a list.

lbnd [scalar, optional] The lower bound of the integral. (Default: 0)

scl [scalar, optional] Following each integration the result is multiplied by scl before the inte-
gration constant is added. (Default: 1)

axis [int, optional] Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

Returns

S [ndarray] Hermite_e series coefficients of the integral.

Raises

ValueError If m < 0, len(k) > m, np.ndim(lbnd) != 0, or np.ndim(scl) !=
0.

See also:

hermeder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable 𝑢 = 𝑎𝑥 + 𝑏 in an integral relative to x. Then 𝑑𝑥 = 𝑑𝑢/𝑎, so one will need to set scl
equal to 1/𝑎 - perhaps not what one would have first thought.

4.23. Polynomials 961



NumPy Reference, Release 1.15.1

Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis
set. Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.hermite_e import hermeint
>>> hermeint([1, 2, 3]) # integrate once, value 0 at 0.
array([ 1., 1., 1., 1.])
>>> hermeint([1, 2, 3], m=2) # integrate twice, value & deriv 0 at 0
array([-0.25 , 1. , 0.5 , 0.33333333, 0.25 ])
>>> hermeint([1, 2, 3], k=1) # integrate once, value 1 at 0.
array([ 2., 1., 1., 1.])
>>> hermeint([1, 2, 3], lbnd=-1) # integrate once, value 0 at -1
array([-1., 1., 1., 1.])
>>> hermeint([1, 2, 3], m=2, k=[1, 2], lbnd=-1)
array([ 1.83333333, 0. , 0.5 , 0.33333333, 0.25 ])

Algebra

hermeadd(c1, c2) Add one Hermite series to another.
hermesub(c1, c2) Subtract one Hermite series from another.
hermemul(c1, c2) Multiply one Hermite series by another.
hermemulx(c) Multiply a Hermite series by x.
hermediv(c1, c2) Divide one Hermite series by another.
hermepow(c, pow[, maxpower]) Raise a Hermite series to a power.

numpy.polynomial.hermite_e.hermeadd(c1, c2)
Add one Hermite series to another.

Returns the sum of two Hermite series c1 + c2. The arguments are sequences of coefficients ordered from lowest
order term to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters

c1, c2 [array_like] 1-D arrays of Hermite series coefficients ordered from low to high.

Returns

out [ndarray] Array representing the Hermite series of their sum.

See also:

hermesub, hermemul, hermediv , hermepow

Notes

Unlike multiplication, division, etc., the sum of two Hermite series is a Hermite series (without having to “re-
project” the result onto the basis set) so addition, just like that of “standard” polynomials, is simply “component-
wise.”

962 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> from numpy.polynomial.hermite_e import hermeadd
>>> hermeadd([1, 2, 3], [1, 2, 3, 4])
array([ 2., 4., 6., 4.])

numpy.polynomial.hermite_e.hermesub(c1, c2)
Subtract one Hermite series from another.

Returns the difference of two Hermite series c1 - c2. The sequences of coefficients are from lowest order term
to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters

c1, c2 [array_like] 1-D arrays of Hermite series coefficients ordered from low to high.

Returns

out [ndarray] Of Hermite series coefficients representing their difference.

See also:

hermeadd, hermemul, hermediv , hermepow

Notes

Unlike multiplication, division, etc., the difference of two Hermite series is a Hermite series (without having
to “reproject” the result onto the basis set) so subtraction, just like that of “standard” polynomials, is simply
“component-wise.”

Examples

>>> from numpy.polynomial.hermite_e import hermesub
>>> hermesub([1, 2, 3, 4], [1, 2, 3])
array([ 0., 0., 0., 4.])

numpy.polynomial.hermite_e.hermemul(c1, c2)
Multiply one Hermite series by another.

Returns the product of two Hermite series c1 * c2. The arguments are sequences of coefficients, from lowest
order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters

c1, c2 [array_like] 1-D arrays of Hermite series coefficients ordered from low to high.

Returns

out [ndarray] Of Hermite series coefficients representing their product.

See also:

hermeadd, hermesub, hermediv , hermepow

4.23. Polynomials 963



NumPy Reference, Release 1.15.1

Notes

In general, the (polynomial) product of two C-series results in terms that are not in the Hermite polynomial basis
set. Thus, to express the product as a Hermite series, it is necessary to “reproject” the product onto said basis
set, which may produce “unintuitive” (but correct) results; see Examples section below.

Examples

>>> from numpy.polynomial.hermite_e import hermemul
>>> hermemul([1, 2, 3], [0, 1, 2])
array([ 14., 15., 28., 7., 6.])

numpy.polynomial.hermite_e.hermemulx(c)
Multiply a Hermite series by x.

Multiply the Hermite series c by x, where x is the independent variable.

Parameters

c [array_like] 1-D array of Hermite series coefficients ordered from low to high.

Returns

out [ndarray] Array representing the result of the multiplication.

Notes

The multiplication uses the recursion relationship for Hermite polynomials in the form

xP_i(x) = (P_{i + 1}(x) + iP_{i - 1}(x)))

Examples

>>> from numpy.polynomial.hermite_e import hermemulx
>>> hermemulx([1, 2, 3])
array([ 2., 7., 2., 3.])

numpy.polynomial.hermite_e.hermediv(c1, c2)
Divide one Hermite series by another.

Returns the quotient-with-remainder of two Hermite series c1 / c2. The arguments are sequences of coefficients
from lowest order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters

c1, c2 [array_like] 1-D arrays of Hermite series coefficients ordered from low to high.

Returns

[quo, rem] [ndarrays] Of Hermite series coefficients representing the quotient and remainder.

See also:

hermeadd, hermesub, hermemul, hermepow

964 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

In general, the (polynomial) division of one Hermite series by another results in quotient and remainder terms
that are not in the Hermite polynomial basis set. Thus, to express these results as a Hermite series, it is necessary
to “reproject” the results onto the Hermite basis set, which may produce “unintuitive” (but correct) results; see
Examples section below.

Examples

>>> from numpy.polynomial.hermite_e import hermediv
>>> hermediv([ 14., 15., 28., 7., 6.], [0, 1, 2])
(array([ 1., 2., 3.]), array([ 0.]))
>>> hermediv([ 15., 17., 28., 7., 6.], [0, 1, 2])
(array([ 1., 2., 3.]), array([ 1., 2.]))

numpy.polynomial.hermite_e.hermepow(c, pow, maxpower=16)
Raise a Hermite series to a power.

Returns the Hermite series c raised to the power pow. The argument c is a sequence of coefficients ordered from
low to high. i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

Parameters

c [array_like] 1-D array of Hermite series coefficients ordered from low to high.

pow [integer] Power to which the series will be raised

maxpower [integer, optional] Maximum power allowed. This is mainly to limit growth of the
series to unmanageable size. Default is 16

Returns

coef [ndarray] Hermite series of power.

See also:

hermeadd, hermesub, hermemul, hermediv

Examples

>>> from numpy.polynomial.hermite_e import hermepow
>>> hermepow([1, 2, 3], 2)
array([ 23., 28., 46., 12., 9.])

Quadrature

hermegauss(deg) Gauss-HermiteE quadrature.
hermeweight(x) Weight function of the Hermite_e polynomials.

numpy.polynomial.hermite_e.hermegauss(deg)
Gauss-HermiteE quadrature.

Computes the sample points and weights for Gauss-HermiteE quadrature. These sample points and weights
will correctly integrate polynomials of degree 2 * 𝑑𝑒𝑔 − 1 or less over the interval [− inf, inf] with the weight

4.23. Polynomials 965



NumPy Reference, Release 1.15.1

function 𝑓(𝑥) = exp(−𝑥2/2).

Parameters

deg [int] Number of sample points and weights. It must be >= 1.

Returns

x [ndarray] 1-D ndarray containing the sample points.

y [ndarray] 1-D ndarray containing the weights.

Notes

New in version 1.7.0.

The results have only been tested up to degree 100, higher degrees may be problematic. The weights are
determined by using the fact that

𝑤𝑘 = 𝑐/(𝐻𝑒′𝑛(𝑥𝑘) *𝐻𝑒𝑛−1(𝑥𝑘))

where 𝑐 is a constant independent of 𝑘 and 𝑥𝑘 is the k’th root of 𝐻𝑒𝑛, and then scaling the results to get the
right value when integrating 1.

numpy.polynomial.hermite_e.hermeweight(x)
Weight function of the Hermite_e polynomials.

The weight function is exp(−𝑥2/2) and the interval of integration is [− inf, inf]. the HermiteE polynomials are
orthogonal, but not normalized, with respect to this weight function.

Parameters

x [array_like] Values at which the weight function will be computed.

Returns

w [ndarray] The weight function at x.

Notes

New in version 1.7.0.

Miscellaneous

hermecompanion(c) Return the scaled companion matrix of c.
hermedomain
hermezero
hermeone
hermex
hermetrim(c[, tol]) Remove “small” “trailing” coefficients from a polynomial.
hermeline(off, scl) Hermite series whose graph is a straight line.
herme2poly(c) Convert a Hermite series to a polynomial.
poly2herme(pol) Convert a polynomial to a Hermite series.

numpy.polynomial.hermite_e.hermecompanion(c)
Return the scaled companion matrix of c.

966 Chapter 4. Routines



NumPy Reference, Release 1.15.1

The basis polynomials are scaled so that the companion matrix is symmetric when c is an HermiteE basis
polynomial. This provides better eigenvalue estimates than the unscaled case and for basis polynomials the
eigenvalues are guaranteed to be real if numpy.linalg.eigvalsh is used to obtain them.

Parameters

c [array_like] 1-D array of HermiteE series coefficients ordered from low to high degree.

Returns

mat [ndarray] Scaled companion matrix of dimensions (deg, deg).

Notes

New in version 1.7.0.

numpy.polynomial.hermite_e.hermedomain = array([-1, 1])

numpy.polynomial.hermite_e.hermezero = array([0])

numpy.polynomial.hermite_e.hermeone = array([1])

numpy.polynomial.hermite_e.hermex = array([0, 1])

numpy.polynomial.hermite_e.hermetrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters

c [array_like] 1-d array of coefficients, ordered from lowest order to highest.

tol [number, optional] Trailing (i.e., highest order) elements with absolute value less than or
equal to tol (default value is zero) are removed.

Returns

trimmed [ndarray] 1-d array with trailing zeros removed. If the resulting series would be empty,
a series containing a single zero is returned.

Raises

ValueError If tol < 0

See also:

trimseq

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
array([ 0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([ 0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([ 0.0003+0.j , 0.0010-0.001j])

4.23. Polynomials 967



NumPy Reference, Release 1.15.1

numpy.polynomial.hermite_e.hermeline(off, scl)
Hermite series whose graph is a straight line.

Parameters

off, scl [scalars] The specified line is given by off + scl*x.

Returns

y [ndarray] This module’s representation of the Hermite series for off + scl*x.

See also:

polyline, chebline

Examples

>>> from numpy.polynomial.hermite_e import hermeline
>>> from numpy.polynomial.hermite_e import hermeline, hermeval
>>> hermeval(0,hermeline(3, 2))
3.0
>>> hermeval(1,hermeline(3, 2))
5.0

numpy.polynomial.hermite_e.herme2poly(c)
Convert a Hermite series to a polynomial.

Convert an array representing the coefficients of a Hermite series, ordered from lowest degree to highest, to an
array of the coefficients of the equivalent polynomial (relative to the “standard” basis) ordered from lowest to
highest degree.

Parameters

c [array_like] 1-D array containing the Hermite series coefficients, ordered from lowest order
term to highest.

Returns

pol [ndarray] 1-D array containing the coefficients of the equivalent polynomial (relative to the
“standard” basis) ordered from lowest order term to highest.

See also:

poly2herme

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.hermite_e import herme2poly
>>> herme2poly([ 2., 10., 2., 3.])
array([ 0., 1., 2., 3.])

numpy.polynomial.hermite_e.poly2herme(pol)
Convert a polynomial to a Hermite series.

968 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Convert an array representing the coefficients of a polynomial (relative to the “standard” basis) ordered from
lowest degree to highest, to an array of the coefficients of the equivalent Hermite series, ordered from lowest to
highest degree.

Parameters

pol [array_like] 1-D array containing the polynomial coefficients

Returns

c [ndarray] 1-D array containing the coefficients of the equivalent Hermite series.

See also:

herme2poly

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.hermite_e import poly2herme
>>> poly2herme(np.arange(4))
array([ 2., 10., 2., 3.])

Polyutils

Utility classes and functions for the polynomial modules.

This module provides: error and warning objects; a polynomial base class; and some routines used in both the poly-
nomial and chebyshev modules.

Error objects

PolyError Base class for errors in this module.
PolyDomainError Issued by the generic Poly class when two domains don’t

match.

exception numpy.polynomial.polyutils.PolyError
Base class for errors in this module.

exception numpy.polynomial.polyutils.PolyDomainError
Issued by the generic Poly class when two domains don’t match.

This is raised when an binary operation is passed Poly objects with different domains.

Warning objects

RankWarning Issued by chebfit when the design matrix is rank deficient.

4.23. Polynomials 969



NumPy Reference, Release 1.15.1

exception numpy.polynomial.polyutils.RankWarning
Issued by chebfit when the design matrix is rank deficient.

Base class

PolyBase Base class for all polynomial types.

class numpy.polynomial.polyutils.PolyBase
Base class for all polynomial types.

Deprecated in numpy 1.9.0, use the abstract ABCPolyBase class instead. Note that the latter requires a number
of virtual functions to be implemented.

Functions

as_series(alist[, trim]) Return argument as a list of 1-d arrays.
trimseq(seq) Remove small Poly series coefficients.
trimcoef(c[, tol]) Remove “small” “trailing” coefficients from a polynomial.
getdomain(x) Return a domain suitable for given abscissae.
mapdomain(x, old, new) Apply linear map to input points.
mapparms(old, new) Linear map parameters between domains.

numpy.polynomial.polyutils.as_series(alist, trim=True)
Return argument as a list of 1-d arrays.

The returned list contains array(s) of dtype double, complex double, or object. A 1-d argument of shape (N,)
is parsed into N arrays of size one; a 2-d argument of shape (M,N) is parsed into M arrays of size N (i.e., is
“parsed by row”); and a higher dimensional array raises a Value Error if it is not first reshaped into either a 1-d
or 2-d array.

Parameters

alist [array_like] A 1- or 2-d array_like

trim [boolean, optional] When True, trailing zeros are removed from the inputs. When False,
the inputs are passed through intact.

Returns

[a1, a2,. . . ] [list of 1-D arrays] A copy of the input data as a list of 1-d arrays.

Raises

ValueError Raised when as_series cannot convert its input to 1-d arrays, or at least one of
the resulting arrays is empty.

Examples

>>> from numpy.polynomial import polyutils as pu
>>> a = np.arange(4)
>>> pu.as_series(a)
[array([ 0.]), array([ 1.]), array([ 2.]), array([ 3.])]

(continues on next page)

970 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> b = np.arange(6).reshape((2,3))
>>> pu.as_series(b)
[array([ 0., 1., 2.]), array([ 3., 4., 5.])]

>>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16)))
[array([ 1.]), array([ 0., 1., 2.]), array([ 0., 1.])]

>>> pu.as_series([2, [1.1, 0.]])
[array([ 2.]), array([ 1.1])]

>>> pu.as_series([2, [1.1, 0.]], trim=False)
[array([ 2.]), array([ 1.1, 0. ])]

numpy.polynomial.polyutils.trimseq(seq)
Remove small Poly series coefficients.

Parameters

seq [sequence] Sequence of Poly series coefficients. This routine fails for empty sequences.

Returns

series [sequence] Subsequence with trailing zeros removed. If the resulting sequence would be
empty, return the first element. The returned sequence may or may not be a view.

Notes

Do not lose the type info if the sequence contains unknown objects.

numpy.polynomial.polyutils.trimcoef(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters

c [array_like] 1-d array of coefficients, ordered from lowest order to highest.

tol [number, optional] Trailing (i.e., highest order) elements with absolute value less than or
equal to tol (default value is zero) are removed.

Returns

trimmed [ndarray] 1-d array with trailing zeros removed. If the resulting series would be empty,
a series containing a single zero is returned.

Raises

ValueError If tol < 0

See also:

trimseq

4.23. Polynomials 971



NumPy Reference, Release 1.15.1

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
array([ 0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([ 0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([ 0.0003+0.j , 0.0010-0.001j])

numpy.polynomial.polyutils.getdomain(x)
Return a domain suitable for given abscissae.

Find a domain suitable for a polynomial or Chebyshev series defined at the values supplied.

Parameters

x [array_like] 1-d array of abscissae whose domain will be determined.

Returns

domain [ndarray] 1-d array containing two values. If the inputs are complex, then the two
returned points are the lower left and upper right corners of the smallest rectangle (aligned
with the axes) in the complex plane containing the points x. If the inputs are real, then the
two points are the ends of the smallest interval containing the points x.

See also:

mapparms, mapdomain

Examples

>>> from numpy.polynomial import polyutils as pu
>>> points = np.arange(4)**2 - 5; points
array([-5, -4, -1, 4])
>>> pu.getdomain(points)
array([-5., 4.])
>>> c = np.exp(complex(0,1)*np.pi*np.arange(12)/6) # unit circle
>>> pu.getdomain(c)
array([-1.-1.j, 1.+1.j])

numpy.polynomial.polyutils.mapdomain(x, old, new)
Apply linear map to input points.

The linear map offset + scale*x that maps the domain old to the domain new is applied to the points x.

Parameters

x [array_like] Points to be mapped. If x is a subtype of ndarray the subtype will be preserved.

old, new [array_like] The two domains that determine the map. Each must (successfully) con-
vert to 1-d arrays containing precisely two values.

Returns

x_out [ndarray] Array of points of the same shape as x, after application of the linear map
between the two domains.

972 Chapter 4. Routines



NumPy Reference, Release 1.15.1

See also:

getdomain, mapparms

Notes

Effectively, this implements:

𝑥_𝑜𝑢𝑡 = 𝑛𝑒𝑤[0] + 𝑚(𝑥− 𝑜𝑙𝑑[0])

where

𝑚 =
𝑛𝑒𝑤[1] − 𝑛𝑒𝑤[0]

𝑜𝑙𝑑[1] − 𝑜𝑙𝑑[0]

Examples

>>> from numpy.polynomial import polyutils as pu
>>> old_domain = (-1,1)
>>> new_domain = (0,2*np.pi)
>>> x = np.linspace(-1,1,6); x
array([-1. , -0.6, -0.2, 0.2, 0.6, 1. ])
>>> x_out = pu.mapdomain(x, old_domain, new_domain); x_out
array([ 0. , 1.25663706, 2.51327412, 3.76991118, 5.02654825,

6.28318531])
>>> x - pu.mapdomain(x_out, new_domain, old_domain)
array([ 0., 0., 0., 0., 0., 0.])

Also works for complex numbers (and thus can be used to map any line in the complex plane to any other line
therein).

>>> i = complex(0,1)
>>> old = (-1 - i, 1 + i)
>>> new = (-1 + i, 1 - i)
>>> z = np.linspace(old[0], old[1], 6); z
array([-1.0-1.j , -0.6-0.6j, -0.2-0.2j, 0.2+0.2j, 0.6+0.6j, 1.0+1.j ])
>>> new_z = P.mapdomain(z, old, new); new_z
array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j, 0.2-0.2j, 0.6-0.6j, 1.0-1.j ])

numpy.polynomial.polyutils.mapparms(old, new)
Linear map parameters between domains.

Return the parameters of the linear map offset + scale*x that maps old to new such that old[i] ->
new[i], i = 0, 1.

Parameters

old, new [array_like] Domains. Each domain must (successfully) convert to a 1-d array con-
taining precisely two values.

Returns

offset, scale [scalars] The map L(x) = offset + scale*x maps the first domain to the
second.

See also:

getdomain, mapdomain

4.23. Polynomials 973



NumPy Reference, Release 1.15.1

Notes

Also works for complex numbers, and thus can be used to calculate the parameters required to map any line in
the complex plane to any other line therein.

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.mapparms((-1,1),(-1,1))
(0.0, 1.0)
>>> pu.mapparms((1,-1),(-1,1))
(0.0, -1.0)
>>> i = complex(0,1)
>>> pu.mapparms((-i,-1),(1,i))
((1+1j), (1+0j))

Poly1d

Basics

poly1d(c_or_r[, r, variable]) A one-dimensional polynomial class.
polyval(p, x) Evaluate a polynomial at specific values.
poly(seq_of_zeros) Find the coefficients of a polynomial with the given se-

quence of roots.
roots(p) Return the roots of a polynomial with coefficients given in

p.

class numpy.poly1d(c_or_r, r=False, variable=None)
A one-dimensional polynomial class.

A convenience class, used to encapsulate “natural” operations on polynomials so that said operations may take
on their customary form in code (see Examples).

Parameters

c_or_r [array_like] The polynomial’s coefficients, in decreasing powers, or if the value of the
second parameter is True, the polynomial’s roots (values where the polynomial evaluates to
0). For example, poly1d([1, 2, 3]) returns an object that represents 𝑥2 + 2𝑥 + 3,
whereas poly1d([1, 2, 3], True) returns one that represents (𝑥− 1)(𝑥− 2)(𝑥−
3) = 𝑥3 − 6𝑥2 + 11𝑥− 6.

r [bool, optional] If True, c_or_r specifies the polynomial’s roots; the default is False.

variable [str, optional] Changes the variable used when printing p from x to variable (see
Examples).

Examples

Construct the polynomial 𝑥2 + 2𝑥 + 3:

974 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> p = np.poly1d([1, 2, 3])
>>> print(np.poly1d(p))

2
1 x + 2 x + 3

Evaluate the polynomial at 𝑥 = 0.5:

>>> p(0.5)
4.25

Find the roots:

>>> p.r
array([-1.+1.41421356j, -1.-1.41421356j])
>>> p(p.r)
array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j])

These numbers in the previous line represent (0, 0) to machine precision

Show the coefficients:

>>> p.c
array([1, 2, 3])

Display the order (the leading zero-coefficients are removed):

>>> p.order
2

Show the coefficient of the k-th power in the polynomial (which is equivalent to p.c[-(i+1)]):

>>> p[1]
2

Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder):

>>> p * p
poly1d([ 1, 4, 10, 12, 9])

>>> (p**3 + 4) / p
(poly1d([ 1., 4., 10., 12., 9.]), poly1d([ 4.]))

asarray(p) gives the coefficient array, so polynomials can be used in all functions that accept arrays:

>>> p**2 # square of polynomial
poly1d([ 1, 4, 10, 12, 9])

>>> np.square(p) # square of individual coefficients
array([1, 4, 9])

The variable used in the string representation of p can be modified, using the variable parameter:

>>> p = np.poly1d([1,2,3], variable='z')
>>> print(p)

2
1 z + 2 z + 3

4.23. Polynomials 975



NumPy Reference, Release 1.15.1

Construct a polynomial from its roots:

>>> np.poly1d([1, 2], True)
poly1d([ 1, -3, 2])

This is the same polynomial as obtained by:

>>> np.poly1d([1, -1]) * np.poly1d([1, -2])
poly1d([ 1, -3, 2])

Attributes

c A copy of the polynomial coefficients

coef A copy of the polynomial coefficients

coefficients A copy of the polynomial coefficients

coeffs A copy of the polynomial coefficients

o The order or degree of the polynomial

order The order or degree of the polynomial

r The roots of the polynomial, where self(x) == 0

roots The roots of the polynomial, where self(x) == 0

variable The name of the polynomial variable

Methods

__call__(val) Call self as a function.
deriv([m]) Return a derivative of this polynomial.
integ([m, k]) Return an antiderivative (indefinite integral) of this

polynomial.

poly1d.__call__(val)
Call self as a function.

poly1d.deriv(m=1)
Return a derivative of this polynomial.

Refer to polyder for full documentation.

See also:

polyder equivalent function

poly1d.integ(m=1, k=0)
Return an antiderivative (indefinite integral) of this polynomial.

Refer to polyint for full documentation.

See also:

polyint equivalent function

976 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.polyval(p, x)
Evaluate a polynomial at specific values.

If p is of length N, this function returns the value:

p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]

If x is a sequence, then p(x) is returned for each element of x. If x is another polynomial then the composite
polynomial p(x(t)) is returned.

Parameters

p [array_like or poly1d object] 1D array of polynomial coefficients (including coefficients equal
to zero) from highest degree to the constant term, or an instance of poly1d.

x [array_like or poly1d object] A number, an array of numbers, or an instance of poly1d, at
which to evaluate p.

Returns

values [ndarray or poly1d] If x is a poly1d instance, the result is the composition of the two
polynomials, i.e., x is “substituted” in p and the simplified result is returned. In addition,
the type of x - array_like or poly1d - governs the type of the output: x array_like => values
array_like, x a poly1d object => values is also.

See also:

poly1d A polynomial class.

Notes

Horner’s scheme [1] is used to evaluate the polynomial. Even so, for polynomials of high degree the values may
be inaccurate due to rounding errors. Use carefully.

References

[1]

Examples

>>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1
76
>>> np.polyval([3,0,1], np.poly1d(5))
poly1d([ 76.])
>>> np.polyval(np.poly1d([3,0,1]), 5)
76
>>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5))
poly1d([ 76.])

numpy.poly(seq_of_zeros)
Find the coefficients of a polynomial with the given sequence of roots.

Returns the coefficients of the polynomial whose leading coefficient is one for the given sequence of zeros
(multiple roots must be included in the sequence as many times as their multiplicity; see Examples). A square
matrix (or array, which will be treated as a matrix) can also be given, in which case the coefficients of the
characteristic polynomial of the matrix are returned.

4.23. Polynomials 977



NumPy Reference, Release 1.15.1

Parameters

seq_of_zeros [array_like, shape (N,) or (N, N)] A sequence of polynomial roots, or a square
array or matrix object.

Returns

c [ndarray] 1D array of polynomial coefficients from highest to lowest degree:

c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]
where c[0] always equals 1.

Raises

ValueError If input is the wrong shape (the input must be a 1-D or square 2-D array).

See also:

polyval Compute polynomial values.

roots Return the roots of a polynomial.

polyfit Least squares polynomial fit.

poly1d A one-dimensional polynomial class.

Notes

Specifying the roots of a polynomial still leaves one degree of freedom, typically represented by an undetermined
leading coefficient. [1] In the case of this function, that coefficient - the first one in the returned array - is always
taken as one. (If for some reason you have one other point, the only automatic way presently to leverage that
information is to use polyfit.)

The characteristic polynomial, 𝑝𝑎(𝑡), of an n-by-n matrix A is given by

𝑝𝑎(𝑡) = det(𝑡 I−A),

where I is the n-by-n identity matrix. [2]

References

[1], [2]

Examples

Given a sequence of a polynomial’s zeros:

>>> np.poly((0, 0, 0)) # Multiple root example
array([1, 0, 0, 0])

The line above represents z**3 + 0*z**2 + 0*z + 0.

>>> np.poly((-1./2, 0, 1./2))
array([ 1. , 0. , -0.25, 0. ])

The line above represents z**3 - z/4

978 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> np.poly((np.random.random(1.)[0], 0, np.random.random(1.)[0]))
array([ 1. , -0.77086955, 0.08618131, 0. ]) #random

Given a square array object:

>>> P = np.array([[0, 1./3], [-1./2, 0]])
>>> np.poly(P)
array([ 1. , 0. , 0.16666667])

Note how in all cases the leading coefficient is always 1.

numpy.roots(p)
Return the roots of a polynomial with coefficients given in p.

The values in the rank-1 array p are coefficients of a polynomial. If the length of p is n+1 then the polynomial
is described by:

p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]

Parameters

p [array_like] Rank-1 array of polynomial coefficients.

Returns

out [ndarray] An array containing the roots of the polynomial.

Raises

ValueError When p cannot be converted to a rank-1 array.

See also:

poly Find the coefficients of a polynomial with a given sequence of roots.

polyval Compute polynomial values.

polyfit Least squares polynomial fit.

poly1d A one-dimensional polynomial class.

Notes

The algorithm relies on computing the eigenvalues of the companion matrix [1].

References

[1]

Examples

>>> coeff = [3.2, 2, 1]
>>> np.roots(coeff)
array([-0.3125+0.46351241j, -0.3125-0.46351241j])

4.23. Polynomials 979



NumPy Reference, Release 1.15.1

Fitting

polyfit(x, y, deg[, rcond, full, w, cov]) Least squares polynomial fit.

numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)
Least squares polynomial fit.

Fit a polynomial p(x) = p[0] * x**deg + ... + p[deg] of degree deg to points (x, y). Returns a
vector of coefficients p that minimises the squared error.

Parameters

x [array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y [array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg [int] Degree of the fitting polynomial

rcond [float, optional] Relative condition number of the fit. Singular values smaller than this
relative to the largest singular value will be ignored. The default value is len(x)*eps, where
eps is the relative precision of the float type, about 2e-16 in most cases.

full [bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w [array_like, shape (M,), optional] Weights to apply to the y-coordinates of the sample points.
For gaussian uncertainties, use 1/sigma (not 1/sigma**2).

cov [bool, optional] Return the estimate and the covariance matrix of the estimate If full is True,
then cov is not returned.

Returns

p [ndarray, shape (deg + 1,) or (deg + 1, K)] Polynomial coefficients, highest power first. If y
was 2-D, the coefficients for k-th data set are in p[:,k].

residuals, rank, singular_values, rcond Present only if full = True. Residuals of the least-
squares fit, the effective rank of the scaled Vandermonde coefficient matrix, its singular
values, and the specified value of rcond. For more details, see linalg.lstsq .

V [ndarray, shape (M,M) or (M,M,K)] Present only if full = False and cov‘=True. The co-
variance matrix of the polynomial coefficient estimates. The diagonal of this matrix are the
variance estimates for each coefficient. If y is a 2-D array, then the covariance matrix for
the ‘k-th data set are in V[:,:,k]

Warns

RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warn-
ing is only raised if full = False.

The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', np.RankWarning)

See also:

polyval Compute polynomial values.

980 Chapter 4. Routines



NumPy Reference, Release 1.15.1

linalg.lstsq Computes a least-squares fit.

scipy.interpolate.UnivariateSpline Computes spline fits.

Notes

The solution minimizes the squared error

𝐸 =

𝑘∑︁
𝑗=0

|𝑝(𝑥𝑗) − 𝑦𝑗 |2

in the equations:

x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0]
x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1]
...
x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k]

The coefficient matrix of the coefficients p is a Vandermonde matrix.

polyfit issues a RankWarning when the least-squares fit is badly conditioned. This implies that the best
fit is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree
or by replacing x by x - x.mean(). The rcond parameter can also be set to a value smaller than its default, but the
resulting fit may be spurious: including contributions from the small singular values can add numerical noise to
the result.

Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is
large or the interval of sample points is badly centered. The quality of the fit should always be checked in these
cases. When polynomial fits are not satisfactory, splines may be a good alternative.

References

[1], [2]

Examples

>>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> z = np.polyfit(x, y, 3)
>>> z
array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254])

It is convenient to use poly1d objects for dealing with polynomials:

>>> p = np.poly1d(z)
>>> p(0.5)
0.6143849206349179
>>> p(3.5)
-0.34732142857143039
>>> p(10)
22.579365079365115

High-order polynomials may oscillate wildly:

4.23. Polynomials 981

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline


NumPy Reference, Release 1.15.1

>>> p30 = np.poly1d(np.polyfit(x, y, 30))
/... RankWarning: Polyfit may be poorly conditioned...
>>> p30(4)
-0.80000000000000204
>>> p30(5)
-0.99999999999999445
>>> p30(4.5)
-0.10547061179440398

Illustration:

>>> import matplotlib.pyplot as plt
>>> xp = np.linspace(-2, 6, 100)
>>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
>>> plt.ylim(-2,2)
(-2, 2)
>>> plt.show()

2 1 0 1 2 3 4 5 6
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Calculus

polyder(p[, m]) Return the derivative of the specified order of a polynomial.
polyint(p[, m, k]) Return an antiderivative (indefinite integral) of a polyno-

mial.

numpy.polyder(p, m=1)
Return the derivative of the specified order of a polynomial.

Parameters

p [poly1d or sequence] Polynomial to differentiate. A sequence is interpreted as polynomial
coefficients, see poly1d.

m [int, optional] Order of differentiation (default: 1)

Returns

982 Chapter 4. Routines



NumPy Reference, Release 1.15.1

der [poly1d] A new polynomial representing the derivative.

See also:

polyint Anti-derivative of a polynomial.

poly1d Class for one-dimensional polynomials.

Examples

The derivative of the polynomial 𝑥3 + 𝑥2 + 𝑥1 + 1 is:

>>> p = np.poly1d([1,1,1,1])
>>> p2 = np.polyder(p)
>>> p2
poly1d([3, 2, 1])

which evaluates to:

>>> p2(2.)
17.0

We can verify this, approximating the derivative with (f(x + h) - f(x))/h:

>>> (p(2. + 0.001) - p(2.)) / 0.001
17.007000999997857

The fourth-order derivative of a 3rd-order polynomial is zero:

>>> np.polyder(p, 2)
poly1d([6, 2])
>>> np.polyder(p, 3)
poly1d([6])
>>> np.polyder(p, 4)
poly1d([ 0.])

numpy.polyint(p, m=1, k=None)
Return an antiderivative (indefinite integral) of a polynomial.

The returned order m antiderivative P of polynomial p satisfies 𝑑𝑚

𝑑𝑥𝑚𝑃 (𝑥) = 𝑝(𝑥) and is defined up to m - 1
integration constants k. The constants determine the low-order polynomial part

𝑘𝑚−1

0!
𝑥0 + . . . +

𝑘0
(𝑚− 1)!

𝑥𝑚−1

of P so that 𝑃 (𝑗)(0) = 𝑘𝑚−𝑗−1.

Parameters

p [array_like or poly1d] Polynomial to differentiate. A sequence is interpreted as polynomial
coefficients, see poly1d.

m [int, optional] Order of the antiderivative. (Default: 1)

k [list of m scalars or scalar, optional] Integration constants. They are given in the order of
integration: those corresponding to highest-order terms come first.

If None (default), all constants are assumed to be zero. If m = 1, a single scalar can be given
instead of a list.

4.23. Polynomials 983



NumPy Reference, Release 1.15.1

See also:

polyder derivative of a polynomial

poly1d.integ equivalent method

Examples

The defining property of the antiderivative:

>>> p = np.poly1d([1,1,1])
>>> P = np.polyint(p)
>>> P
poly1d([ 0.33333333, 0.5 , 1. , 0. ])
>>> np.polyder(P) == p
True

The integration constants default to zero, but can be specified:

>>> P = np.polyint(p, 3)
>>> P(0)
0.0
>>> np.polyder(P)(0)
0.0
>>> np.polyder(P, 2)(0)
0.0
>>> P = np.polyint(p, 3, k=[6,5,3])
>>> P
poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ])

Note that 3 = 6 / 2!, and that the constants are given in the order of integrations. Constant of the highest-order
polynomial term comes first:

>>> np.polyder(P, 2)(0)
6.0
>>> np.polyder(P, 1)(0)
5.0
>>> P(0)
3.0

Arithmetic

polyadd(a1, a2) Find the sum of two polynomials.
polydiv(u, v) Returns the quotient and remainder of polynomial division.
polymul(a1, a2) Find the product of two polynomials.
polysub(a1, a2) Difference (subtraction) of two polynomials.

numpy.polyadd(a1, a2)
Find the sum of two polynomials.

Returns the polynomial resulting from the sum of two input polynomials. Each input must be either a poly1d
object or a 1D sequence of polynomial coefficients, from highest to lowest degree.

Parameters

984 Chapter 4. Routines



NumPy Reference, Release 1.15.1

a1, a2 [array_like or poly1d object] Input polynomials.

Returns

out [ndarray or poly1d object] The sum of the inputs. If either input is a poly1d object, then the
output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from
highest to lowest degree.

See also:

poly1d A one-dimensional polynomial class.

poly , polyadd, polyder, polydiv , polyfit, polyint, polysub, polyval

Examples

>>> np.polyadd([1, 2], [9, 5, 4])
array([9, 6, 6])

Using poly1d objects:

>>> p1 = np.poly1d([1, 2])
>>> p2 = np.poly1d([9, 5, 4])
>>> print(p1)
1 x + 2
>>> print(p2)

2
9 x + 5 x + 4
>>> print(np.polyadd(p1, p2))

2
9 x + 6 x + 6

numpy.polydiv(u, v)
Returns the quotient and remainder of polynomial division.

The input arrays are the coefficients (including any coefficients equal to zero) of the “numerator” (dividend) and
“denominator” (divisor) polynomials, respectively.

Parameters

u [array_like or poly1d] Dividend polynomial’s coefficients.

v [array_like or poly1d] Divisor polynomial’s coefficients.

Returns

q [ndarray] Coefficients, including those equal to zero, of the quotient.

r [ndarray] Coefficients, including those equal to zero, of the remainder.

See also:

poly , polyadd, polyder, polydiv , polyfit, polyint, polymul, polysub, polyval

Notes

Both u and v must be 0-d or 1-d (ndim = 0 or 1), but u.ndim need not equal v.ndim. In other words, all four
possible combinations - u.ndim = v.ndim = 0, u.ndim = v.ndim = 1, u.ndim = 1, v.ndim
= 0, and u.ndim = 0, v.ndim = 1 - work.

4.23. Polynomials 985



NumPy Reference, Release 1.15.1

Examples

3𝑥2 + 5𝑥 + 2

2𝑥 + 1
= 1.5𝑥 + 1.75, 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟0.25

>>> x = np.array([3.0, 5.0, 2.0])
>>> y = np.array([2.0, 1.0])
>>> np.polydiv(x, y)
(array([ 1.5 , 1.75]), array([ 0.25]))

numpy.polymul(a1, a2)
Find the product of two polynomials.

Finds the polynomial resulting from the multiplication of the two input polynomials. Each input must be either
a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree.

Parameters

a1, a2 [array_like or poly1d object] Input polynomials.

Returns

out [ndarray or poly1d object] The polynomial resulting from the multiplication of the inputs.
If either inputs is a poly1d object, then the output is also a poly1d object. Otherwise, it is a
1D array of polynomial coefficients from highest to lowest degree.

See also:

poly1d A one-dimensional polynomial class.

poly , polyadd, polyder, polydiv , polyfit, polyint, polysub, polyval

convolve Array convolution. Same output as polymul, but has parameter for overlap mode.

Examples

>>> np.polymul([1, 2, 3], [9, 5, 1])
array([ 9, 23, 38, 17, 3])

Using poly1d objects:

>>> p1 = np.poly1d([1, 2, 3])
>>> p2 = np.poly1d([9, 5, 1])
>>> print(p1)

2
1 x + 2 x + 3
>>> print(p2)

2
9 x + 5 x + 1
>>> print(np.polymul(p1, p2))

4 3 2
9 x + 23 x + 38 x + 17 x + 3

numpy.polysub(a1, a2)
Difference (subtraction) of two polynomials.

986 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Given two polynomials a1 and a2, returns a1 - a2. a1 and a2 can be either array_like sequences of the
polynomials’ coefficients (including coefficients equal to zero), or poly1d objects.

Parameters

a1, a2 [array_like or poly1d] Minuend and subtrahend polynomials, respectively.

Returns

out [ndarray or poly1d] Array or poly1d object of the difference polynomial’s coefficients.

See also:

polyval, polydiv , polymul, polyadd

Examples

(2𝑥2 + 10𝑥− 2) − (3𝑥2 + 10𝑥− 4) = (−𝑥2 + 2)

>>> np.polysub([2, 10, -2], [3, 10, -4])
array([-1, 0, 2])

Warnings

RankWarning Issued by polyfit when the Vandermonde matrix is rank
deficient.

exception numpy.RankWarning
Issued by polyfit when the Vandermonde matrix is rank deficient.

For more information, a way to suppress the warning, and an example of RankWarning being issued, see
polyfit.

4.24 Random sampling (numpy.random)

4.24.1 Simple random data

rand(d0, d1, . . . , dn) Random values in a given shape.
randn(d0, d1, . . . , dn) Return a sample (or samples) from the “standard normal”

distribution.
randint(low[, high, size, dtype]) Return random integers from low (inclusive) to high (ex-

clusive).
random_integers(low[, high, size]) Random integers of type np.int between low and high, in-

clusive.
random_sample([size]) Return random floats in the half-open interval [0.0, 1.0).
random([size]) Return random floats in the half-open interval [0.0, 1.0).
ranf([size]) Return random floats in the half-open interval [0.0, 1.0).

Continued on next page

4.24. Random sampling (numpy.random) 987



NumPy Reference, Release 1.15.1

Table 152 – continued from previous page
sample([size]) Return random floats in the half-open interval [0.0, 1.0).
choice(a[, size, replace, p]) Generates a random sample from a given 1-D array
bytes(length) Return random bytes.

numpy.random.rand(d0, d1, ..., dn)
Random values in a given shape.

Create an array of the given shape and populate it with random samples from a uniform distribution over [0,
1).

Parameters

d0, d1, . . . , dn [int, optional] The dimensions of the returned array, should all be positive. If no
argument is given a single Python float is returned.

Returns

out [ndarray, shape (d0, d1, ..., dn)] Random values.

See also:

random

Notes

This is a convenience function. If you want an interface that takes a shape-tuple as the first argument, refer to
np.random.random_sample .

Examples

>>> np.random.rand(3,2)
array([[ 0.14022471, 0.96360618], #random

[ 0.37601032, 0.25528411], #random
[ 0.49313049, 0.94909878]]) #random

numpy.random.randn(d0, d1, ..., dn)
Return a sample (or samples) from the “standard normal” distribution.

If positive, int_like or int-convertible arguments are provided, randn generates an array of shape (d0, d1,
..., dn), filled with random floats sampled from a univariate “normal” (Gaussian) distribution of mean 0 and
variance 1 (if any of the 𝑑𝑖 are floats, they are first converted to integers by truncation). A single float randomly
sampled from the distribution is returned if no argument is provided.

This is a convenience function. If you want an interface that takes a tuple as the first argument, use numpy.
random.standard_normal instead.

Parameters

d0, d1, . . . , dn [int, optional] The dimensions of the returned array, should be all positive. If no
argument is given a single Python float is returned.

Returns

Z [ndarray or float] A (d0, d1, ..., dn)-shaped array of floating-point samples from
the standard normal distribution, or a single such float if no parameters were supplied.

See also:

988 Chapter 4. Routines



NumPy Reference, Release 1.15.1

standard_normal Similar, but takes a tuple as its argument.

Notes

For random samples from 𝑁(𝜇, 𝜎2), use:

sigma * np.random.randn(...) + mu

Examples

>>> np.random.randn()
2.1923875335537315 #random

Two-by-four array of samples from N(3, 6.25):

>>> 2.5 * np.random.randn(2, 4) + 3
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random

[ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random

numpy.random.randint(low, high=None, size=None, dtype=’l’)
Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval
[low, high). If high is None (the default), then results are from [0, low).

Parameters

low [int] Lowest (signed) integer to be drawn from the distribution (unless high=None, in
which case this parameter is one above the highest such integer).

high [int, optional] If provided, one above the largest (signed) integer to be drawn from the
distribution (see above for behavior if high=None).

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

dtype [dtype, optional] Desired dtype of the result. All dtypes are determined by their name,
i.e., ‘int64’, ‘int’, etc, so byteorder is not available and a specific precision may have differ-
ent C types depending on the platform. The default value is ‘np.int’.

New in version 1.11.0.

Returns

out [int or ndarray of ints] size-shaped array of random integers from the appropriate distribu-
tion, or a single such random int if size not provided.

See also:

random.random_integers similar to randint, only for the closed interval [low, high], and 1 is the low-
est value if high is omitted. In particular, this other one is the one to use to generate uniformly distributed
discrete non-integers.

Examples

4.24. Random sampling (numpy.random) 989



NumPy Reference, Release 1.15.1

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1],

[3, 2, 2, 0]])

numpy.random.random_integers(low, high=None, size=None)
Random integers of type np.int between low and high, inclusive.

Return random integers of type np.int from the “discrete uniform” distribution in the closed interval [low, high].
If high is None (the default), then results are from [1, low]. The np.int type translates to the C long type used by
Python 2 for “short” integers and its precision is platform dependent.

This function has been deprecated. Use randint instead.

Deprecated since version 1.11.0.

Parameters

low [int] Lowest (signed) integer to be drawn from the distribution (unless high=None, in
which case this parameter is the highest such integer).

high [int, optional] If provided, the largest (signed) integer to be drawn from the distribution
(see above for behavior if high=None).

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

out [int or ndarray of ints] size-shaped array of random integers from the appropriate distribu-
tion, or a single such random int if size not provided.

See also:

randint Similar to random_integers, only for the half-open interval [low, high), and 0 is the lowest
value if high is omitted.

Notes

To sample from N evenly spaced floating-point numbers between a and b, use:

a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

Examples

>>> np.random.random_integers(5)
4
>>> type(np.random.random_integers(5))
<type 'int'>
>>> np.random.random_integers(5, size=(3,2))

(continues on next page)

990 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

array([[5, 4],
[3, 3],
[4, 5]])

Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (i.e., from
the set 0, 5/8, 10/8, 15/8, 20/8):

>>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ])

Roll two six sided dice 1000 times and sum the results:

>>> d1 = np.random.random_integers(1, 6, 1000)
>>> d2 = np.random.random_integers(1, 6, 1000)
>>> dsums = d1 + d2

Display results as a histogram:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(dsums, 11, density=True)
>>> plt.show()

2 4 6 8 10 12
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

numpy.random.random_sample(size=None)
Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample 𝑈𝑛𝑖𝑓 [𝑎, 𝑏), 𝑏 > 𝑎
multiply the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

4.24. Random sampling (numpy.random) 991



NumPy Reference, Release 1.15.1

out [float or ndarray of floats] Array of random floats of shape size (unless size=None, in
which case a single float is returned).

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>
>>> np.random.random_sample((5,))
array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],

[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])

numpy.random.random(size=None)
Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample 𝑈𝑛𝑖𝑓 [𝑎, 𝑏), 𝑏 > 𝑎
multiply the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

out [float or ndarray of floats] Array of random floats of shape size (unless size=None, in
which case a single float is returned).

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>
>>> np.random.random_sample((5,))
array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],

[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])

numpy.random.ranf(size=None)
Return random floats in the half-open interval [0.0, 1.0).

992 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Results are from the “continuous uniform” distribution over the stated interval. To sample 𝑈𝑛𝑖𝑓 [𝑎, 𝑏), 𝑏 > 𝑎
multiply the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

out [float or ndarray of floats] Array of random floats of shape size (unless size=None, in
which case a single float is returned).

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>
>>> np.random.random_sample((5,))
array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],

[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])

numpy.random.sample(size=None)
Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample 𝑈𝑛𝑖𝑓 [𝑎, 𝑏), 𝑏 > 𝑎
multiply the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

out [float or ndarray of floats] Array of random floats of shape size (unless size=None, in
which case a single float is returned).

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>

(continues on next page)

4.24. Random sampling (numpy.random) 993



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> np.random.random_sample((5,))
array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],

[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])

numpy.random.choice(a, size=None, replace=True, p=None)
Generates a random sample from a given 1-D array

New in version 1.7.0.

Parameters

a [1-D array-like or int] If an ndarray, a random sample is generated from its elements. If an
int, the random sample is generated as if a were np.arange(a)

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

replace [boolean, optional] Whether the sample is with or without replacement

p [1-D array-like, optional] The probabilities associated with each entry in a. If not given the
sample assumes a uniform distribution over all entries in a.

Returns

samples [single item or ndarray] The generated random samples

Raises

ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-
like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if
replace=False and the sample size is greater than the population size

See also:

randint, shuffle, permutation

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3)
array([0, 3, 4])
>>> #This is equivalent to np.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0])

Generate a uniform random sample from np.arange(5) of size 3 without replacement:

994 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> np.random.choice(5, 3, replace=False)
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0])

Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance:

>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'],

dtype='|S11')

numpy.random.bytes(length)
Return random bytes.

Parameters

length [int] Number of random bytes.

Returns

out [str] String of length length.

Examples

>>> np.random.bytes(10)
' eh\x85\x022SZ\xbf\xa4' #random

4.24.2 Permutations

shuffle(x) Modify a sequence in-place by shuffling its contents.
permutation(x) Randomly permute a sequence, or return a permuted range.

numpy.random.shuffle(x)
Modify a sequence in-place by shuffling its contents.

This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is
changed but their contents remains the same.

Parameters

x [array_like] The array or list to be shuffled.

Returns

None

4.24. Random sampling (numpy.random) 995



NumPy Reference, Release 1.15.1

Examples

>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
[1 7 5 2 9 4 3 6 0 8]

Multi-dimensional arrays are only shuffled along the first axis:

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.shuffle(arr)
>>> arr
array([[3, 4, 5],

[6, 7, 8],
[0, 1, 2]])

numpy.random.permutation(x)
Randomly permute a sequence, or return a permuted range.

If x is a multi-dimensional array, it is only shuffled along its first index.

Parameters

x [int or array_like] If x is an integer, randomly permute np.arange(x). If x is an array,
make a copy and shuffle the elements randomly.

Returns

out [ndarray] Permuted sequence or array range.

Examples

>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6])

>>> np.random.permutation([1, 4, 9, 12, 15])
array([15, 1, 9, 4, 12])

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.permutation(arr)
array([[6, 7, 8],

[0, 1, 2],
[3, 4, 5]])

4.24.3 Distributions

beta(a, b[, size]) Draw samples from a Beta distribution.
binomial(n, p[, size]) Draw samples from a binomial distribution.
chisquare(df[, size]) Draw samples from a chi-square distribution.
dirichlet(alpha[, size]) Draw samples from the Dirichlet distribution.
exponential([scale, size]) Draw samples from an exponential distribution.
f(dfnum, dfden[, size]) Draw samples from an F distribution.

Continued on next page

996 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Table 154 – continued from previous page
gamma(shape[, scale, size]) Draw samples from a Gamma distribution.
geometric(p[, size]) Draw samples from the geometric distribution.
gumbel([loc, scale, size]) Draw samples from a Gumbel distribution.
hypergeometric(ngood, nbad, nsample[, size]) Draw samples from a Hypergeometric distribution.
laplace([loc, scale, size]) Draw samples from the Laplace or double exponential dis-

tribution with specified location (or mean) and scale (de-
cay).

logistic([loc, scale, size]) Draw samples from a logistic distribution.
lognormal([mean, sigma, size]) Draw samples from a log-normal distribution.
logseries(p[, size]) Draw samples from a logarithmic series distribution.
multinomial(n, pvals[, size]) Draw samples from a multinomial distribution.
multivariate_normal(mean, cov[, size, . . . ) Draw random samples from a multivariate normal distribu-

tion.
negative_binomial(n, p[, size]) Draw samples from a negative binomial distribution.
noncentral_chisquare(df, nonc[, size]) Draw samples from a noncentral chi-square distribution.
noncentral_f(dfnum, dfden, nonc[, size]) Draw samples from the noncentral F distribution.
normal([loc, scale, size]) Draw random samples from a normal (Gaussian) distribu-

tion.
pareto(a[, size]) Draw samples from a Pareto II or Lomax distribution with

specified shape.
poisson([lam, size]) Draw samples from a Poisson distribution.
power(a[, size]) Draws samples in [0, 1] from a power distribution with pos-

itive exponent a - 1.
rayleigh([scale, size]) Draw samples from a Rayleigh distribution.
standard_cauchy([size]) Draw samples from a standard Cauchy distribution with

mode = 0.
standard_exponential([size]) Draw samples from the standard exponential distribution.
standard_gamma(shape[, size]) Draw samples from a standard Gamma distribution.
standard_normal([size]) Draw samples from a standard Normal distribution

(mean=0, stdev=1).
standard_t(df[, size]) Draw samples from a standard Student’s t distribution with

df degrees of freedom.
triangular(left, mode, right[, size]) Draw samples from the triangular distribution over the in-

terval [left, right].
uniform([low, high, size]) Draw samples from a uniform distribution.
vonmises(mu, kappa[, size]) Draw samples from a von Mises distribution.
wald(mean, scale[, size]) Draw samples from a Wald, or inverse Gaussian, distribu-

tion.
weibull(a[, size]) Draw samples from a Weibull distribution.
zipf(a[, size]) Draw samples from a Zipf distribution.

numpy.random.beta(a, b, size=None)
Draw samples from a Beta distribution.

The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It
has the probability distribution function

𝑓(𝑥; 𝑎, 𝑏) =
1

𝐵(𝛼, 𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1,

where the normalisation, B, is the beta function,

𝐵(𝛼, 𝛽) =

∫︁ 1

0

𝑡𝛼−1(1 − 𝑡)𝛽−1𝑑𝑡.

4.24. Random sampling (numpy.random) 997



NumPy Reference, Release 1.15.1

It is often seen in Bayesian inference and order statistics.

Parameters

a [float or array_like of floats] Alpha, non-negative.

b [float or array_like of floats] Beta, non-negative.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if a
and b are both scalars. Otherwise, np.broadcast(a, b).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized beta distribution.

numpy.random.binomial(n, p, size=None)
Draw samples from a binomial distribution.

Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of success
where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated to an integer
in use)

Parameters

n [int or array_like of ints] Parameter of the distribution, >= 0. Floats are also accepted, but
they will be truncated to integers.

p [float or array_like of floats] Parameter of the distribution, >= 0 and <=1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if n
and p are both scalars. Otherwise, np.broadcast(n, p).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized binomial distribution, where
each sample is equal to the number of successes over the n trials.

See also:

scipy.stats.binom probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the binomial distribution is

𝑃 (𝑁) =

(︂
𝑛

𝑁

)︂
𝑝𝑁 (1 − 𝑝)𝑛−𝑁 ,

where 𝑛 is the number of trials, 𝑝 is the probability of success, and 𝑁 is the number of successes.

When estimating the standard error of a proportion in a population by using a random sample, the normal
distribution works well unless the product p*n <=5, where p = population proportion estimate, and n = number
of samples, in which case the binomial distribution is used instead. For example, a sample of 15 people shows
4 who are left handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so the binomial
distribution should be used in this case.

References

[1], [2], [3], [4], [5]

998 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html#scipy.stats.binom


NumPy Reference, Release 1.15.1

Examples

Draw samples from the distribution:

>>> n, p = 10, .5 # number of trials, probability of each trial
>>> s = np.random.binomial(n, p, 1000)
# result of flipping a coin 10 times, tested 1000 times.

A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of
success of 0.1. All nine wells fail. What is the probability of that happening?

Let’s do 20,000 trials of the model, and count the number that generate zero positive results.

>>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
# answer = 0.38885, or 38%.

numpy.random.chisquare(df, size=None)
Draw samples from a chi-square distribution.

When df independent random variables, each with standard normal distributions (mean 0, variance 1), are
squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in
hypothesis testing.

Parameters

df [float or array_like of floats] Number of degrees of freedom, should be > 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if df
is a scalar. Otherwise, np.array(df).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized chi-square distribution.

Raises

ValueError When df <= 0 or when an inappropriate size (e.g. size=-1) is given.

Notes

The variable obtained by summing the squares of df independent, standard normally distributed random vari-
ables:

𝑄 =

df∑︁
𝑖=0

𝑋2
𝑖

is chi-square distributed, denoted

𝑄 ∼ 𝜒2
𝑘.

The probability density function of the chi-squared distribution is

𝑝(𝑥) =
(1/2)𝑘/2

Γ(𝑘/2)
𝑥𝑘/2−1𝑒−𝑥/2,

where Γ is the gamma function,

Γ(𝑥) =

∫︁ −∞

0

𝑡𝑥−1𝑒−𝑡𝑑𝑡.

4.24. Random sampling (numpy.random) 999



NumPy Reference, Release 1.15.1

References

[1]

Examples

>>> np.random.chisquare(2,4)
array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272])

numpy.random.dirichlet(alpha, size=None)
Draw samples from the Dirichlet distribution.

Draw size samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be
seen as a multivariate generalization of a Beta distribution. Dirichlet pdf is the conjugate prior of a multinomial
in Bayesian inference.

Parameters

alpha [array] Parameter of the distribution (k dimension for sample of dimension k).

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

samples [ndarray,] The drawn samples, of shape (size, alpha.ndim).

Raises

ValueError If any value in alpha is less than or equal to zero

Notes

𝑋 ≈
𝑘∏︁

𝑖=1

𝑥𝛼𝑖−1
𝑖

Uses the following property for computation: for each dimension, draw a random sample y_i from a standard
gamma generator of shape alpha_i, then 𝑋 = 1∑︀𝑘

𝑖=1 𝑦𝑖
(𝑦1, . . . , 𝑦𝑛) is Dirichlet distributed.

References

[1], [2]

Examples

Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial
length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length,
but allowing some variation in the relative sizes of the pieces.

>>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

1000 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> plt.barh(range(20), s[0])
>>> plt.barh(range(20), s[1], left=s[0], color='g')
>>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
>>> plt.title("Lengths of Strings")

numpy.random.exponential(scale=1.0, size=None)
Draw samples from an exponential distribution.

Its probability density function is

𝑓(𝑥;
1

𝛽
) =

1

𝛽
exp(−𝑥

𝛽
),

for x > 0 and 0 elsewhere. 𝛽 is the scale parameter, which is the inverse of the rate parameter 𝜆 = 1/𝛽. The
rate parameter is an alternative, widely used parameterization of the exponential distribution [3].

The exponential distribution is a continuous analogue of the geometric distribution. It describes many common
situations, such as the size of raindrops measured over many rainstorms [1], or the time between page requests
to Wikipedia [2].

Parameters

scale [float or array_like of floats] The scale parameter, 𝛽 = 1/𝜆.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if scale
is a scalar. Otherwise, np.array(scale).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized exponential distribution.

References

[1], [2], [3]

numpy.random.f(dfnum, dfden, size=None)
Draw samples from an F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator)
and dfden (degrees of freedom in denominator), where both parameters should be greater than zero.

The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability
distribution that arises in ANOVA tests, and is the ratio of two chi-square variates.

Parameters

dfnum [float or array_like of floats] Degrees of freedom in numerator, should be > 0.

dfden [float or array_like of float] Degrees of freedom in denominator, should be > 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
dfnum and dfden are both scalars. Otherwise, np.broadcast(dfnum, dfden).
size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Fisher distribution.

See also:

scipy.stats.f probability density function, distribution or cumulative density function, etc.

4.24. Random sampling (numpy.random) 1001

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f.html#scipy.stats.f


NumPy Reference, Release 1.15.1

Notes

The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution
depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The
variable dfnum is the number of samples minus one, the between-groups degrees of freedom, while dfden is the
within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups.

References

[1], [2]

Examples

An example from Glantz[1], pp 47-40:

Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting
blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard
deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents
diabetic status does not affect their children’s blood glucose levels? Calculating the F statistic from the data
gives a value of 36.01.

Draw samples from the distribution:

>>> dfnum = 1. # between group degrees of freedom
>>> dfden = 48. # within groups degrees of freedom
>>> s = np.random.f(dfnum, dfden, 1000)

The lower bound for the top 1% of the samples is :

>>> sort(s)[-10]
7.61988120985

So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis
is rejected at the 1% level.

numpy.random.gamma(shape, scale=1.0, size=None)
Draw samples from a Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”)
and scale (sometimes designated “theta”), where both parameters are > 0.

Parameters

shape [float or array_like of floats] The shape of the gamma distribution. Should be greater
than zero.

scale [float or array_like of floats, optional] The scale of the gamma distribution. Should be
greater than zero. Default is equal to 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
shape and scale are both scalars. Otherwise, np.broadcast(shape, scale).
size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized gamma distribution.

1002 Chapter 4. Routines



NumPy Reference, Release 1.15.1

See also:

scipy.stats.gamma probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

𝑝(𝑥) = 𝑥𝑘−1 𝑒−𝑥/𝜃

𝜃𝑘Γ(𝑘)
,

where 𝑘 is the shape and 𝜃 the scale, and Γ is the Gamma function.

The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2)
>>> s = np.random.gamma(shape, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, density=True)
>>> y = bins**(shape-1)*(np.exp(-bins/scale) /
... (sps.gamma(shape)*scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

numpy.random.geometric(p, size=None)
Draw samples from the geometric distribution.

Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment
is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve
success. It is therefore supported on the positive integers, k = 1, 2, ....

The probability mass function of the geometric distribution is

𝑓(𝑘) = (1 − 𝑝)𝑘−1𝑝

where p is the probability of success of an individual trial.

Parameters

p [float or array_like of floats] The probability of success of an individual trial.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if p is
a scalar. Otherwise, np.array(p).size samples are drawn.

4.24. Random sampling (numpy.random) 1003

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma


NumPy Reference, Release 1.15.1

0 2 4 6 8 10 12 14 16
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Returns

out [ndarray or scalar] Drawn samples from the parameterized geometric distribution.

Examples

Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to
0.35:

>>> z = np.random.geometric(p=0.35, size=10000)

How many trials succeeded after a single run?

>>> (z == 1).sum() / 10000.
0.34889999999999999 #random

numpy.random.gumbel(loc=0.0, scale=1.0, size=None)
Draw samples from a Gumbel distribution.

Draw samples from a Gumbel distribution with specified location and scale. For more information on the
Gumbel distribution, see Notes and References below.

Parameters

loc [float or array_like of floats, optional] The location of the mode of the distribution. Default
is 0.

scale [float or array_like of floats, optional] The scale parameter of the distribution. Default is
1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
loc and scale are both scalars. Otherwise, np.broadcast(loc, scale).size
samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Gumbel distribution.

1004 Chapter 4. Routines



NumPy Reference, Release 1.15.1

See also:

scipy.stats.gumbel_l, scipy.stats.gumbel_r, scipy.stats.genextreme, weibull

Notes

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a
class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel
is a special case of the Extreme Value Type I distribution for maximums from distributions with “exponential-
like” tails.

The probability density for the Gumbel distribution is

𝑝(𝑥) =
𝑒−(𝑥−𝜇)/𝛽

𝛽
𝑒−𝑒−(𝑥−𝜇)/𝛽

,

where 𝜇 is the mode, a location parameter, and 𝛽 is the scale parameter.

The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology
literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and
rainfall rates. It is a “fat-tailed” distribution - the probability of an event in the tail of the distribution is larger
than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially
modeled as a Gaussian process, which underestimated the frequency of extreme events.

It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which
also includes the Weibull and Frechet.

The function has a mean of 𝜇 + 0.57721𝛽 and a variance of 𝜋2

6 𝛽2.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, beta = 0, 0.1 # location and scale
>>> s = np.random.gumbel(mu, beta, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp( -np.exp( -(bins - mu) /beta) ),
... linewidth=2, color='r')
>>> plt.show()

Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian:

>>> means = []
>>> maxima = []
>>> for i in range(0,1000) :
... a = np.random.normal(mu, beta, 1000)

(continues on next page)

4.24. Random sampling (numpy.random) 1005

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_l.html#scipy.stats.gumbel_l
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_r.html#scipy.stats.gumbel_r
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme


NumPy Reference, Release 1.15.1

0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(continued from previous page)

... means.append(a.mean())

... maxima.append(a.max())
>>> count, bins, ignored = plt.hist(maxima, 30, density=True)
>>> beta = np.std(maxima) * np.sqrt(6) / np.pi
>>> mu = np.mean(maxima) - 0.57721*beta
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu)/beta)),
... linewidth=2, color='r')
>>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
... * np.exp(-(bins - mu)**2 / (2 * beta**2)),
... linewidth=2, color='g')
>>> plt.show()

0.25 0.30 0.35 0.40 0.45
0

2

4

6

8

10

12

14

numpy.random.hypergeometric(ngood, nbad, nsample, size=None)
Draw samples from a Hypergeometric distribution.

1006 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Samples are drawn from a hypergeometric distribution with specified parameters, ngood (ways to make a good
selection), nbad (ways to make a bad selection), and nsample = number of items sampled, which is less than or
equal to the sum ngood + nbad.

Parameters

ngood [int or array_like of ints] Number of ways to make a good selection. Must be nonnega-
tive.

nbad [int or array_like of ints] Number of ways to make a bad selection. Must be nonnegative.

nsample [int or array_like of ints] Number of items sampled. Must be at least 1 and at most
ngood + nbad.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if ngood, nbad, and nsample are all scalars. Otherwise, np.broadcast(ngood,
nbad, nsample).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized hypergeometric distribution.

See also:

scipy.stats.hypergeom probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Hypergeometric distribution is

𝑃 (𝑥) =

(︀
𝑚
𝑛

)︀(︀
𝑁−𝑚
𝑛−𝑥

)︀(︀
𝑁
𝑛

)︀ ,

where 0 ≤ 𝑥 ≤ 𝑚 and 𝑛 + 𝑚−𝑁 ≤ 𝑥 ≤ 𝑛

for P(x) the probability of x successes, n = ngood, m = nbad, and N = number of samples.

Consider an urn with black and white marbles in it, ngood of them black and nbad are white. If you draw nsample
balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the
drawn sample.

Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn
without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is
infinite). As the sample space becomes large, this distribution approaches the binomial.

References

[1], [2], [3]

Examples

Draw samples from the distribution:

4.24. Random sampling (numpy.random) 1007

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hypergeom.html#scipy.stats.hypergeom


NumPy Reference, Release 1.15.1

>>> ngood, nbad, nsamp = 100, 2, 10
# number of good, number of bad, and number of samples
>>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
>>> hist(s)
# note that it is very unlikely to grab both bad items

Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is
it that 12 or more of them are one color?

>>> s = np.random.hypergeometric(15, 15, 15, 100000)
>>> sum(s>=12)/100000. + sum(s<=3)/100000.
# answer = 0.003 ... pretty unlikely!

numpy.random.laplace(loc=0.0, scale=1.0, size=None)
Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale
(decay).

The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter
tails. It represents the difference between two independent, identically distributed exponential random variables.

Parameters

loc [float or array_like of floats, optional] The position, 𝜇, of the distribution peak. Default is 0.

scale [float or array_like of floats, optional] 𝜆, the exponential decay. Default is 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
loc and scale are both scalars. Otherwise, np.broadcast(loc, scale).size
samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Laplace distribution.

Notes

It has the probability density function

𝑓(𝑥;𝜇, 𝜆) =
1

2𝜆
exp

(︂
−|𝑥− 𝜇|

𝜆

)︂
.

The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential
function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems
in economics and health sciences, this distribution seems to model the data better than the standard Gaussian
distribution.

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution

1008 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> loc, scale = 0., 1.
>>> s = np.random.laplace(loc, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> x = np.arange(-8., 8., .01)
>>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
>>> plt.plot(x, pdf)

Plot Gaussian for comparison:

>>> g = (1/(scale * np.sqrt(2 * np.pi)) *
... np.exp(-(x - loc)**2 / (2 * scale**2)))
>>> plt.plot(x,g)

8 6 4 2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

numpy.random.logistic(loc=0.0, scale=1.0, size=None)
Draw samples from a logistic distribution.

Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median),
and scale (>0).

Parameters

loc [float or array_like of floats, optional] Parameter of the distribution. Default is 0.

scale [float or array_like of floats, optional] Parameter of the distribution. Should be greater
than zero. Default is 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
loc and scale are both scalars. Otherwise, np.broadcast(loc, scale).size
samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized logistic distribution.

4.24. Random sampling (numpy.random) 1009



NumPy Reference, Release 1.15.1

See also:

scipy.stats.logistic probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Logistic distribution is

𝑃 (𝑥) = 𝑃 (𝑥) =
𝑒−(𝑥−𝜇)/𝑠

𝑠(1 + 𝑒−(𝑥−𝜇)/𝑠)2
,

where 𝜇 = location and 𝑠 = scale.

The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distribu-
tions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system,
assuming the performance of each player is a logistically distributed random variable.

References

[1], [2], [3]

Examples

Draw samples from the distribution:

>>> loc, scale = 10, 1
>>> s = np.random.logistic(loc, scale, 10000)
>>> count, bins, ignored = plt.hist(s, bins=50)

# plot against distribution

>>> def logist(x, loc, scale):
... return exp((loc-x)/scale)/(scale*(1+exp((loc-x)/scale))**2)
>>> plt.plot(bins, logist(bins, loc, scale)*count.max()/\
... logist(bins, loc, scale).max())
>>> plt.show()

numpy.random.lognormal(mean=0.0, sigma=1.0, size=None)
Draw samples from a log-normal distribution.

Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note
that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal
distribution it is derived from.

Parameters

mean [float or array_like of floats, optional] Mean value of the underlying normal distribution.
Default is 0.

sigma [float or array_like of floats, optional] Standard deviation of the underlying normal dis-
tribution. Should be greater than zero. Default is 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if mean and sigma are both scalars. Otherwise, np.broadcast(mean, sigma).
size samples are drawn.

1010 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logistic.html#scipy.stats.logistic


NumPy Reference, Release 1.15.1

Returns

out [ndarray or scalar] Drawn samples from the parameterized log-normal distribution.

See also:

scipy.stats.lognorm probability density function, distribution, cumulative density function, etc.

Notes

A variable x has a log-normal distribution if log(x) is normally distributed. The probability density function for
the log-normal distribution is:

𝑝(𝑥) =
1

𝜎𝑥
√

2𝜋
𝑒(−

(𝑙𝑛(𝑥)−𝜇)2

2𝜎2 )

where 𝜇 is the mean and 𝜎 is the standard deviation of the normally distributed logarithm of the variable. A
log-normal distribution results if a random variable is the product of a large number of independent, identically-
distributed variables in the same way that a normal distribution results if the variable is the sum of a large number
of independent, identically-distributed variables.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, sigma = 3., 1. # mean and standard deviation
>>> s = np.random.lognormal(mu, sigma, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, linewidth=2, color='r')
>>> plt.axis('tight')
>>> plt.show()

Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-
normal probability density function.

>>> # Generate a thousand samples: each is the product of 100 random
>>> # values, drawn from a normal distribution.
>>> b = []
>>> for i in range(1000):
... a = 10. + np.random.random(100)
... b.append(np.product(a))

4.24. Random sampling (numpy.random) 1011

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html#scipy.stats.lognorm


NumPy Reference, Release 1.15.1

0 50 100 150 200 250 300
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

>>> b = np.array(b) / np.min(b) # scale values to be positive
>>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
>>> sigma = np.std(np.log(b))
>>> mu = np.mean(np.log(b))

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, color='r', linewidth=2)
>>> plt.show()

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

1.0

numpy.random.logseries(p, size=None)
Draw samples from a logarithmic series distribution.

1012 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Samples are drawn from a log series distribution with specified shape parameter, 0 < p < 1.

Parameters

p [float or array_like of floats] Shape parameter for the distribution. Must be in the range (0, 1).

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if p is
a scalar. Otherwise, np.array(p).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized logarithmic series distribution.

See also:

scipy.stats.logser probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Log Series distribution is

𝑃 (𝑘) =
−𝑝𝑘

𝑘 ln(1 − 𝑝)
,

where p = probability.

The log series distribution is frequently used to represent species richness and occurrence, first proposed by
Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars
[3].

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution:

>>> a = .6
>>> s = np.random.logseries(a, 10000)
>>> count, bins, ignored = plt.hist(s)

# plot against distribution

>>> def logseries(k, p):
... return -p**k/(k*log(1-p))
>>> plt.plot(bins, logseries(bins, a)*count.max()/

logseries(bins, a).max(), 'r')
>>> plt.show()

numpy.random.multinomial(n, pvals, size=None)
Draw samples from a multinomial distribution.

The multinomial distribution is a multivariate generalisation of the binomial distribution. Take an experiment
with one of p possible outcomes. An example of such an experiment is throwing a dice, where the outcome

4.24. Random sampling (numpy.random) 1013

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logser.html#scipy.stats.logser


NumPy Reference, Release 1.15.1

can be 1 through 6. Each sample drawn from the distribution represents n such experiments. Its values, X_i =
[X_0, X_1, ..., X_p], represent the number of times the outcome was i.

Parameters

n [int] Number of experiments.

pvals [sequence of floats, length p] Probabilities of each of the p different outcomes. These
should sum to 1 (however, the last element is always assumed to account for the remaining
probability, as long as sum(pvals[:-1]) <= 1).

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

out [ndarray] The drawn samples, of shape size, if that was provided. If not, the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional value drawn from the
distribution.

Examples

Throw a dice 20 times:

>>> np.random.multinomial(20, [1/6.]*6, size=1)
array([[4, 1, 7, 5, 2, 1]])

It landed 4 times on 1, once on 2, etc.

Now, throw the dice 20 times, and 20 times again:

>>> np.random.multinomial(20, [1/6.]*6, size=2)
array([[3, 4, 3, 3, 4, 3],

[2, 4, 3, 4, 0, 7]])

For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc.

A loaded die is more likely to land on number 6:

>>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
array([11, 16, 14, 17, 16, 26])

The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored
and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has
twice as much weight on one side as on the other should be sampled like so:

>>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT
array([38, 62])

not like:

>>> np.random.multinomial(100, [1.0, 2.0]) # WRONG
array([100, 0])

numpy.random.multivariate_normal(mean, cov[, size, check_valid, tol])
Draw random samples from a multivariate normal distribution.

1014 Chapter 4. Routines



NumPy Reference, Release 1.15.1

The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal
distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These pa-
rameters are analogous to the mean (average or “center”) and variance (standard deviation, or “width,” squared)
of the one-dimensional normal distribution.

Parameters

mean [1-D array_like, of length N] Mean of the N-dimensional distribution.

cov [2-D array_like, of shape (N, N)] Covariance matrix of the distribution. It must be symmet-
ric and positive-semidefinite for proper sampling.

size [int or tuple of ints, optional] Given a shape of, for example, (m,n,k), m*n*k sam-
ples are generated, and packed in an m-by-n-by-k arrangement. Because each sample is
N-dimensional, the output shape is (m,n,k,N). If no shape is specified, a single (N-D)
sample is returned.

check_valid [{ ‘warn’, ‘raise’, ‘ignore’ }, optional] Behavior when the covariance matrix is not
positive semidefinite.

tol [float, optional] Tolerance when checking the singular values in covariance matrix.

Returns

out [ndarray] The drawn samples, of shape size, if that was provided. If not, the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional value drawn from the
distribution.

Notes

The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely
to be generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal
distribution.

Covariance indicates the level to which two variables vary together. From the multivariate normal distribution,
we draw N-dimensional samples, 𝑋 = [𝑥1, 𝑥2, ...𝑥𝑁 ]. The covariance matrix element 𝐶𝑖𝑗 is the covariance of
𝑥𝑖 and 𝑥𝑗 . The element 𝐶𝑖𝑖 is the variance of 𝑥𝑖 (i.e. its “spread”).

Instead of specifying the full covariance matrix, popular approximations include:

• Spherical covariance (cov is a multiple of the identity matrix)

• Diagonal covariance (cov has non-negative elements, and only on the diagonal)

This geometrical property can be seen in two dimensions by plotting generated data-points:

>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 100]] # diagonal covariance

Diagonal covariance means that points are oriented along x or y-axis:

>>> import matplotlib.pyplot as plt
>>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
>>> plt.plot(x, y, 'x')
>>> plt.axis('equal')
>>> plt.show()

Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the
behavior of this method is undefined and backwards compatibility is not guaranteed.

4.24. Random sampling (numpy.random) 1015



NumPy Reference, Release 1.15.1

References

[1], [2]

Examples

>>> mean = (1, 2)
>>> cov = [[1, 0], [0, 1]]
>>> x = np.random.multivariate_normal(mean, cov, (3, 3))
>>> x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the standard deviation:

>>> list((x[0,0,:] - mean) < 0.6)
[True, True]

numpy.random.negative_binomial(n, p, size=None)
Draw samples from a negative binomial distribution.

Samples are drawn from a negative binomial distribution with specified parameters, n successes and p probability
of success where n is an integer > 0 and p is in the interval [0, 1].

Parameters

n [int or array_like of ints] Parameter of the distribution, > 0. Floats are also accepted, but they
will be truncated to integers.

p [float or array_like of floats] Parameter of the distribution, >= 0 and <=1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if n
and p are both scalars. Otherwise, np.broadcast(n, p).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized negative binomial distribution,
where each sample is equal to N, the number of failures that occurred before a total of n
successes was reached.

Notes

The probability density for the negative binomial distribution is

𝑃 (𝑁 ;𝑛, 𝑝) =

(︂
𝑁 + 𝑛− 1

𝑁

)︂
𝑝𝑛(1 − 𝑝)𝑁 ,

where 𝑛 is the number of successes, 𝑝 is the probability of success, and 𝑁 + 𝑛 is the number of trials. The
negative binomial distribution gives the probability of N failures given n successes, with a success on the last
trial.

If one throws a die repeatedly until the third time a “1” appears, then the probability distribution of the number
of non-“1”s that appear before the third “1” is a negative binomial distribution.

References

[1], [2]

1016 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

Draw samples from the distribution:

A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability
of success of 0.1. What is the probability of having one success for each successive well, that is what is the
probability of a single success after drilling 5 wells, after 6 wells, etc.?

>>> s = np.random.negative_binomial(1, 0.1, 100000)
>>> for i in range(1, 11):
... probability = sum(s<i) / 100000.
... print i, "wells drilled, probability of one success =", probability

numpy.random.noncentral_chisquare(df, nonc, size=None)
Draw samples from a noncentral chi-square distribution.

The noncentral 𝜒2 distribution is a generalisation of the 𝜒2 distribution.

Parameters

df [float or array_like of floats] Degrees of freedom, should be > 0.

Changed in version 1.10.0: Earlier NumPy versions required dfnum > 1.

nonc [float or array_like of floats] Non-centrality, should be non-negative.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if df
and nonc are both scalars. Otherwise, np.broadcast(df, nonc).size samples
are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized noncentral chi-square distribu-
tion.

Notes

The probability density function for the noncentral Chi-square distribution is

𝑃 (𝑥; 𝑑𝑓, 𝑛𝑜𝑛𝑐) =
∞∑︁
𝑖=0

𝑒−𝑛𝑜𝑛𝑐/2(𝑛𝑜𝑛𝑐/2)𝑖

𝑖!
¶𝑌𝑑𝑓+2𝑖

(𝑥),

where 𝑌𝑞 is the Chi-square with q degrees of freedom.

In Delhi (2007), it is noted that the noncentral chi-square is useful in bombing and coverage problems, the
probability of killing the point target given by the noncentral chi-squared distribution.

References

[1], [2]

Examples

Draw values from the distribution and plot the histogram

4.24. Random sampling (numpy.random) 1017



NumPy Reference, Release 1.15.1

>>> import matplotlib.pyplot as plt
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, density=True)
>>> plt.show()

0 10 20 30 40 50 60 70 80
0.00

0.01

0.02

0.03

0.04

Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare.

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
... bins=np.arange(0., 25, .1), density=True)
>>> values2 = plt.hist(np.random.chisquare(3, 100000),
... bins=np.arange(0., 25, .1), density=True)
>>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
>>> plt.show()

0 5 10 15 20 25

0.00

0.05

0.10

0.15

0.20

0.25

Demonstrate how large values of non-centrality lead to a more symmetric distribution.

1018 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, density=True)
>>> plt.show()

0 20 40 60 80
0.00

0.01

0.02

0.03

0.04

numpy.random.noncentral_f(dfnum, dfden, nonc, size=None)
Draw samples from the noncentral F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator)
and dfden (degrees of freedom in denominator), where both parameters > 1. nonc is the non-centrality parameter.

Parameters

dfnum [float or array_like of floats] Numerator degrees of freedom, should be > 0.

Changed in version 1.14.0: Earlier NumPy versions required dfnum > 1.

dfden [float or array_like of floats] Denominator degrees of freedom, should be > 0.

nonc [float or array_like of floats] Non-centrality parameter, the sum of the squares of the nu-
merator means, should be >= 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is re-
turned if dfnum, dfden, and nonc are all scalars. Otherwise, np.broadcast(dfnum,
dfden, nonc).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized noncentral Fisher distribution.

Notes

When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a
specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the
F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F
statistic.

4.24. Random sampling (numpy.random) 1019



NumPy Reference, Release 1.15.1

References

[1], [2]

Examples

In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution.
We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null
hypothesis. We’ll plot the two probability distributions for comparison.

>>> dfnum = 3 # between group deg of freedom
>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0
>>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals, bins=50, density=True)
>>> c_vals = np.random.f(dfnum, dfden, 1000000)
>>> F = np.histogram(c_vals, bins=50, density=True)
>>> plt.plot(F[1][1:], F[0])
>>> plt.plot(NF[1][1:], NF[0])
>>> plt.show()

numpy.random.normal(loc=0.0, scale=1.0, size=None)
Draw random samples from a normal (Gaussian) distribution.

The probability density function of the normal distribution, first derived by De Moivre and 200 years later by
both Gauss and Laplace independently [2], is often called the bell curve because of its characteristic shape (see
the example below).

The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution
of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2].

Parameters

loc [float or array_like of floats] Mean (“centre”) of the distribution.

scale [float or array_like of floats] Standard deviation (spread or “width”) of the distribution.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
loc and scale are both scalars. Otherwise, np.broadcast(loc, scale).size
samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized normal distribution.

See also:

scipy.stats.norm probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gaussian distribution is

𝑝(𝑥) =
1√

2𝜋𝜎2
𝑒−

(𝑥−𝜇)2

2𝜎2 ,

1020 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm


NumPy Reference, Release 1.15.1

where 𝜇 is the mean and 𝜎 the standard deviation. The square of the standard deviation, 𝜎2, is called the
variance.

The function has its peak at the mean, and its “spread” increases with the standard deviation (the function
reaches 0.607 times its maximum at 𝑥 + 𝜎 and 𝑥 − 𝜎 [2]). This implies that numpy.random.normal is
more likely to return samples lying close to the mean, rather than those far away.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, sigma = 0, 0.1 # mean and standard deviation
>>> s = np.random.normal(mu, sigma, 1000)

Verify the mean and the variance:

>>> abs(mu - np.mean(s)) < 0.01
True

>>> abs(sigma - np.std(s, ddof=1)) < 0.01
True

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
... np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
... linewidth=2, color='r')
>>> plt.show()

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

1

2

3

4

4.24. Random sampling (numpy.random) 1021



NumPy Reference, Release 1.15.1

numpy.random.pareto(a, size=None)
Draw samples from a Pareto II or Lomax distribution with specified shape.

The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be
obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter m (see Notes). The
smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is mu, where the
standard Pareto distribution has location mu = 1. Lomax can also be considered as a simplified version of the
Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero.

The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the “80-20 rule”.
In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent
fill the remaining 80 percent of the range.

Parameters

a [float or array_like of floats] Shape of the distribution. Should be greater than zero.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if a is
a scalar. Otherwise, np.array(a).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Pareto distribution.

See also:

scipy.stats.lomax probability density function, distribution or cumulative density function, etc.

scipy.stats.genpareto probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Pareto distribution is

𝑝(𝑥) =
𝑎𝑚𝑎

𝑥𝑎+1

where 𝑎 is the shape and 𝑚 the scale.

The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution
useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford
distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has
also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the
download frequency for projects in Sourceforge [1]. It is one of the so-called “fat-tailed” distributions.

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution:

>>> a, m = 3., 2. # shape and mode
>>> s = (np.random.pareto(a, 1000) + 1) * m

1022 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lomax.html#scipy.stats.lomax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genpareto.html#scipy.stats.genpareto


NumPy Reference, Release 1.15.1

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s, 100, density=True)
>>> fit = a*m**a / bins**(a+1)
>>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
>>> plt.show()

5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

1.2

numpy.random.poisson(lam=1.0, size=None)
Draw samples from a Poisson distribution.

The Poisson distribution is the limit of the binomial distribution for large N.

Parameters

lam [float or array_like of floats] Expectation of interval, should be >= 0. A sequence of expec-
tation intervals must be broadcastable over the requested size.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if lam
is a scalar. Otherwise, np.array(lam).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Poisson distribution.

Notes

The Poisson distribution

𝑓(𝑘;𝜆) =
𝜆𝑘𝑒−𝜆

𝑘!

For events with an expected separation 𝜆 the Poisson distribution 𝑓(𝑘;𝜆) describes the probability of 𝑘 events
occurring within the observed interval 𝜆.

Because the output is limited to the range of the C long type, a ValueError is raised when lam is within 10 sigma
of the maximum representable value.

4.24. Random sampling (numpy.random) 1023



NumPy Reference, Release 1.15.1

References

[1], [2]

Examples

Draw samples from the distribution:

>>> import numpy as np
>>> s = np.random.poisson(5, 10000)

Display histogram of the sample:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 14, density=True)
>>> plt.show()

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.00

0.05

0.10

0.15

0.20

0.25

Draw each 100 values for lambda 100 and 500:

>>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

numpy.random.power(a, size=None)
Draws samples in [0, 1] from a power distribution with positive exponent a - 1.

Also known as the power function distribution.

Parameters

a [float or array_like of floats] Parameter of the distribution. Should be greater than zero.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if a is
a scalar. Otherwise, np.array(a).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized power distribution.

1024 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Raises

ValueError If a < 1.

Notes

The probability density function is

𝑃 (𝑥; 𝑎) = 𝑎𝑥𝑎−1, 0 ≤ 𝑥 ≤ 1, 𝑎 > 0.

The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special
case of the Beta distribution.

It is used, for example, in modeling the over-reporting of insurance claims.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> samples = 1000
>>> s = np.random.power(a, samples)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=30)
>>> x = np.linspace(0, 1, 100)
>>> y = a*x**(a-1.)
>>> normed_y = samples*np.diff(bins)[0]*y
>>> plt.plot(x, normed_y)
>>> plt.show()

Compare the power function distribution to the inverse of the Pareto.

>>> from scipy import stats
>>> rvs = np.random.power(5, 1000000)
>>> rvsp = np.random.pareto(5, 1000000)
>>> xx = np.linspace(0,1,100)
>>> powpdf = stats.powerlaw.pdf(xx,5)

>>> plt.figure()
>>> plt.hist(rvs, bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('np.random.power(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of 1 + np.random.pareto(5)')

4.24. Random sampling (numpy.random) 1025



NumPy Reference, Release 1.15.1

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of stats.pareto(5)')

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
np.random.power(5)

numpy.random.rayleigh(scale=1.0, size=None)
Draw samples from a Rayleigh distribution.

The 𝜒 and Weibull distributions are generalizations of the Rayleigh.

Parameters

scale [float or array_like of floats, optional] Scale, also equals the mode. Should be >= 0.
Default is 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if scale

1026 Chapter 4. Routines



NumPy Reference, Release 1.15.1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
inverse of 1 + np.random.pareto(5)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
inverse of stats.pareto(5)

4.24. Random sampling (numpy.random) 1027



NumPy Reference, Release 1.15.1

is a scalar. Otherwise, np.array(scale).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Rayleigh distribution.

Notes

The probability density function for the Rayleigh distribution is

𝑃 (𝑥; 𝑠𝑐𝑎𝑙𝑒) =
𝑥

𝑠𝑐𝑎𝑙𝑒2
𝑒

−𝑥2

2·𝑠𝑐𝑎𝑙𝑒2

The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had
identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution.

References

[1], [2]

Examples

Draw values from the distribution and plot the histogram

>>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves
are likely to be larger than 3 meters?

>>> meanvalue = 1
>>> modevalue = np.sqrt(2 / np.pi) * meanvalue
>>> s = np.random.rayleigh(modevalue, 1000000)

The percentage of waves larger than 3 meters is:

>>> 100.*sum(s>3)/1000000.
0.087300000000000003

numpy.random.standard_cauchy(size=None)
Draw samples from a standard Cauchy distribution with mode = 0.

Also known as the Lorentz distribution.

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

samples [ndarray or scalar] The drawn samples.

1028 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

The probability density function for the full Cauchy distribution is

𝑃 (𝑥;𝑥0, 𝛾) =
1

𝜋𝛾
[︀
1 + (𝑥−𝑥0

𝛾 )2
]︀

and the Standard Cauchy distribution just sets 𝑥0 = 0 and 𝛾 = 1

The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes
spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle will
cut the x axis.

When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy
distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very
much like a Gaussian distribution, but with heavier tails.

References

[1], [2], [3]

Examples

Draw samples and plot the distribution:

>>> s = np.random.standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist(s, bins=100)
>>> plt.show()

numpy.random.standard_exponential(size=None)
Draw samples from the standard exponential distribution.

standard_exponential is identical to the exponential distribution with a scale parameter of 1.

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

out [float or ndarray] Drawn samples.

Examples

Output a 3x8000 array:

>>> n = np.random.standard_exponential((3, 8000))

numpy.random.standard_gamma(shape, size=None)
Draw samples from a standard Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”)
and scale=1.

4.24. Random sampling (numpy.random) 1029



NumPy Reference, Release 1.15.1

Parameters

shape [float or array_like of floats] Parameter, should be > 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if shape
is a scalar. Otherwise, np.array(shape).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized standard gamma distribution.

See also:

scipy.stats.gamma probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

𝑝(𝑥) = 𝑥𝑘−1 𝑒−𝑥/𝜃

𝜃𝑘Γ(𝑘)
,

where 𝑘 is the shape and 𝜃 the scale, and Γ is the Gamma function.

The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 1. # mean and width
>>> s = np.random.standard_gamma(shape, 1000000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, density=True)
>>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ \
... (sps.gamma(shape) * scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

numpy.random.standard_normal(size=None)
Draw samples from a standard Normal distribution (mean=0, stdev=1).

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

1030 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma


NumPy Reference, Release 1.15.1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Returns

out [float or ndarray] Drawn samples.

Examples

>>> s = np.random.standard_normal(8000)
>>> s
array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, #random

-0.38672696, -0.4685006 ]) #random
>>> s.shape
(8000,)
>>> s = np.random.standard_normal(size=(3, 4, 2))
>>> s.shape
(3, 4, 2)

numpy.random.standard_t(df, size=None)
Draw samples from a standard Student’s t distribution with df degrees of freedom.

A special case of the hyperbolic distribution. As df gets large, the result resembles that of the standard normal
distribution (standard_normal).

Parameters

df [float or array_like of floats] Degrees of freedom, should be > 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if df
is a scalar. Otherwise, np.array(df).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized standard Student’s t distribution.

4.24. Random sampling (numpy.random) 1031



NumPy Reference, Release 1.15.1

Notes

The probability density function for the t distribution is

𝑃 (𝑥, 𝑑𝑓) =
Γ(𝑑𝑓+1

2 )
√
𝜋𝑑𝑓Γ(𝑑𝑓

2 )

(︁
1 +

𝑥2

𝑑𝑓

)︁−(𝑑𝑓+1)/2

The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to
test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean.

The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness
Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name
Student.

References

[1], [2]

Examples

From Dalgaard page 83 [1], suppose the daily energy intake for 11 women in Kj is:

>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
... 7515, 8230, 8770])

Does their energy intake deviate systematically from the recommended value of 7725 kJ?

We have 10 degrees of freedom, so is the sample mean within 95% of the recommended value?

>>> s = np.random.standard_t(10, size=100000)
>>> np.mean(intake)
6753.636363636364
>>> intake.std(ddof=1)
1142.1232221373727

Calculate the t statistic, setting the ddof parameter to the unbiased value so the divisor in the standard deviation
will be degrees of freedom, N-1.

>>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
>>> import matplotlib.pyplot as plt
>>> h = plt.hist(s, bins=100, density=True)

For a one-sided t-test, how far out in the distribution does the t statistic appear?

>>> np.sum(s<t) / float(len(s))
0.0090699999999999999 #random

So the p-value is about 0.009, which says the null hypothesis has a probability of about 99% of being true.

numpy.random.triangular(left, mode, right, size=None)
Draw samples from the triangular distribution over the interval [left, right].

The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper
limit right. Unlike the other distributions, these parameters directly define the shape of the pdf.

Parameters

1032 Chapter 4. Routines



NumPy Reference, Release 1.15.1

8 6 4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

left [float or array_like of floats] Lower limit.

mode [float or array_like of floats] The value where the peak of the distribution occurs. The
value should fulfill the condition left <= mode <= right.

right [float or array_like of floats] Upper limit, should be larger than left.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
left, mode, and right are all scalars. Otherwise, np.broadcast(left, mode,
right).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized triangular distribution.

Notes

The probability density function for the triangular distribution is

𝑃 (𝑥; 𝑙,𝑚, 𝑟) =

⎧⎪⎨⎪⎩
2(𝑥−𝑙)

(𝑟−𝑙)(𝑚−𝑙) for 𝑙 ≤ 𝑥 ≤ 𝑚,
2(𝑟−𝑥)

(𝑟−𝑙)(𝑟−𝑚) for 𝑚 ≤ 𝑥 ≤ 𝑟,

0 otherwise.

The triangular distribution is often used in ill-defined problems where the underlying distribution is not known,
but some knowledge of the limits and mode exists. Often it is used in simulations.

References

[1]

Examples

Draw values from the distribution and plot the histogram:

4.24. Random sampling (numpy.random) 1033



NumPy Reference, Release 1.15.1

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
... density=True)
>>> plt.show()

2 0 2 4 6 8
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

numpy.random.uniform(low=0.0, high=1.0, size=None)
Draw samples from a uniform distribution.

Samples are uniformly distributed over the half-open interval [low, high) (includes low, but excludes high).
In other words, any value within the given interval is equally likely to be drawn by uniform.

Parameters

low [float or array_like of floats, optional] Lower boundary of the output interval. All values
generated will be greater than or equal to low. The default value is 0.

high [float or array_like of floats] Upper boundary of the output interval. All values generated
will be less than high. The default value is 1.0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if low
and high are both scalars. Otherwise, np.broadcast(low, high).size samples
are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized uniform distribution.

See also:

randint Discrete uniform distribution, yielding integers.

random_integers Discrete uniform distribution over the closed interval [low, high].

random_sample Floats uniformly distributed over [0, 1).

random Alias for random_sample.

rand Convenience function that accepts dimensions as input, e.g., rand(2,2)would generate a 2-by-2 array
of floats, uniformly distributed over [0, 1).

1034 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

The probability density function of the uniform distribution is

𝑝(𝑥) =
1

𝑏− 𝑎

anywhere within the interval [a, b), and zero elsewhere.

When high == low, values of low will be returned. If high < low, the results are officially undefined and
may eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that
inequality condition.

Examples

Draw samples from the distribution:

>>> s = np.random.uniform(-1,0,1000)

All values are within the given interval:

>>> np.all(s >= -1)
True
>>> np.all(s < 0)
True

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 15, density=True)
>>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
>>> plt.show()

1.0 0.8 0.6 0.4 0.2 0.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

numpy.random.vonmises(mu, kappa, size=None)
Draw samples from a von Mises distribution.

4.24. Random sampling (numpy.random) 1035



NumPy Reference, Release 1.15.1

Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the
interval [-pi, pi].

The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribu-
tion on the unit circle. It may be thought of as the circular analogue of the normal distribution.

Parameters

mu [float or array_like of floats] Mode (“center”) of the distribution.

kappa [float or array_like of floats] Dispersion of the distribution, has to be >=0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if mu
and kappa are both scalars. Otherwise, np.broadcast(mu, kappa).size samples
are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized von Mises distribution.

See also:

scipy.stats.vonmises probability density function, distribution, or cumulative density function, etc.

Notes

The probability density for the von Mises distribution is

𝑝(𝑥) =
𝑒𝜅𝑐𝑜𝑠(𝑥−𝜇)

2𝜋𝐼0(𝜅)
,

where 𝜇 is the mode and 𝜅 the dispersion, and 𝐼0(𝜅) is the modified Bessel function of order 0.

The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the
Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability
theory, aerodynamics, fluid mechanics, and philosophy of science.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, kappa = 0.0, 4.0 # mean and dispersion
>>> s = np.random.vonmises(mu, kappa, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy.special import i0
>>> plt.hist(s, 50, density=True)
>>> x = np.linspace(-np.pi, np.pi, num=51)
>>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))

(continues on next page)

1036 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises.html#scipy.stats.vonmises


NumPy Reference, Release 1.15.1

(continued from previous page)

>>> plt.plot(x, y, linewidth=2, color='r')
>>> plt.show()

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

numpy.random.wald(mean, scale, size=None)
Draw samples from a Wald, or inverse Gaussian, distribution.

As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the
Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal.

The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie
used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance
and distance covered in unit time.

Parameters

mean [float or array_like of floats] Distribution mean, should be > 0.

scale [float or array_like of floats] Scale parameter, should be >= 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if mean and scale are both scalars. Otherwise, np.broadcast(mean, scale).
size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Wald distribution.

Notes

The probability density function for the Wald distribution is

𝑃 (𝑥;𝑚𝑒𝑎𝑛, 𝑠𝑐𝑎𝑙𝑒) =

√︂
𝑠𝑐𝑎𝑙𝑒

2𝜋𝑥3
𝑒

−𝑠𝑐𝑎𝑙𝑒(𝑥−𝑚𝑒𝑎𝑛)2

2·𝑚𝑒𝑎𝑛2𝑥

As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a
competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes.

4.24. Random sampling (numpy.random) 1037



NumPy Reference, Release 1.15.1

References

[1], [2], [3]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
>>> plt.show()

0 10 20 30 40 50 60 70 80
0.0

0.1

0.2

0.3

0.4

numpy.random.weibull(a, size=None)
Draw samples from a Weibull distribution.

Draw samples from a 1-parameter Weibull distribution with the given shape parameter a.

𝑋 = (−𝑙𝑛(𝑈))1/𝑎

Here, U is drawn from the uniform distribution over (0,1].

The more common 2-parameter Weibull, including a scale parameter 𝜆 is just 𝑋 = 𝜆(−𝑙𝑛(𝑈))1/𝑎.

Parameters

a [float or array_like of floats] Shape of the distribution. Should be greater than zero.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if a is
a scalar. Otherwise, np.array(a).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Weibull distribution.

See also:

scipy.stats.weibull_max, scipy.stats.weibull_min, scipy.stats.genextreme,
gumbel

1038 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_max.html#scipy.stats.weibull_max
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_min.html#scipy.stats.weibull_min
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme


NumPy Reference, Release 1.15.1

Notes

The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-
Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling
extreme value problems. This class includes the Gumbel and Frechet distributions.

The probability density for the Weibull distribution is

𝑝(𝑥) =
𝑎

𝜆
(
𝑥

𝜆
)𝑎−1𝑒−(𝑥/𝜆)𝑎 ,

where 𝑎 is the shape and 𝜆 the scale.

The function has its peak (the mode) at 𝜆(𝑎−1
𝑎 )1/𝑎.

When a = 1, the Weibull distribution reduces to the exponential distribution.

References

[1], [2], [3]

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> s = np.random.weibull(a, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> x = np.arange(1,100.)/50.
>>> def weib(x,n,a):
... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

>>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
>>> x = np.arange(1,100.)/50.
>>> scale = count.max()/weib(x, 1., 5.).max()
>>> plt.plot(x, weib(x, 1., 5.)*scale)
>>> plt.show()

numpy.random.zipf(a, size=None)
Draw samples from a Zipf distribution.

Samples are drawn from a Zipf distribution with specified parameter a > 1.

The Zipf distribution (also known as the zeta distribution) is a continuous probability distribution that satisfies
Zipf’s law: the frequency of an item is inversely proportional to its rank in a frequency table.

Parameters

a [float or array_like of floats] Distribution parameter. Should be greater than 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if a is
a scalar. Otherwise, np.array(a).size samples are drawn.

Returns

4.24. Random sampling (numpy.random) 1039



NumPy Reference, Release 1.15.1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

50

100

150

200

out [ndarray or scalar] Drawn samples from the parameterized Zipf distribution.

See also:

scipy.stats.zipf probability density function, distribution, or cumulative density function, etc.

Notes

The probability density for the Zipf distribution is

𝑝(𝑥) =
𝑥−𝑎

𝜁(𝑎)
,

where 𝜁 is the Riemann Zeta function.

It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a
sample of a language is inversely proportional to its rank in the frequency table.

References

[1]

Examples

Draw samples from the distribution:

>>> a = 2. # parameter
>>> s = np.random.zipf(a, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy import special

1040 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zipf.html#scipy.stats.zipf


NumPy Reference, Release 1.15.1

Truncate s values at 50 so plot is interesting:

>>> count, bins, ignored = plt.hist(s[s<50], 50, density=True)
>>> x = np.arange(1., 50.)
>>> y = x**(-a) / special.zetac(a)
>>> plt.plot(x, y/max(y), linewidth=2, color='r')
>>> plt.show()

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

4.24.4 Random generator

RandomState([seed]) Container for the Mersenne Twister pseudo-random num-
ber generator.

seed([seed]) Seed the generator.
get_state() Return a tuple representing the internal state of the genera-

tor.
set_state(state) Set the internal state of the generator from a tuple.

class numpy.random.RandomState(seed=None)
Container for the Mersenne Twister pseudo-random number generator.

RandomState exposes a number of methods for generating random numbers drawn from a variety of proba-
bility distributions. In addition to the distribution-specific arguments, each method takes a keyword argument
size that defaults to None. If size is None, then a single value is generated and returned. If size is an integer,
then a 1-D array filled with generated values is returned. If size is a tuple, then an array with that shape is filled
and returned.

Compatibility Guarantee A fixed seed and a fixed series of calls to ‘RandomState’ methods using the same
parameters will always produce the same results up to roundoff error except when the values were incorrect.
Incorrect values will be fixed and the NumPy version in which the fix was made will be noted in the relevant
docstring. Extension of existing parameter ranges and the addition of new parameters is allowed as long the
previous behavior remains unchanged.

Parameters

4.24. Random sampling (numpy.random) 1041



NumPy Reference, Release 1.15.1

seed [{None, int, array_like}, optional] Random seed used to initialize the pseudo-random
number generator. Can be any integer between 0 and 2**32 - 1 inclusive, an array (or other
sequence) of such integers, or None (the default). If seed is None, then RandomState
will try to read data from /dev/urandom (or the Windows analogue) if available or seed
from the clock otherwise.

Notes

The Python stdlib module “random” also contains a Mersenne Twister pseudo-random number generator with
a number of methods that are similar to the ones available in RandomState. RandomState, besides being
NumPy-aware, has the advantage that it provides a much larger number of probability distributions to choose
from.

Methods

beta(a, b[, size]) Draw samples from a Beta distribution.
binomial(n, p[, size]) Draw samples from a binomial distribution.
bytes(length) Return random bytes.
chisquare(df[, size]) Draw samples from a chi-square distribution.
choice(a[, size, replace, p]) Generates a random sample from a given 1-D array
dirichlet(alpha[, size]) Draw samples from the Dirichlet distribution.
exponential([scale, size]) Draw samples from an exponential distribution.
f(dfnum, dfden[, size]) Draw samples from an F distribution.
gamma(shape[, scale, size]) Draw samples from a Gamma distribution.
geometric(p[, size]) Draw samples from the geometric distribution.
get_state() Return a tuple representing the internal state of the gen-

erator.
gumbel([loc, scale, size]) Draw samples from a Gumbel distribution.
hypergeometric(ngood, nbad, nsample[, size]) Draw samples from a Hypergeometric distribution.
laplace([loc, scale, size]) Draw samples from the Laplace or double exponential

distribution with specified location (or mean) and scale
(decay).

logistic([loc, scale, size]) Draw samples from a logistic distribution.
lognormal([mean, sigma, size]) Draw samples from a log-normal distribution.
logseries(p[, size]) Draw samples from a logarithmic series distribution.
multinomial(n, pvals[, size]) Draw samples from a multinomial distribution.
multivariate_normal(mean, cov[, size, . . . ) Draw random samples from a multivariate normal dis-

tribution.
negative_binomial(n, p[, size]) Draw samples from a negative binomial distribution.
noncentral_chisquare(df, nonc[, size]) Draw samples from a noncentral chi-square distribution.
noncentral_f(dfnum, dfden, nonc[, size]) Draw samples from the noncentral F distribution.
normal([loc, scale, size]) Draw random samples from a normal (Gaussian) distri-

bution.
pareto(a[, size]) Draw samples from a Pareto II or Lomax distribution

with specified shape.
permutation(x) Randomly permute a sequence, or return a permuted

range.
poisson([lam, size]) Draw samples from a Poisson distribution.

Continued on next page

1042 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Table 156 – continued from previous page
power(a[, size]) Draws samples in [0, 1] from a power distribution with

positive exponent a - 1.
rand(d0, d1, . . . , dn) Random values in a given shape.
randint(low[, high, size, dtype]) Return random integers from low (inclusive) to high (ex-

clusive).
randn(d0, d1, . . . , dn) Return a sample (or samples) from the “standard nor-

mal” distribution.
random_integers(low[, high, size]) Random integers of type np.int between low and high,

inclusive.
random_sample([size]) Return random floats in the half-open interval [0.0, 1.0).
rayleigh([scale, size]) Draw samples from a Rayleigh distribution.
seed([seed]) Seed the generator.
set_state(state) Set the internal state of the generator from a tuple.
shuffle(x) Modify a sequence in-place by shuffling its contents.
standard_cauchy([size]) Draw samples from a standard Cauchy distribution with

mode = 0.
standard_exponential([size]) Draw samples from the standard exponential distribu-

tion.
standard_gamma(shape[, size]) Draw samples from a standard Gamma distribution.
standard_normal([size]) Draw samples from a standard Normal distribution

(mean=0, stdev=1).
standard_t(df[, size]) Draw samples from a standard Student’s t distribution

with df degrees of freedom.
tomaxint([size]) Random integers between 0 and sys.maxint, inclu-

sive.
triangular(left, mode, right[, size]) Draw samples from the triangular distribution over the

interval [left, right].
uniform([low, high, size]) Draw samples from a uniform distribution.
vonmises(mu, kappa[, size]) Draw samples from a von Mises distribution.
wald(mean, scale[, size]) Draw samples from a Wald, or inverse Gaussian, distri-

bution.
weibull(a[, size]) Draw samples from a Weibull distribution.
zipf(a[, size]) Draw samples from a Zipf distribution.

RandomState.beta(a, b, size=None)
Draw samples from a Beta distribution.

The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution.
It has the probability distribution function

𝑓(𝑥; 𝑎, 𝑏) =
1

𝐵(𝛼, 𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1,

where the normalisation, B, is the beta function,

𝐵(𝛼, 𝛽) =

∫︁ 1

0

𝑡𝛼−1(1 − 𝑡)𝛽−1𝑑𝑡.

It is often seen in Bayesian inference and order statistics.

Parameters

a [float or array_like of floats] Alpha, non-negative.

b [float or array_like of floats] Beta, non-negative.

4.24. Random sampling (numpy.random) 1043



NumPy Reference, Release 1.15.1

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if a and b are both scalars. Otherwise, np.broadcast(a, b).size samples are
drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized beta distribution.

RandomState.binomial(n, p, size=None)
Draw samples from a binomial distribution.

Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of
success where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated
to an integer in use)

Parameters

n [int or array_like of ints] Parameter of the distribution, >= 0. Floats are also accepted, but
they will be truncated to integers.

p [float or array_like of floats] Parameter of the distribution, >= 0 and <=1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if n and p are both scalars. Otherwise, np.broadcast(n, p).size samples are
drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized binomial distribution, where
each sample is equal to the number of successes over the n trials.

See also:

scipy.stats.binom probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the binomial distribution is

𝑃 (𝑁) =

(︂
𝑛

𝑁

)︂
𝑝𝑁 (1 − 𝑝)𝑛−𝑁 ,

where 𝑛 is the number of trials, 𝑝 is the probability of success, and 𝑁 is the number of successes.

When estimating the standard error of a proportion in a population by using a random sample, the normal
distribution works well unless the product p*n <=5, where p = population proportion estimate, and n =
number of samples, in which case the binomial distribution is used instead. For example, a sample of 15
people shows 4 who are left handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so
the binomial distribution should be used in this case.

References

[1], [2], [3], [4], [5]

1044 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html#scipy.stats.binom


NumPy Reference, Release 1.15.1

Examples

Draw samples from the distribution:

>>> n, p = 10, .5 # number of trials, probability of each trial
>>> s = np.random.binomial(n, p, 1000)
# result of flipping a coin 10 times, tested 1000 times.

A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability
of success of 0.1. All nine wells fail. What is the probability of that happening?

Let’s do 20,000 trials of the model, and count the number that generate zero positive results.

>>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
# answer = 0.38885, or 38%.

RandomState.bytes(length)
Return random bytes.

Parameters

length [int] Number of random bytes.

Returns

out [str] String of length length.

Examples

>>> np.random.bytes(10)
' eh\x85\x022SZ\xbf\xa4' #random

RandomState.chisquare(df, size=None)
Draw samples from a chi-square distribution.

When df independent random variables, each with standard normal distributions (mean 0, variance 1), are
squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in
hypothesis testing.

Parameters

df [float or array_like of floats] Number of degrees of freedom, should be > 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if df is a scalar. Otherwise, np.array(df).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized chi-square distribution.

Raises

ValueError When df <= 0 or when an inappropriate size (e.g. size=-1) is given.

4.24. Random sampling (numpy.random) 1045



NumPy Reference, Release 1.15.1

Notes

The variable obtained by summing the squares of df independent, standard normally distributed random
variables:

𝑄 =

df∑︁
𝑖=0

𝑋2
𝑖

is chi-square distributed, denoted

𝑄 ∼ 𝜒2
𝑘.

The probability density function of the chi-squared distribution is

𝑝(𝑥) =
(1/2)𝑘/2

Γ(𝑘/2)
𝑥𝑘/2−1𝑒−𝑥/2,

where Γ is the gamma function,

Γ(𝑥) =

∫︁ −∞

0

𝑡𝑥−1𝑒−𝑡𝑑𝑡.

References

[1]

Examples

>>> np.random.chisquare(2,4)
array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272])

RandomState.choice(a, size=None, replace=True, p=None)
Generates a random sample from a given 1-D array

New in version 1.7.0.

Parameters

a [1-D array-like or int] If an ndarray, a random sample is generated from its elements. If an
int, the random sample is generated as if a were np.arange(a)

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. Default is None, in which case a single value is
returned.

replace [boolean, optional] Whether the sample is with or without replacement

p [1-D array-like, optional] The probabilities associated with each entry in a. If not given
the sample assumes a uniform distribution over all entries in a.

Returns

samples [single item or ndarray] The generated random samples

Raises

1046 Chapter 4. Routines



NumPy Reference, Release 1.15.1

ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-
like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if
replace=False and the sample size is greater than the population size

See also:

randint, shuffle, permutation

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3)
array([0, 3, 4])
>>> #This is equivalent to np.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0])

Generate a uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False)
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0])

Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance:

>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'],

dtype='|S11')

RandomState.dirichlet(alpha, size=None)
Draw samples from the Dirichlet distribution.

Draw size samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable
can be seen as a multivariate generalization of a Beta distribution. Dirichlet pdf is the conjugate prior of a
multinomial in Bayesian inference.

Parameters

alpha [array] Parameter of the distribution (k dimension for sample of dimension k).

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. Default is None, in which case a single value is
returned.

Returns

samples [ndarray,] The drawn samples, of shape (size, alpha.ndim).

Raises

4.24. Random sampling (numpy.random) 1047



NumPy Reference, Release 1.15.1

ValueError If any value in alpha is less than or equal to zero

Notes

𝑋 ≈
𝑘∏︁

𝑖=1

𝑥𝛼𝑖−1
𝑖

Uses the following property for computation: for each dimension, draw a random sample y_i from a
standard gamma generator of shape alpha_i, then 𝑋 = 1∑︀𝑘

𝑖=1 𝑦𝑖
(𝑦1, . . . , 𝑦𝑛) is Dirichlet distributed.

References

[1], [2]

Examples

Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of
initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated
average length, but allowing some variation in the relative sizes of the pieces.

>>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

>>> plt.barh(range(20), s[0])
>>> plt.barh(range(20), s[1], left=s[0], color='g')
>>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
>>> plt.title("Lengths of Strings")

RandomState.exponential(scale=1.0, size=None)
Draw samples from an exponential distribution.

Its probability density function is

𝑓(𝑥;
1

𝛽
) =

1

𝛽
exp(−𝑥

𝛽
),

for x > 0 and 0 elsewhere. 𝛽 is the scale parameter, which is the inverse of the rate parameter 𝜆 = 1/𝛽.
The rate parameter is an alternative, widely used parameterization of the exponential distribution [3].

The exponential distribution is a continuous analogue of the geometric distribution. It describes many
common situations, such as the size of raindrops measured over many rainstorms [1], or the time between
page requests to Wikipedia [2].

Parameters

scale [float or array_like of floats] The scale parameter, 𝛽 = 1/𝜆.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if scale is a scalar. Otherwise, np.array(scale).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized exponential distribution.

1048 Chapter 4. Routines



NumPy Reference, Release 1.15.1

References

[1], [2], [3]

RandomState.f(dfnum, dfden, size=None)
Draw samples from an F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in nu-
merator) and dfden (degrees of freedom in denominator), where both parameters should be greater than
zero.

The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability
distribution that arises in ANOVA tests, and is the ratio of two chi-square variates.

Parameters

dfnum [float or array_like of floats] Degrees of freedom in numerator, should be > 0.

dfden [float or array_like of float] Degrees of freedom in denominator, should be > 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned if
dfnum and dfden are both scalars. Otherwise, np.broadcast(dfnum, dfden).
size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Fisher distribution.

See also:

scipy.stats.f probability density function, distribution or cumulative density function, etc.

Notes

The F statistic is used to compare in-group variances to between-group variances. Calculating the distribu-
tion depends on the sampling, and so it is a function of the respective degrees of freedom in the problem.
The variable dfnum is the number of samples minus one, the between-groups degrees of freedom, while
dfden is the within-groups degrees of freedom, the sum of the number of samples in each group minus the
number of groups.

References

[1], [2]

Examples

An example from Glantz[1], pp 47-40:

Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls).
Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value
of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null
hypothesis that the parents diabetic status does not affect their children’s blood glucose levels? Calculating
the F statistic from the data gives a value of 36.01.

Draw samples from the distribution:

4.24. Random sampling (numpy.random) 1049

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f.html#scipy.stats.f


NumPy Reference, Release 1.15.1

>>> dfnum = 1. # between group degrees of freedom
>>> dfden = 48. # within groups degrees of freedom
>>> s = np.random.f(dfnum, dfden, 1000)

The lower bound for the top 1% of the samples is :

>>> sort(s)[-10]
7.61988120985

So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null
hypothesis is rejected at the 1% level.

RandomState.gamma(shape, scale=1.0, size=None)
Draw samples from a Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated
“k”) and scale (sometimes designated “theta”), where both parameters are > 0.

Parameters

shape [float or array_like of floats] The shape of the gamma distribution. Should be greater
than zero.

scale [float or array_like of floats, optional] The scale of the gamma distribution. Should be
greater than zero. Default is equal to 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned if
shape and scale are both scalars. Otherwise, np.broadcast(shape, scale).
size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized gamma distribution.

See also:

scipy.stats.gamma probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

𝑝(𝑥) = 𝑥𝑘−1 𝑒−𝑥/𝜃

𝜃𝑘Γ(𝑘)
,

where 𝑘 is the shape and 𝜃 the scale, and Γ is the Gamma function.

The Gamma distribution is often used to model the times to failure of electronic components, and arises
naturally in processes for which the waiting times between Poisson distributed events are relevant.

References

[1], [2]

1050 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma


NumPy Reference, Release 1.15.1

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2)
>>> s = np.random.gamma(shape, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, density=True)
>>> y = bins**(shape-1)*(np.exp(-bins/scale) /
... (sps.gamma(shape)*scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

0 2 4 6 8 10 12 14 16
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

RandomState.geometric(p, size=None)
Draw samples from the geometric distribution.

Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an
experiment is flipping a coin). The geometric distribution models the number of trials that must be run in
order to achieve success. It is therefore supported on the positive integers, k = 1, 2, ....

The probability mass function of the geometric distribution is

𝑓(𝑘) = (1 − 𝑝)𝑘−1𝑝

where p is the probability of success of an individual trial.

Parameters

p [float or array_like of floats] The probability of success of an individual trial.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if p is a scalar. Otherwise, np.array(p).size samples are drawn.

Returns

4.24. Random sampling (numpy.random) 1051



NumPy Reference, Release 1.15.1

out [ndarray or scalar] Drawn samples from the parameterized geometric distribution.

Examples

Draw ten thousand values from the geometric distribution, with the probability of an individual success
equal to 0.35:

>>> z = np.random.geometric(p=0.35, size=10000)

How many trials succeeded after a single run?

>>> (z == 1).sum() / 10000.
0.34889999999999999 #random

RandomState.get_state()
Return a tuple representing the internal state of the generator.

For more details, see set_state.

Returns

out [tuple(str, ndarray of 624 uints, int, int, float)] The returned tuple has the following
items:

1. the string ‘MT19937’.

2. a 1-D array of 624 unsigned integer keys.

3. an integer pos.

4. an integer has_gauss.

5. a float cached_gaussian.

See also:

set_state

Notes

set_state and get_state are not needed to work with any of the random distributions in NumPy. If
the internal state is manually altered, the user should know exactly what he/she is doing.

RandomState.gumbel(loc=0.0, scale=1.0, size=None)
Draw samples from a Gumbel distribution.

Draw samples from a Gumbel distribution with specified location and scale. For more information on the
Gumbel distribution, see Notes and References below.

Parameters

loc [float or array_like of floats, optional] The location of the mode of the distribution. De-
fault is 0.

scale [float or array_like of floats, optional] The scale parameter of the distribution. Default
is 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned if
loc and scale are both scalars. Otherwise, np.broadcast(loc, scale).size
samples are drawn.

1052 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Returns

out [ndarray or scalar] Drawn samples from the parameterized Gumbel distribution.

See also:

scipy.stats.gumbel_l, scipy.stats.gumbel_r, scipy.stats.genextreme,
weibull

Notes

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one
of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems.
The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions
with “exponential-like” tails.

The probability density for the Gumbel distribution is

𝑝(𝑥) =
𝑒−(𝑥−𝜇)/𝛽

𝛽
𝑒−𝑒−(𝑥−𝜇)/𝛽

,

where 𝜇 is the mode, a location parameter, and 𝛽 is the scale parameter.

The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology
literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed
and rainfall rates. It is a “fat-tailed” distribution - the probability of an event in the tail of the distribution is
larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods
were initially modeled as a Gaussian process, which underestimated the frequency of extreme events.

It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions,
which also includes the Weibull and Frechet.

The function has a mean of 𝜇 + 0.57721𝛽 and a variance of 𝜋2

6 𝛽2.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, beta = 0, 0.1 # location and scale
>>> s = np.random.gumbel(mu, beta, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp( -np.exp( -(bins - mu) /beta) ),
... linewidth=2, color='r')
>>> plt.show()

Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian:

4.24. Random sampling (numpy.random) 1053

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_l.html#scipy.stats.gumbel_l
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_r.html#scipy.stats.gumbel_r
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme


NumPy Reference, Release 1.15.1

0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

>>> means = []
>>> maxima = []
>>> for i in range(0,1000) :
... a = np.random.normal(mu, beta, 1000)
... means.append(a.mean())
... maxima.append(a.max())
>>> count, bins, ignored = plt.hist(maxima, 30, density=True)
>>> beta = np.std(maxima) * np.sqrt(6) / np.pi
>>> mu = np.mean(maxima) - 0.57721*beta
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu)/beta)),
... linewidth=2, color='r')
>>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
... * np.exp(-(bins - mu)**2 / (2 * beta**2)),
... linewidth=2, color='g')
>>> plt.show()

RandomState.hypergeometric(ngood, nbad, nsample, size=None)
Draw samples from a Hypergeometric distribution.

Samples are drawn from a hypergeometric distribution with specified parameters, ngood (ways to make a
good selection), nbad (ways to make a bad selection), and nsample = number of items sampled, which is
less than or equal to the sum ngood + nbad.

Parameters

ngood [int or array_like of ints] Number of ways to make a good selection. Must be non-
negative.

nbad [int or array_like of ints] Number of ways to make a bad selection. Must be nonnega-
tive.

nsample [int or array_like of ints] Number of items sampled. Must be at least 1 and at most
ngood + nbad.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if ngood, nbad, and nsample are all scalars. Otherwise, np.broadcast(ngood,

1054 Chapter 4. Routines



NumPy Reference, Release 1.15.1

0.25 0.30 0.35 0.40 0.45
0

2

4

6

8

10

12

14

nbad, nsample).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized hypergeometric distribution.

See also:

scipy.stats.hypergeom probability density function, distribution or cumulative density function,
etc.

Notes

The probability density for the Hypergeometric distribution is

𝑃 (𝑥) =

(︀
𝑚
𝑛

)︀(︀
𝑁−𝑚
𝑛−𝑥

)︀(︀
𝑁
𝑛

)︀ ,

where 0 ≤ 𝑥 ≤ 𝑚 and 𝑛 + 𝑚−𝑁 ≤ 𝑥 ≤ 𝑛

for P(x) the probability of x successes, n = ngood, m = nbad, and N = number of samples.

Consider an urn with black and white marbles in it, ngood of them black and nbad are white. If you draw
nsample balls without replacement, then the hypergeometric distribution describes the distribution of black
balls in the drawn sample.

Note that this distribution is very similar to the binomial distribution, except that in this case, samples are
drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the
sample space is infinite). As the sample space becomes large, this distribution approaches the binomial.

References

[1], [2], [3]

4.24. Random sampling (numpy.random) 1055

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hypergeom.html#scipy.stats.hypergeom


NumPy Reference, Release 1.15.1

Examples

Draw samples from the distribution:

>>> ngood, nbad, nsamp = 100, 2, 10
# number of good, number of bad, and number of samples
>>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
>>> hist(s)
# note that it is very unlikely to grab both bad items

Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how
likely is it that 12 or more of them are one color?

>>> s = np.random.hypergeometric(15, 15, 15, 100000)
>>> sum(s>=12)/100000. + sum(s<=3)/100000.
# answer = 0.003 ... pretty unlikely!

RandomState.laplace(loc=0.0, scale=1.0, size=None)
Draw samples from the Laplace or double exponential distribution with specified location (or mean) and
scale (decay).

The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and
has fatter tails. It represents the difference between two independent, identically distributed exponential
random variables.

Parameters

loc [float or array_like of floats, optional] The position, 𝜇, of the distribution peak. Default
is 0.

scale [float or array_like of floats, optional] 𝜆, the exponential decay. Default is 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned if
loc and scale are both scalars. Otherwise, np.broadcast(loc, scale).size
samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Laplace distribution.

Notes

It has the probability density function

𝑓(𝑥;𝜇, 𝜆) =
1

2𝜆
exp

(︂
−|𝑥− 𝜇|

𝜆

)︂
.

The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential
function of the absolute magnitude of the error, which leads to the Laplace distribution. For many prob-
lems in economics and health sciences, this distribution seems to model the data better than the standard
Gaussian distribution.

References

[1], [2], [3], [4]

1056 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

Draw samples from the distribution

>>> loc, scale = 0., 1.
>>> s = np.random.laplace(loc, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> x = np.arange(-8., 8., .01)
>>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
>>> plt.plot(x, pdf)

Plot Gaussian for comparison:

>>> g = (1/(scale * np.sqrt(2 * np.pi)) *
... np.exp(-(x - loc)**2 / (2 * scale**2)))
>>> plt.plot(x,g)

8 6 4 2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

RandomState.logistic(loc=0.0, scale=1.0, size=None)
Draw samples from a logistic distribution.

Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also
median), and scale (>0).

Parameters

loc [float or array_like of floats, optional] Parameter of the distribution. Default is 0.

scale [float or array_like of floats, optional] Parameter of the distribution. Should be greater
than zero. Default is 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned if
loc and scale are both scalars. Otherwise, np.broadcast(loc, scale).size
samples are drawn.

4.24. Random sampling (numpy.random) 1057



NumPy Reference, Release 1.15.1

Returns

out [ndarray or scalar] Drawn samples from the parameterized logistic distribution.

See also:

scipy.stats.logistic probability density function, distribution or cumulative density function,
etc.

Notes

The probability density for the Logistic distribution is

𝑃 (𝑥) = 𝑃 (𝑥) =
𝑒−(𝑥−𝜇)/𝑠

𝑠(1 + 𝑒−(𝑥−𝜇)/𝑠)2
,

where 𝜇 = location and 𝑠 = scale.

The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel
distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo
ranking system, assuming the performance of each player is a logistically distributed random variable.

References

[1], [2], [3]

Examples

Draw samples from the distribution:

>>> loc, scale = 10, 1
>>> s = np.random.logistic(loc, scale, 10000)
>>> count, bins, ignored = plt.hist(s, bins=50)

# plot against distribution

>>> def logist(x, loc, scale):
... return exp((loc-x)/scale)/(scale*(1+exp((loc-x)/scale))**2)
>>> plt.plot(bins, logist(bins, loc, scale)*count.max()/\
... logist(bins, loc, scale).max())
>>> plt.show()

RandomState.lognormal(mean=0.0, sigma=1.0, size=None)
Draw samples from a log-normal distribution.

Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape.
Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying
normal distribution it is derived from.

Parameters

mean [float or array_like of floats, optional] Mean value of the underlying normal distribu-
tion. Default is 0.

sigma [float or array_like of floats, optional] Standard deviation of the underlying normal
distribution. Should be greater than zero. Default is 1.

1058 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logistic.html#scipy.stats.logistic


NumPy Reference, Release 1.15.1

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if mean and sigma are both scalars. Otherwise, np.broadcast(mean, sigma).
size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized log-normal distribution.

See also:

scipy.stats.lognorm probability density function, distribution, cumulative density function, etc.

Notes

A variable x has a log-normal distribution if log(x) is normally distributed. The probability density function
for the log-normal distribution is:

𝑝(𝑥) =
1

𝜎𝑥
√

2𝜋
𝑒(−

(𝑙𝑛(𝑥)−𝜇)2

2𝜎2 )

where 𝜇 is the mean and 𝜎 is the standard deviation of the normally distributed logarithm of the variable.
A log-normal distribution results if a random variable is the product of a large number of independent,
identically-distributed variables in the same way that a normal distribution results if the variable is the sum
of a large number of independent, identically-distributed variables.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, sigma = 3., 1. # mean and standard deviation
>>> s = np.random.lognormal(mu, sigma, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, linewidth=2, color='r')
>>> plt.axis('tight')
>>> plt.show()

Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a
log-normal probability density function.

4.24. Random sampling (numpy.random) 1059

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html#scipy.stats.lognorm


NumPy Reference, Release 1.15.1

0 50 100 150 200 250 300
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

>>> # Generate a thousand samples: each is the product of 100 random
>>> # values, drawn from a normal distribution.
>>> b = []
>>> for i in range(1000):
... a = 10. + np.random.random(100)
... b.append(np.product(a))

>>> b = np.array(b) / np.min(b) # scale values to be positive
>>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
>>> sigma = np.std(np.log(b))
>>> mu = np.mean(np.log(b))

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, color='r', linewidth=2)
>>> plt.show()

RandomState.logseries(p, size=None)
Draw samples from a logarithmic series distribution.

Samples are drawn from a log series distribution with specified shape parameter, 0 < p < 1.

Parameters

p [float or array_like of floats] Shape parameter for the distribution. Must be in the range (0,
1).

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if p is a scalar. Otherwise, np.array(p).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized logarithmic series distribu-
tion.

1060 Chapter 4. Routines



NumPy Reference, Release 1.15.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

1.0

See also:

scipy.stats.logser probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Log Series distribution is

𝑃 (𝑘) =
−𝑝𝑘

𝑘 ln(1 − 𝑝)
,

where p = probability.

The log series distribution is frequently used to represent species richness and occurrence, first proposed
by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen
in cars [3].

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution:

>>> a = .6
>>> s = np.random.logseries(a, 10000)
>>> count, bins, ignored = plt.hist(s)

# plot against distribution

4.24. Random sampling (numpy.random) 1061

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logser.html#scipy.stats.logser


NumPy Reference, Release 1.15.1

>>> def logseries(k, p):
... return -p**k/(k*log(1-p))
>>> plt.plot(bins, logseries(bins, a)*count.max()/

logseries(bins, a).max(), 'r')
>>> plt.show()

RandomState.multinomial(n, pvals, size=None)
Draw samples from a multinomial distribution.

The multinomial distribution is a multivariate generalisation of the binomial distribution. Take an experi-
ment with one of p possible outcomes. An example of such an experiment is throwing a dice, where the
outcome can be 1 through 6. Each sample drawn from the distribution represents n such experiments. Its
values, X_i = [X_0, X_1, ..., X_p], represent the number of times the outcome was i.

Parameters

n [int] Number of experiments.

pvals [sequence of floats, length p] Probabilities of each of the p different outcomes. These
should sum to 1 (however, the last element is always assumed to account for the remaining
probability, as long as sum(pvals[:-1]) <= 1).

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. Default is None, in which case a single value is
returned.

Returns

out [ndarray] The drawn samples, of shape size, if that was provided. If not, the shape is
(N,).

In other words, each entry out[i,j,...,:] is an N-dimensional value drawn from
the distribution.

Examples

Throw a dice 20 times:

>>> np.random.multinomial(20, [1/6.]*6, size=1)
array([[4, 1, 7, 5, 2, 1]])

It landed 4 times on 1, once on 2, etc.

Now, throw the dice 20 times, and 20 times again:

>>> np.random.multinomial(20, [1/6.]*6, size=2)
array([[3, 4, 3, 3, 4, 3],

[2, 4, 3, 4, 0, 7]])

For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc.

A loaded die is more likely to land on number 6:

>>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
array([11, 16, 14, 17, 16, 26])

The probability inputs should be normalized. As an implementation detail, the value of the last entry is
ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased
coin which has twice as much weight on one side as on the other should be sampled like so:

1062 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT
array([38, 62])

not like:

>>> np.random.multinomial(100, [1.0, 2.0]) # WRONG
array([100, 0])

RandomState.multivariate_normal(mean, cov[, size, check_valid, tol])
Draw random samples from a multivariate normal distribution.

The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional
normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance
matrix. These parameters are analogous to the mean (average or “center”) and variance (standard deviation,
or “width,” squared) of the one-dimensional normal distribution.

Parameters

mean [1-D array_like, of length N] Mean of the N-dimensional distribution.

cov [2-D array_like, of shape (N, N)] Covariance matrix of the distribution. It must be
symmetric and positive-semidefinite for proper sampling.

size [int or tuple of ints, optional] Given a shape of, for example, (m,n,k), m*n*k samples
are generated, and packed in an m-by-n-by-k arrangement. Because each sample is N-
dimensional, the output shape is (m,n,k,N). If no shape is specified, a single (N-D)
sample is returned.

check_valid [{ ‘warn’, ‘raise’, ‘ignore’ }, optional] Behavior when the covariance matrix is
not positive semidefinite.

tol [float, optional] Tolerance when checking the singular values in covariance matrix.

Returns

out [ndarray] The drawn samples, of shape size, if that was provided. If not, the shape is
(N,).

In other words, each entry out[i,j,...,:] is an N-dimensional value drawn from
the distribution.

Notes

The mean is a coordinate in N-dimensional space, which represents the location where samples are most
likely to be generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate
normal distribution.

Covariance indicates the level to which two variables vary together. From the multivariate normal distri-
bution, we draw N-dimensional samples, 𝑋 = [𝑥1, 𝑥2, ...𝑥𝑁 ]. The covariance matrix element 𝐶𝑖𝑗 is the
covariance of 𝑥𝑖 and 𝑥𝑗 . The element 𝐶𝑖𝑖 is the variance of 𝑥𝑖 (i.e. its “spread”).

Instead of specifying the full covariance matrix, popular approximations include:

• Spherical covariance (cov is a multiple of the identity matrix)

• Diagonal covariance (cov has non-negative elements, and only on the diagonal)

This geometrical property can be seen in two dimensions by plotting generated data-points:

4.24. Random sampling (numpy.random) 1063



NumPy Reference, Release 1.15.1

>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 100]] # diagonal covariance

Diagonal covariance means that points are oriented along x or y-axis:

>>> import matplotlib.pyplot as plt
>>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
>>> plt.plot(x, y, 'x')
>>> plt.axis('equal')
>>> plt.show()

Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the
behavior of this method is undefined and backwards compatibility is not guaranteed.

References

[1], [2]

Examples

>>> mean = (1, 2)
>>> cov = [[1, 0], [0, 1]]
>>> x = np.random.multivariate_normal(mean, cov, (3, 3))
>>> x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the standard deviation:

>>> list((x[0,0,:] - mean) < 0.6)
[True, True]

RandomState.negative_binomial(n, p, size=None)
Draw samples from a negative binomial distribution.

Samples are drawn from a negative binomial distribution with specified parameters, n successes and p
probability of success where n is an integer > 0 and p is in the interval [0, 1].

Parameters

n [int or array_like of ints] Parameter of the distribution, > 0. Floats are also accepted, but
they will be truncated to integers.

p [float or array_like of floats] Parameter of the distribution, >= 0 and <=1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if n and p are both scalars. Otherwise, np.broadcast(n, p).size samples are
drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized negative binomial distribu-
tion, where each sample is equal to N, the number of failures that occurred before a total
of n successes was reached.

1064 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

The probability density for the negative binomial distribution is

𝑃 (𝑁 ;𝑛, 𝑝) =

(︂
𝑁 + 𝑛− 1

𝑁

)︂
𝑝𝑛(1 − 𝑝)𝑁 ,

where 𝑛 is the number of successes, 𝑝 is the probability of success, and 𝑁 +𝑛 is the number of trials. The
negative binomial distribution gives the probability of N failures given n successes, with a success on the
last trial.

If one throws a die repeatedly until the third time a “1” appears, then the probability distribution of the
number of non-“1”s that appear before the third “1” is a negative binomial distribution.

References

[1], [2]

Examples

Draw samples from the distribution:

A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability
of success of 0.1. What is the probability of having one success for each successive well, that is what is
the probability of a single success after drilling 5 wells, after 6 wells, etc.?

>>> s = np.random.negative_binomial(1, 0.1, 100000)
>>> for i in range(1, 11):
... probability = sum(s<i) / 100000.
... print i, "wells drilled, probability of one success =", probability

RandomState.noncentral_chisquare(df, nonc, size=None)
Draw samples from a noncentral chi-square distribution.

The noncentral 𝜒2 distribution is a generalisation of the 𝜒2 distribution.

Parameters

df [float or array_like of floats] Degrees of freedom, should be > 0.

Changed in version 1.10.0: Earlier NumPy versions required dfnum > 1.

nonc [float or array_like of floats] Non-centrality, should be non-negative.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned if
df and nonc are both scalars. Otherwise, np.broadcast(df, nonc).size sam-
ples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized noncentral chi-square distri-
bution.

4.24. Random sampling (numpy.random) 1065



NumPy Reference, Release 1.15.1

Notes

The probability density function for the noncentral Chi-square distribution is

𝑃 (𝑥; 𝑑𝑓, 𝑛𝑜𝑛𝑐) =

∞∑︁
𝑖=0

𝑒−𝑛𝑜𝑛𝑐/2(𝑛𝑜𝑛𝑐/2)𝑖

𝑖!
¶𝑌𝑑𝑓+2𝑖

(𝑥),

where 𝑌𝑞 is the Chi-square with q degrees of freedom.

In Delhi (2007), it is noted that the noncentral chi-square is useful in bombing and coverage problems, the
probability of killing the point target given by the noncentral chi-squared distribution.

References

[1], [2]

Examples

Draw values from the distribution and plot the histogram

>>> import matplotlib.pyplot as plt
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, density=True)
>>> plt.show()

0 10 20 30 40 50 60 70 80
0.00

0.01

0.02

0.03

0.04

Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare.

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
... bins=np.arange(0., 25, .1), density=True)
>>> values2 = plt.hist(np.random.chisquare(3, 100000),
... bins=np.arange(0., 25, .1), density=True)
>>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
>>> plt.show()

1066 Chapter 4. Routines



NumPy Reference, Release 1.15.1

0 5 10 15 20 25

0.00

0.05

0.10

0.15

0.20

0.25

Demonstrate how large values of non-centrality lead to a more symmetric distribution.

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, density=True)
>>> plt.show()

0 20 40 60 80
0.00

0.01

0.02

0.03

0.04

RandomState.noncentral_f(dfnum, dfden, nonc, size=None)
Draw samples from the noncentral F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numer-
ator) and dfden (degrees of freedom in denominator), where both parameters > 1. nonc is the non-centrality
parameter.

Parameters

dfnum [float or array_like of floats] Numerator degrees of freedom, should be > 0.

4.24. Random sampling (numpy.random) 1067



NumPy Reference, Release 1.15.1

Changed in version 1.14.0: Earlier NumPy versions required dfnum > 1.

dfden [float or array_like of floats] Denominator degrees of freedom, should be > 0.

nonc [float or array_like of floats] Non-centrality parameter, the sum of the squares of the
numerator means, should be >= 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if dfnum, dfden, and nonc are all scalars. Otherwise, np.broadcast(dfnum,
dfden, nonc).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized noncentral Fisher distribu-
tion.

Notes

When calculating the power of an experiment (power = probability of rejecting the null hypothesis when
a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is
true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a
non-central F statistic.

References

[1], [2]

Examples

In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribu-
tion. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution
for the null hypothesis. We’ll plot the two probability distributions for comparison.

>>> dfnum = 3 # between group deg of freedom
>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0
>>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals, bins=50, density=True)
>>> c_vals = np.random.f(dfnum, dfden, 1000000)
>>> F = np.histogram(c_vals, bins=50, density=True)
>>> plt.plot(F[1][1:], F[0])
>>> plt.plot(NF[1][1:], NF[0])
>>> plt.show()

RandomState.normal(loc=0.0, scale=1.0, size=None)
Draw random samples from a normal (Gaussian) distribution.

The probability density function of the normal distribution, first derived by De Moivre and 200 years later
by both Gauss and Laplace independently [2], is often called the bell curve because of its characteristic
shape (see the example below).

The normal distributions occurs often in nature. For example, it describes the commonly occurring dis-
tribution of samples influenced by a large number of tiny, random disturbances, each with its own unique
distribution [2].

1068 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Parameters

loc [float or array_like of floats] Mean (“centre”) of the distribution.

scale [float or array_like of floats] Standard deviation (spread or “width”) of the distribution.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned if
loc and scale are both scalars. Otherwise, np.broadcast(loc, scale).size
samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized normal distribution.

See also:

scipy.stats.norm probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gaussian distribution is

𝑝(𝑥) =
1√

2𝜋𝜎2
𝑒−

(𝑥−𝜇)2

2𝜎2 ,

where 𝜇 is the mean and 𝜎 the standard deviation. The square of the standard deviation, 𝜎2, is called the
variance.

The function has its peak at the mean, and its “spread” increases with the standard deviation (the function
reaches 0.607 times its maximum at 𝑥 + 𝜎 and 𝑥− 𝜎 [2]). This implies that numpy.random.normal
is more likely to return samples lying close to the mean, rather than those far away.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, sigma = 0, 0.1 # mean and standard deviation
>>> s = np.random.normal(mu, sigma, 1000)

Verify the mean and the variance:

>>> abs(mu - np.mean(s)) < 0.01
True

>>> abs(sigma - np.std(s, ddof=1)) < 0.01
True

Display the histogram of the samples, along with the probability density function:

4.24. Random sampling (numpy.random) 1069

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm


NumPy Reference, Release 1.15.1

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
... np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
... linewidth=2, color='r')
>>> plt.show()

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

1

2

3

4

RandomState.pareto(a, size=None)
Draw samples from a Pareto II or Lomax distribution with specified shape.

The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be
obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter m (see Notes).
The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is mu,
where the standard Pareto distribution has location mu = 1. Lomax can also be considered as a simplified
version of the Generalized Pareto distribution (available in SciPy), with the scale set to one and the location
set to zero.

The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the “80-20
rule”. In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the
other 20 percent fill the remaining 80 percent of the range.

Parameters

a [float or array_like of floats] Shape of the distribution. Should be greater than zero.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if a is a scalar. Otherwise, np.array(a).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Pareto distribution.

See also:

scipy.stats.lomax probability density function, distribution or cumulative density function, etc.

scipy.stats.genpareto probability density function, distribution or cumulative density function,
etc.

1070 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lomax.html#scipy.stats.lomax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genpareto.html#scipy.stats.genpareto


NumPy Reference, Release 1.15.1

Notes

The probability density for the Pareto distribution is

𝑝(𝑥) =
𝑎𝑚𝑎

𝑥𝑎+1

where 𝑎 is the shape and 𝑚 the scale.

The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability
distribution useful in many real world problems. Outside the field of economics it is generally referred to
as the Bradford distribution. Pareto developed the distribution to describe the distribution of wealth in an
economy. It has also found use in insurance, web page access statistics, oil field sizes, and many other
problems, including the download frequency for projects in Sourceforge [1]. It is one of the so-called
“fat-tailed” distributions.

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution:

>>> a, m = 3., 2. # shape and mode
>>> s = (np.random.pareto(a, 1000) + 1) * m

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s, 100, density=True)
>>> fit = a*m**a / bins**(a+1)
>>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
>>> plt.show()

5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

1.2

4.24. Random sampling (numpy.random) 1071



NumPy Reference, Release 1.15.1

RandomState.permutation(x)
Randomly permute a sequence, or return a permuted range.

If x is a multi-dimensional array, it is only shuffled along its first index.

Parameters

x [int or array_like] If x is an integer, randomly permute np.arange(x). If x is an array,
make a copy and shuffle the elements randomly.

Returns

out [ndarray] Permuted sequence or array range.

Examples

>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6])

>>> np.random.permutation([1, 4, 9, 12, 15])
array([15, 1, 9, 4, 12])

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.permutation(arr)
array([[6, 7, 8],

[0, 1, 2],
[3, 4, 5]])

RandomState.poisson(lam=1.0, size=None)
Draw samples from a Poisson distribution.

The Poisson distribution is the limit of the binomial distribution for large N.

Parameters

lam [float or array_like of floats] Expectation of interval, should be >= 0. A sequence of
expectation intervals must be broadcastable over the requested size.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if lam is a scalar. Otherwise, np.array(lam).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Poisson distribution.

Notes

The Poisson distribution

𝑓(𝑘;𝜆) =
𝜆𝑘𝑒−𝜆

𝑘!

For events with an expected separation 𝜆 the Poisson distribution 𝑓(𝑘;𝜆) describes the probability of 𝑘
events occurring within the observed interval 𝜆.

Because the output is limited to the range of the C long type, a ValueError is raised when lam is within 10
sigma of the maximum representable value.

1072 Chapter 4. Routines



NumPy Reference, Release 1.15.1

References

[1], [2]

Examples

Draw samples from the distribution:

>>> import numpy as np
>>> s = np.random.poisson(5, 10000)

Display histogram of the sample:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 14, density=True)
>>> plt.show()

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.00

0.05

0.10

0.15

0.20

0.25

Draw each 100 values for lambda 100 and 500:

>>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

RandomState.power(a, size=None)
Draws samples in [0, 1] from a power distribution with positive exponent a - 1.

Also known as the power function distribution.

Parameters

a [float or array_like of floats] Parameter of the distribution. Should be greater than zero.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if a is a scalar. Otherwise, np.array(a).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized power distribution.

4.24. Random sampling (numpy.random) 1073



NumPy Reference, Release 1.15.1

Raises

ValueError If a < 1.

Notes

The probability density function is

𝑃 (𝑥; 𝑎) = 𝑎𝑥𝑎−1, 0 ≤ 𝑥 ≤ 1, 𝑎 > 0.

The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special
case of the Beta distribution.

It is used, for example, in modeling the over-reporting of insurance claims.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> samples = 1000
>>> s = np.random.power(a, samples)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=30)
>>> x = np.linspace(0, 1, 100)
>>> y = a*x**(a-1.)
>>> normed_y = samples*np.diff(bins)[0]*y
>>> plt.plot(x, normed_y)
>>> plt.show()

Compare the power function distribution to the inverse of the Pareto.

>>> from scipy import stats
>>> rvs = np.random.power(5, 1000000)
>>> rvsp = np.random.pareto(5, 1000000)
>>> xx = np.linspace(0,1,100)
>>> powpdf = stats.powerlaw.pdf(xx,5)

>>> plt.figure()
>>> plt.hist(rvs, bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('np.random.power(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of 1 + np.random.pareto(5)')

1074 Chapter 4. Routines



NumPy Reference, Release 1.15.1

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of stats.pareto(5)')

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
np.random.power(5)

RandomState.rand(d0, d1, ..., dn)
Random values in a given shape.

Create an array of the given shape and populate it with random samples from a uniform distribution over
[0, 1).

Parameters

d0, d1, . . . , dn [int, optional] The dimensions of the returned array, should all be positive.
If no argument is given a single Python float is returned.

Returns

4.24. Random sampling (numpy.random) 1075



NumPy Reference, Release 1.15.1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
inverse of 1 + np.random.pareto(5)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
inverse of stats.pareto(5)

1076 Chapter 4. Routines



NumPy Reference, Release 1.15.1

out [ndarray, shape (d0, d1, ..., dn)] Random values.

See also:

random

Notes

This is a convenience function. If you want an interface that takes a shape-tuple as the first argument, refer
to np.random.random_sample .

Examples

>>> np.random.rand(3,2)
array([[ 0.14022471, 0.96360618], #random

[ 0.37601032, 0.25528411], #random
[ 0.49313049, 0.94909878]]) #random

RandomState.randint(low, high=None, size=None, dtype=’l’)
Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open”
interval [low, high). If high is None (the default), then results are from [0, low).

Parameters

low [int] Lowest (signed) integer to be drawn from the distribution (unless high=None, in
which case this parameter is one above the highest such integer).

high [int, optional] If provided, one above the largest (signed) integer to be drawn from the
distribution (see above for behavior if high=None).

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. Default is None, in which case a single value is
returned.

dtype [dtype, optional] Desired dtype of the result. All dtypes are determined by their name,
i.e., ‘int64’, ‘int’, etc, so byteorder is not available and a specific precision may have
different C types depending on the platform. The default value is ‘np.int’.

New in version 1.11.0.

Returns

out [int or ndarray of ints] size-shaped array of random integers from the appropriate distri-
bution, or a single such random int if size not provided.

See also:

random.random_integers similar to randint, only for the closed interval [low, high], and 1 is
the lowest value if high is omitted. In particular, this other one is the one to use to generate uniformly
distributed discrete non-integers.

Examples

4.24. Random sampling (numpy.random) 1077



NumPy Reference, Release 1.15.1

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1],

[3, 2, 2, 0]])

RandomState.randn(d0, d1, ..., dn)
Return a sample (or samples) from the “standard normal” distribution.

If positive, int_like or int-convertible arguments are provided, randn generates an array of shape (d0,
d1, ..., dn), filled with random floats sampled from a univariate “normal” (Gaussian) distribution
of mean 0 and variance 1 (if any of the 𝑑𝑖 are floats, they are first converted to integers by truncation). A
single float randomly sampled from the distribution is returned if no argument is provided.

This is a convenience function. If you want an interface that takes a tuple as the first argument, use
numpy.random.standard_normal instead.

Parameters

d0, d1, . . . , dn [int, optional] The dimensions of the returned array, should be all positive.
If no argument is given a single Python float is returned.

Returns

Z [ndarray or float] A (d0, d1, ..., dn)-shaped array of floating-point samples from
the standard normal distribution, or a single such float if no parameters were supplied.

See also:

standard_normal Similar, but takes a tuple as its argument.

Notes

For random samples from 𝑁(𝜇, 𝜎2), use:

sigma * np.random.randn(...) + mu

Examples

>>> np.random.randn()
2.1923875335537315 #random

Two-by-four array of samples from N(3, 6.25):

>>> 2.5 * np.random.randn(2, 4) + 3
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random

[ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random

RandomState.random_integers(low, high=None, size=None)
Random integers of type np.int between low and high, inclusive.

1078 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Return random integers of type np.int from the “discrete uniform” distribution in the closed interval [low,
high]. If high is None (the default), then results are from [1, low]. The np.int type translates to the C long
type used by Python 2 for “short” integers and its precision is platform dependent.

This function has been deprecated. Use randint instead.

Deprecated since version 1.11.0.

Parameters

low [int] Lowest (signed) integer to be drawn from the distribution (unless high=None, in
which case this parameter is the highest such integer).

high [int, optional] If provided, the largest (signed) integer to be drawn from the distribution
(see above for behavior if high=None).

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. Default is None, in which case a single value is
returned.

Returns

out [int or ndarray of ints] size-shaped array of random integers from the appropriate distri-
bution, or a single such random int if size not provided.

See also:

randint Similar to random_integers, only for the half-open interval [low, high), and 0 is the lowest
value if high is omitted.

Notes

To sample from N evenly spaced floating-point numbers between a and b, use:

a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

Examples

>>> np.random.random_integers(5)
4
>>> type(np.random.random_integers(5))
<type 'int'>
>>> np.random.random_integers(5, size=(3,2))
array([[5, 4],

[3, 3],
[4, 5]])

Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (i.e.,
from the set 0, 5/8, 10/8, 15/8, 20/8):

>>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ])

Roll two six sided dice 1000 times and sum the results:

4.24. Random sampling (numpy.random) 1079



NumPy Reference, Release 1.15.1

>>> d1 = np.random.random_integers(1, 6, 1000)
>>> d2 = np.random.random_integers(1, 6, 1000)
>>> dsums = d1 + d2

Display results as a histogram:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(dsums, 11, density=True)
>>> plt.show()

2 4 6 8 10 12
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

RandomState.random_sample(size=None)
Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample 𝑈𝑛𝑖𝑓 [𝑎, 𝑏), 𝑏 >
𝑎 multiply the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. Default is None, in which case a single value is
returned.

Returns

out [float or ndarray of floats] Array of random floats of shape size (unless size=None, in
which case a single float is returned).

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>

(continues on next page)

1080 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> np.random.random_sample((5,))
array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],

[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])

RandomState.rayleigh(scale=1.0, size=None)
Draw samples from a Rayleigh distribution.

The 𝜒 and Weibull distributions are generalizations of the Rayleigh.

Parameters

scale [float or array_like of floats, optional] Scale, also equals the mode. Should be >= 0.
Default is 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if scale is a scalar. Otherwise, np.array(scale).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Rayleigh distribution.

Notes

The probability density function for the Rayleigh distribution is

𝑃 (𝑥; 𝑠𝑐𝑎𝑙𝑒) =
𝑥

𝑠𝑐𝑎𝑙𝑒2
𝑒

−𝑥2

2·𝑠𝑐𝑎𝑙𝑒2

The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity
had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution.

References

[1], [2]

Examples

Draw values from the distribution and plot the histogram

>>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of
waves are likely to be larger than 3 meters?

>>> meanvalue = 1
>>> modevalue = np.sqrt(2 / np.pi) * meanvalue
>>> s = np.random.rayleigh(modevalue, 1000000)

4.24. Random sampling (numpy.random) 1081



NumPy Reference, Release 1.15.1

The percentage of waves larger than 3 meters is:

>>> 100.*sum(s>3)/1000000.
0.087300000000000003

RandomState.seed(seed=None)
Seed the generator.

This method is called when RandomState is initialized. It can be called again to re-seed the generator.
For details, see RandomState.

Parameters

seed [int or 1-d array_like, optional] Seed for RandomState. Must be convertible to 32
bit unsigned integers.

See also:

RandomState

RandomState.set_state(state)
Set the internal state of the generator from a tuple.

For use if one has reason to manually (re-)set the internal state of the “Mersenne Twister”[1] pseudo-
random number generating algorithm.

Parameters

state [tuple(str, ndarray of 624 uints, int, int, float)] The state tuple has the following items:

1. the string ‘MT19937’, specifying the Mersenne Twister algorithm.

2. a 1-D array of 624 unsigned integers keys.

3. an integer pos.

4. an integer has_gauss.

5. a float cached_gaussian.

Returns

out [None] Returns ‘None’ on success.

See also:

get_state

Notes

set_state and get_state are not needed to work with any of the random distributions in NumPy. If
the internal state is manually altered, the user should know exactly what he/she is doing.

For backwards compatibility, the form (str, array of 624 uints, int) is also accepted although it is missing
some information about the cached Gaussian value: state = ('MT19937', keys, pos).

References

[1]

1082 Chapter 4. Routines



NumPy Reference, Release 1.15.1

RandomState.shuffle(x)
Modify a sequence in-place by shuffling its contents.

This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-
arrays is changed but their contents remains the same.

Parameters

x [array_like] The array or list to be shuffled.

Returns

None

Examples

>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
[1 7 5 2 9 4 3 6 0 8]

Multi-dimensional arrays are only shuffled along the first axis:

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.shuffle(arr)
>>> arr
array([[3, 4, 5],

[6, 7, 8],
[0, 1, 2]])

RandomState.standard_cauchy(size=None)
Draw samples from a standard Cauchy distribution with mode = 0.

Also known as the Lorentz distribution.

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. Default is None, in which case a single value is
returned.

Returns

samples [ndarray or scalar] The drawn samples.

Notes

The probability density function for the full Cauchy distribution is

𝑃 (𝑥;𝑥0, 𝛾) =
1

𝜋𝛾
[︀
1 + (𝑥−𝑥0

𝛾 )2
]︀

and the Standard Cauchy distribution just sets 𝑥0 = 0 and 𝛾 = 1

The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes
spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle
will cut the x axis.

4.24. Random sampling (numpy.random) 1083



NumPy Reference, Release 1.15.1

When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy
distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks
very much like a Gaussian distribution, but with heavier tails.

References

[1], [2], [3]

Examples

Draw samples and plot the distribution:

>>> s = np.random.standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist(s, bins=100)
>>> plt.show()

RandomState.standard_exponential(size=None)
Draw samples from the standard exponential distribution.

standard_exponential is identical to the exponential distribution with a scale parameter of 1.

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. Default is None, in which case a single value is
returned.

Returns

out [float or ndarray] Drawn samples.

Examples

Output a 3x8000 array:

>>> n = np.random.standard_exponential((3, 8000))

RandomState.standard_gamma(shape, size=None)
Draw samples from a standard Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated
“k”) and scale=1.

Parameters

shape [float or array_like of floats] Parameter, should be > 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if shape is a scalar. Otherwise, np.array(shape).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized standard gamma distribution.

See also:

1084 Chapter 4. Routines



NumPy Reference, Release 1.15.1

scipy.stats.gamma probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

𝑝(𝑥) = 𝑥𝑘−1 𝑒−𝑥/𝜃

𝜃𝑘Γ(𝑘)
,

where 𝑘 is the shape and 𝜃 the scale, and Γ is the Gamma function.

The Gamma distribution is often used to model the times to failure of electronic components, and arises
naturally in processes for which the waiting times between Poisson distributed events are relevant.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 1. # mean and width
>>> s = np.random.standard_gamma(shape, 1000000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, density=True)
>>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ \
... (sps.gamma(shape) * scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

RandomState.standard_normal(size=None)
Draw samples from a standard Normal distribution (mean=0, stdev=1).

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. Default is None, in which case a single value is
returned.

Returns

out [float or ndarray] Drawn samples.

Examples

>>> s = np.random.standard_normal(8000)
>>> s
array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, #random

(continues on next page)

4.24. Random sampling (numpy.random) 1085

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma


NumPy Reference, Release 1.15.1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(continued from previous page)

-0.38672696, -0.4685006 ]) #random
>>> s.shape
(8000,)
>>> s = np.random.standard_normal(size=(3, 4, 2))
>>> s.shape
(3, 4, 2)

RandomState.standard_t(df, size=None)
Draw samples from a standard Student’s t distribution with df degrees of freedom.

A special case of the hyperbolic distribution. As df gets large, the result resembles that of the standard
normal distribution (standard_normal).

Parameters

df [float or array_like of floats] Degrees of freedom, should be > 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if df is a scalar. Otherwise, np.array(df).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized standard Student’s t distribu-
tion.

Notes

The probability density function for the t distribution is

𝑃 (𝑥, 𝑑𝑓) =
Γ(𝑑𝑓+1

2 )
√
𝜋𝑑𝑓Γ(𝑑𝑓

2 )

(︁
1 +

𝑥2

𝑑𝑓

)︁−(𝑑𝑓+1)/2

The t test is based on an assumption that the data come from a Normal distribution. The t test provides a
way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the
true mean.

1086 Chapter 4. Routines



NumPy Reference, Release 1.15.1

The derivation of the t-distribution was first published in 1908 by William Gosset while working for the
Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he
used the name Student.

References

[1], [2]

Examples

From Dalgaard page 83 [1], suppose the daily energy intake for 11 women in Kj is:

>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
... 7515, 8230, 8770])

Does their energy intake deviate systematically from the recommended value of 7725 kJ?

We have 10 degrees of freedom, so is the sample mean within 95% of the recommended value?

>>> s = np.random.standard_t(10, size=100000)
>>> np.mean(intake)
6753.636363636364
>>> intake.std(ddof=1)
1142.1232221373727

Calculate the t statistic, setting the ddof parameter to the unbiased value so the divisor in the standard
deviation will be degrees of freedom, N-1.

>>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
>>> import matplotlib.pyplot as plt
>>> h = plt.hist(s, bins=100, density=True)

For a one-sided t-test, how far out in the distribution does the t statistic appear?

>>> np.sum(s<t) / float(len(s))
0.0090699999999999999 #random

So the p-value is about 0.009, which says the null hypothesis has a probability of about 99% of being true.

RandomState.tomaxint(size=None)
Random integers between 0 and sys.maxint, inclusive.

Return a sample of uniformly distributed random integers in the interval [0, sys.maxint].

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. Default is None, in which case a single value is
returned.

Returns

out [ndarray] Drawn samples, with shape size.

See also:

randint Uniform sampling over a given half-open interval of integers.

random_integers Uniform sampling over a given closed interval of integers.

4.24. Random sampling (numpy.random) 1087



NumPy Reference, Release 1.15.1

8 6 4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

Examples

>>> RS = np.random.mtrand.RandomState() # need a RandomState object
>>> RS.tomaxint((2,2,2))
array([[[1170048599, 1600360186],

[ 739731006, 1947757578]],
[[1871712945, 752307660],
[1601631370, 1479324245]]])

>>> import sys
>>> sys.maxint
2147483647
>>> RS.tomaxint((2,2,2)) < sys.maxint
array([[[ True, True],

[ True, True]],
[[ True, True],
[ True, True]]])

RandomState.triangular(left, mode, right, size=None)
Draw samples from the triangular distribution over the interval [left, right].

The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and
upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf.

Parameters

left [float or array_like of floats] Lower limit.

mode [float or array_like of floats] The value where the peak of the distribution occurs. The
value should fulfill the condition left <= mode <= right.

right [float or array_like of floats] Upper limit, should be larger than left.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned if
left, mode, and right are all scalars. Otherwise, np.broadcast(left, mode,
right).size samples are drawn.

Returns

1088 Chapter 4. Routines



NumPy Reference, Release 1.15.1

out [ndarray or scalar] Drawn samples from the parameterized triangular distribution.

Notes

The probability density function for the triangular distribution is

𝑃 (𝑥; 𝑙,𝑚, 𝑟) =

⎧⎪⎨⎪⎩
2(𝑥−𝑙)

(𝑟−𝑙)(𝑚−𝑙) for 𝑙 ≤ 𝑥 ≤ 𝑚,
2(𝑟−𝑥)

(𝑟−𝑙)(𝑟−𝑚) for 𝑚 ≤ 𝑥 ≤ 𝑟,

0 otherwise.

The triangular distribution is often used in ill-defined problems where the underlying distribution is not
known, but some knowledge of the limits and mode exists. Often it is used in simulations.

References

[1]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
... density=True)
>>> plt.show()

2 0 2 4 6 8
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

RandomState.uniform(low=0.0, high=1.0, size=None)
Draw samples from a uniform distribution.

Samples are uniformly distributed over the half-open interval [low, high) (includes low, but excludes
high). In other words, any value within the given interval is equally likely to be drawn by uniform.

Parameters

4.24. Random sampling (numpy.random) 1089



NumPy Reference, Release 1.15.1

low [float or array_like of floats, optional] Lower boundary of the output interval. All values
generated will be greater than or equal to low. The default value is 0.

high [float or array_like of floats] Upper boundary of the output interval. All values gener-
ated will be less than high. The default value is 1.0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if low and high are both scalars. Otherwise, np.broadcast(low, high).size
samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized uniform distribution.

See also:

randint Discrete uniform distribution, yielding integers.

random_integers Discrete uniform distribution over the closed interval [low, high].

random_sample Floats uniformly distributed over [0, 1).

random Alias for random_sample.

rand Convenience function that accepts dimensions as input, e.g., rand(2,2) would generate a 2-by-2
array of floats, uniformly distributed over [0, 1).

Notes

The probability density function of the uniform distribution is

𝑝(𝑥) =
1

𝑏− 𝑎

anywhere within the interval [a, b), and zero elsewhere.

When high == low, values of low will be returned. If high < low, the results are officially undefined
and may eventually raise an error, i.e. do not rely on this function to behave when passed arguments
satisfying that inequality condition.

Examples

Draw samples from the distribution:

>>> s = np.random.uniform(-1,0,1000)

All values are within the given interval:

>>> np.all(s >= -1)
True
>>> np.all(s < 0)
True

Display the histogram of the samples, along with the probability density function:

1090 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 15, density=True)
>>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
>>> plt.show()

1.0 0.8 0.6 0.4 0.2 0.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

RandomState.vonmises(mu, kappa, size=None)
Draw samples from a von Mises distribution.

Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the
interval [-pi, pi].

The von Mises distribution (also known as the circular normal distribution) is a continuous probability
distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution.

Parameters

mu [float or array_like of floats] Mode (“center”) of the distribution.

kappa [float or array_like of floats] Dispersion of the distribution, has to be >=0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if mu and kappa are both scalars. Otherwise, np.broadcast(mu, kappa).size
samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized von Mises distribution.

See also:

scipy.stats.vonmises probability density function, distribution, or cumulative density function,
etc.

4.24. Random sampling (numpy.random) 1091

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises.html#scipy.stats.vonmises


NumPy Reference, Release 1.15.1

Notes

The probability density for the von Mises distribution is

𝑝(𝑥) =
𝑒𝜅𝑐𝑜𝑠(𝑥−𝜇)

2𝜋𝐼0(𝜅)
,

where 𝜇 is the mode and 𝜅 the dispersion, and 𝐼0(𝜅) is the modified Bessel function of order 0.

The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now
the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in
probability theory, aerodynamics, fluid mechanics, and philosophy of science.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, kappa = 0.0, 4.0 # mean and dispersion
>>> s = np.random.vonmises(mu, kappa, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy.special import i0
>>> plt.hist(s, 50, density=True)
>>> x = np.linspace(-np.pi, np.pi, num=51)
>>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))
>>> plt.plot(x, y, linewidth=2, color='r')
>>> plt.show()

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1092 Chapter 4. Routines



NumPy Reference, Release 1.15.1

RandomState.wald(mean, scale, size=None)
Draw samples from a Wald, or inverse Gaussian, distribution.

As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim
that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal.

The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K.
Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover
a unit distance and distance covered in unit time.

Parameters

mean [float or array_like of floats] Distribution mean, should be > 0.

scale [float or array_like of floats] Scale parameter, should be >= 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if mean and scale are both scalars. Otherwise, np.broadcast(mean, scale).
size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Wald distribution.

Notes

The probability density function for the Wald distribution is

𝑃 (𝑥;𝑚𝑒𝑎𝑛, 𝑠𝑐𝑎𝑙𝑒) =

√︂
𝑠𝑐𝑎𝑙𝑒

2𝜋𝑥3
𝑒

−𝑠𝑐𝑎𝑙𝑒(𝑥−𝑚𝑒𝑎𝑛)2

2·𝑚𝑒𝑎𝑛2𝑥

As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It
is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest
rate processes.

References

[1], [2], [3]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
>>> plt.show()

RandomState.weibull(a, size=None)
Draw samples from a Weibull distribution.

Draw samples from a 1-parameter Weibull distribution with the given shape parameter a.

𝑋 = (−𝑙𝑛(𝑈))1/𝑎

Here, U is drawn from the uniform distribution over (0,1].

The more common 2-parameter Weibull, including a scale parameter 𝜆 is just 𝑋 = 𝜆(−𝑙𝑛(𝑈))1/𝑎.

4.24. Random sampling (numpy.random) 1093



NumPy Reference, Release 1.15.1

0 10 20 30 40 50 60 70 80
0.0

0.1

0.2

0.3

0.4

Parameters

a [float or array_like of floats] Shape of the distribution. Should be greater than zero.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if a is a scalar. Otherwise, np.array(a).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Weibull distribution.

See also:

scipy.stats.weibull_max, scipy.stats.weibull_min, scipy.stats.genextreme,
gumbel

Notes

The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or
Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in
modeling extreme value problems. This class includes the Gumbel and Frechet distributions.

The probability density for the Weibull distribution is

𝑝(𝑥) =
𝑎

𝜆
(
𝑥

𝜆
)𝑎−1𝑒−(𝑥/𝜆)𝑎 ,

where 𝑎 is the shape and 𝜆 the scale.

The function has its peak (the mode) at 𝜆(𝑎−1
𝑎 )1/𝑎.

When a = 1, the Weibull distribution reduces to the exponential distribution.

References

[1], [2], [3]

1094 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_max.html#scipy.stats.weibull_max
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_min.html#scipy.stats.weibull_min
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme


NumPy Reference, Release 1.15.1

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> s = np.random.weibull(a, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> x = np.arange(1,100.)/50.
>>> def weib(x,n,a):
... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

>>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
>>> x = np.arange(1,100.)/50.
>>> scale = count.max()/weib(x, 1., 5.).max()
>>> plt.plot(x, weib(x, 1., 5.)*scale)
>>> plt.show()

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

50

100

150

200

RandomState.zipf(a, size=None)
Draw samples from a Zipf distribution.

Samples are drawn from a Zipf distribution with specified parameter a > 1.

The Zipf distribution (also known as the zeta distribution) is a continuous probability distribution that
satisfies Zipf’s law: the frequency of an item is inversely proportional to its rank in a frequency table.

Parameters

a [float or array_like of floats] Distribution parameter. Should be greater than 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if a is a scalar. Otherwise, np.array(a).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Zipf distribution.

4.24. Random sampling (numpy.random) 1095



NumPy Reference, Release 1.15.1

See also:

scipy.stats.zipf probability density function, distribution, or cumulative density function, etc.

Notes

The probability density for the Zipf distribution is

𝑝(𝑥) =
𝑥−𝑎

𝜁(𝑎)
,

where 𝜁 is the Riemann Zeta function.

It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in
a sample of a language is inversely proportional to its rank in the frequency table.

References

[1]

Examples

Draw samples from the distribution:

>>> a = 2. # parameter
>>> s = np.random.zipf(a, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy import special

Truncate s values at 50 so plot is interesting:

>>> count, bins, ignored = plt.hist(s[s<50], 50, density=True)
>>> x = np.arange(1., 50.)
>>> y = x**(-a) / special.zetac(a)
>>> plt.plot(x, y/max(y), linewidth=2, color='r')
>>> plt.show()

numpy.random.seed(seed=None)
Seed the generator.

This method is called when RandomState is initialized. It can be called again to re-seed the generator. For
details, see RandomState.

Parameters

seed [int or 1-d array_like, optional] Seed for RandomState. Must be convertible to 32 bit
unsigned integers.

See also:

RandomState

1096 Chapter 4. Routines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zipf.html#scipy.stats.zipf


NumPy Reference, Release 1.15.1

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

numpy.random.get_state()
Return a tuple representing the internal state of the generator.

For more details, see set_state.

Returns

out [tuple(str, ndarray of 624 uints, int, int, float)] The returned tuple has the following items:

1. the string ‘MT19937’.

2. a 1-D array of 624 unsigned integer keys.

3. an integer pos.

4. an integer has_gauss.

5. a float cached_gaussian.

See also:

set_state

Notes

set_state and get_state are not needed to work with any of the random distributions in NumPy. If the
internal state is manually altered, the user should know exactly what he/she is doing.

numpy.random.set_state(state)
Set the internal state of the generator from a tuple.

For use if one has reason to manually (re-)set the internal state of the “Mersenne Twister”[1] pseudo-random
number generating algorithm.

Parameters

state [tuple(str, ndarray of 624 uints, int, int, float)] The state tuple has the following items:

1. the string ‘MT19937’, specifying the Mersenne Twister algorithm.

2. a 1-D array of 624 unsigned integers keys.

4.24. Random sampling (numpy.random) 1097



NumPy Reference, Release 1.15.1

3. an integer pos.

4. an integer has_gauss.

5. a float cached_gaussian.

Returns

out [None] Returns ‘None’ on success.

See also:

get_state

Notes

set_state and get_state are not needed to work with any of the random distributions in NumPy. If the
internal state is manually altered, the user should know exactly what he/she is doing.

For backwards compatibility, the form (str, array of 624 uints, int) is also accepted although it is missing some
information about the cached Gaussian value: state = ('MT19937', keys, pos).

References

[1]

4.25 Set routines

4.25.1 Making proper sets

unique(ar[, return_index, return_inverse, . . . ]) Find the unique elements of an array.

4.25.2 Boolean operations

in1d(ar1, ar2[, assume_unique, invert]) Test whether each element of a 1-D array is also present in
a second array.

intersect1d(ar1, ar2[, assume_unique, . . . ]) Find the intersection of two arrays.
isin(element, test_elements[, . . . ]) Calculates element in test_elements, broadcasting over ele-

ment only.
setdiff1d(ar1, ar2[, assume_unique]) Find the set difference of two arrays.
setxor1d(ar1, ar2[, assume_unique]) Find the set exclusive-or of two arrays.
union1d(ar1, ar2) Find the union of two arrays.

numpy.in1d(ar1, ar2, assume_unique=False, invert=False)
Test whether each element of a 1-D array is also present in a second array.

Returns a boolean array the same length as ar1 that is True where an element of ar1 is in ar2 and False otherwise.

We recommend using isin instead of in1d for new code.

Parameters

ar1 [(M,) array_like] Input array.

1098 Chapter 4. Routines



NumPy Reference, Release 1.15.1

ar2 [array_like] The values against which to test each value of ar1.

assume_unique [bool, optional] If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.

invert [bool, optional] If True, the values in the returned array are inverted (that is, False where
an element of ar1 is in ar2 and True otherwise). Default is False. np.in1d(a, b,
invert=True) is equivalent to (but is faster than) np.invert(in1d(a, b)).

New in version 1.8.0.

Returns

in1d [(M,) ndarray, bool] The values ar1[in1d] are in ar2.

See also:

isin Version of this function that preserves the shape of ar1.

numpy.lib.arraysetops Module with a number of other functions for performing set operations on ar-
rays.

Notes

in1d can be considered as an element-wise function version of the python keyword in, for 1-D sequences.
in1d(a, b) is roughly equivalent to np.array([item in b for item in a]). However, this
idea fails if ar2 is a set, or similar (non-sequence) container: As ar2 is converted to an array, in those cases
asarray(ar2) is an object array rather than the expected array of contained values.

New in version 1.4.0.

Examples

>>> test = np.array([0, 1, 2, 5, 0])
>>> states = [0, 2]
>>> mask = np.in1d(test, states)
>>> mask
array([ True, False, True, False, True])
>>> test[mask]
array([0, 2, 0])
>>> mask = np.in1d(test, states, invert=True)
>>> mask
array([False, True, False, True, False])
>>> test[mask]
array([1, 5])

numpy.intersect1d(ar1, ar2, assume_unique=False, return_indices=False)
Find the intersection of two arrays.

Return the sorted, unique values that are in both of the input arrays.

Parameters

ar1, ar2 [array_like] Input arrays. Will be flattened if not already 1D.

assume_unique [bool] If True, the input arrays are both assumed to be unique, which can speed
up the calculation. Default is False.

4.25. Set routines 1099



NumPy Reference, Release 1.15.1

return_indices [bool] If True, the indices which correspond to the intersection of the two arrays
are returned. The first instance of a value is used if there are multiple. Default is False.

New in version 1.15.0.

Returns

intersect1d [ndarray] Sorted 1D array of common and unique elements.

comm1 [ndarray] The indices of the first occurrences of the common values in ar1. Only pro-
vided if return_indices is True.

comm2 [ndarray] The indices of the first occurrences of the common values in ar2. Only pro-
vided if return_indices is True.

See also:

numpy.lib.arraysetops Module with a number of other functions for performing set operations on ar-
rays.

Examples

>>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
array([1, 3])

To intersect more than two arrays, use functools.reduce:

>>> from functools import reduce
>>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([3])

To return the indices of the values common to the input arrays along with the intersected values: >>> x
= np.array([1, 1, 2, 3, 4]) >>> y = np.array([2, 1, 4, 6]) >>> xy, x_ind, y_ind = np.intersect1d(x, y, re-
turn_indices=True) >>> x_ind, y_ind (array([0, 2, 4]), array([1, 0, 2])) >>> xy, x[x_ind], y[y_ind] (array([1,
2, 4]), array([1, 2, 4]), array([1, 2, 4]))

numpy.isin(element, test_elements, assume_unique=False, invert=False)
Calculates element in test_elements, broadcasting over element only. Returns a boolean array of the same shape
as element that is True where an element of element is in test_elements and False otherwise.

Parameters

element [array_like] Input array.

test_elements [array_like] The values against which to test each value of element. This argu-
ment is flattened if it is an array or array_like. See notes for behavior with non-array-like
parameters.

assume_unique [bool, optional] If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.

invert [bool, optional] If True, the values in the returned array are inverted, as if calculating
element not in test_elements. Default is False. np.isin(a, b, invert=True) is
equivalent to (but faster than) np.invert(np.isin(a, b)).

Returns

isin [ndarray, bool] Has the same shape as element. The values element[isin] are in
test_elements.

See also:

1100 Chapter 4. Routines



NumPy Reference, Release 1.15.1

in1d Flattened version of this function.

numpy.lib.arraysetops Module with a number of other functions for performing set operations on ar-
rays.

Notes

isin is an element-wise function version of the python keyword in. isin(a, b) is roughly equivalent to
np.array([item in b for item in a]) if a and b are 1-D sequences.

element and test_elements are converted to arrays if they are not already. If test_elements is a set (or other non-
sequence collection) it will be converted to an object array with one element, rather than an array of the values
contained in test_elements. This is a consequence of the array constructor’s way of handling non-sequence
collections. Converting the set to a list usually gives the desired behavior.

New in version 1.13.0.

Examples

>>> element = 2*np.arange(4).reshape((2, 2))
>>> element
array([[0, 2],

[4, 6]])
>>> test_elements = [1, 2, 4, 8]
>>> mask = np.isin(element, test_elements)
>>> mask
array([[ False, True],

[ True, False]])
>>> element[mask]
array([2, 4])
>>> mask = np.isin(element, test_elements, invert=True)
>>> mask
array([[ True, False],

[ False, True]])
>>> element[mask]
array([0, 6])

Because of how array handles sets, the following does not work as expected:

>>> test_set = {1, 2, 4, 8}
>>> np.isin(element, test_set)
array([[ False, False],

[ False, False]])

Casting the set to a list gives the expected result:

>>> np.isin(element, list(test_set))
array([[ False, True],

[ True, False]])

numpy.setdiff1d(ar1, ar2, assume_unique=False)
Find the set difference of two arrays.

Return the sorted, unique values in ar1 that are not in ar2.

Parameters

4.25. Set routines 1101



NumPy Reference, Release 1.15.1

ar1 [array_like] Input array.

ar2 [array_like] Input comparison array.

assume_unique [bool] If True, the input arrays are both assumed to be unique, which can speed
up the calculation. Default is False.

Returns

setdiff1d [ndarray] Sorted 1D array of values in ar1 that are not in ar2.

See also:

numpy.lib.arraysetops Module with a number of other functions for performing set operations on ar-
rays.

Examples

>>> a = np.array([1, 2, 3, 2, 4, 1])
>>> b = np.array([3, 4, 5, 6])
>>> np.setdiff1d(a, b)
array([1, 2])

numpy.setxor1d(ar1, ar2, assume_unique=False)
Find the set exclusive-or of two arrays.

Return the sorted, unique values that are in only one (not both) of the input arrays.

Parameters

ar1, ar2 [array_like] Input arrays.

assume_unique [bool] If True, the input arrays are both assumed to be unique, which can speed
up the calculation. Default is False.

Returns

setxor1d [ndarray] Sorted 1D array of unique values that are in only one of the input arrays.

Examples

>>> a = np.array([1, 2, 3, 2, 4])
>>> b = np.array([2, 3, 5, 7, 5])
>>> np.setxor1d(a,b)
array([1, 4, 5, 7])

numpy.union1d(ar1, ar2)
Find the union of two arrays.

Return the unique, sorted array of values that are in either of the two input arrays.

Parameters

ar1, ar2 [array_like] Input arrays. They are flattened if they are not already 1D.

Returns

union1d [ndarray] Unique, sorted union of the input arrays.

See also:

1102 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.lib.arraysetops Module with a number of other functions for performing set operations on ar-
rays.

Examples

>>> np.union1d([-1, 0, 1], [-2, 0, 2])
array([-2, -1, 0, 1, 2])

To find the union of more than two arrays, use functools.reduce:

>>> from functools import reduce
>>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([1, 2, 3, 4, 6])

4.26 Sorting, searching, and counting

4.26.1 Sorting

sort(a[, axis, kind, order]) Return a sorted copy of an array.
lexsort(keys[, axis]) Perform an indirect stable sort using a sequence of keys.
argsort(a[, axis, kind, order]) Returns the indices that would sort an array.
ndarray.sort([axis, kind, order]) Sort an array, in-place.
msort(a) Return a copy of an array sorted along the first axis.
sort_complex(a) Sort a complex array using the real part first, then the imag-

inary part.
partition(a, kth[, axis, kind, order]) Return a partitioned copy of an array.
argpartition(a, kth[, axis, kind, order]) Perform an indirect partition along the given axis using the

algorithm specified by the kind keyword.

numpy.sort(a, axis=-1, kind=’quicksort’, order=None)
Return a sorted copy of an array.

Parameters

a [array_like] Array to be sorted.

axis [int or None, optional] Axis along which to sort. If None, the array is flattened before
sorting. The default is -1, which sorts along the last axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. Default is
‘quicksort’.

order [str or list of str, optional] When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and
not all fields need be specified, but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

Returns

sorted_array [ndarray] Array of the same type and shape as a.

See also:

4.26. Sorting, searching, and counting 1103



NumPy Reference, Release 1.15.1

ndarray.sort Method to sort an array in-place.

argsort Indirect sort.

lexsort Indirect stable sort on multiple keys.

searchsorted Find elements in a sorted array.

partition Partial sort.

Notes

The various sorting algorithms are characterized by their average speed, worst case performance, work space
size, and whether they are stable. A stable sort keeps items with the same key in the same relative order. The
three available algorithms have the following properties:

kind speed worst case work space stable
‘quicksort’ 1 O(n^2) 0 no
‘mergesort’ 2 O(n*log(n)) ~n/2 yes
‘heapsort’ 3 O(n*log(n)) 0 no

All the sort algorithms make temporary copies of the data when sorting along any but the last axis. Consequently,
sorting along the last axis is faster and uses less space than sorting along any other axis.

The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then the
order is determined by the real parts except when they are equal, in which case the order is determined by the
imaginary parts.

Previous to numpy 1.4.0 sorting real and complex arrays containing nan values led to undefined behaviour. In
numpy versions >= 1.4.0 nan values are sorted to the end. The extended sort order is:

• Real: [R, nan]

• Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]

where R is a non-nan real value. Complex values with the same nan placements are sorted according to the
non-nan part if it exists. Non-nan values are sorted as before.

New in version 1.12.0.

quicksort has been changed to an introsort which will switch heapsort when it does not make enough progress.
This makes its worst case O(n*log(n)).

‘stable’ automatically choses the best stable sorting algorithm for the data type being sorted. It is currently
mapped to merge sort.

Examples

>>> a = np.array([[1,4],[3,1]])
>>> np.sort(a) # sort along the last axis
array([[1, 4],

[1, 3]])
>>> np.sort(a, axis=None) # sort the flattened array
array([1, 1, 3, 4])
>>> np.sort(a, axis=0) # sort along the first axis
array([[1, 1],

[3, 4]])

1104 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Use the order keyword to specify a field to use when sorting a structured array:

>>> dtype = [('name', 'S10'), ('height', float), ('age', int)]
>>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38),
... ('Galahad', 1.7, 38)]
>>> a = np.array(values, dtype=dtype) # create a structured array
>>> np.sort(a, order='height')
array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),

('Lancelot', 1.8999999999999999, 38)],
dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

Sort by age, then height if ages are equal:

>>> np.sort(a, order=['age', 'height'])
array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38),

('Arthur', 1.8, 41)],
dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

numpy.lexsort(keys, axis=-1)
Perform an indirect stable sort using a sequence of keys.

Given multiple sorting keys, which can be interpreted as columns in a spreadsheet, lexsort returns an array of
integer indices that describes the sort order by multiple columns. The last key in the sequence is used for the
primary sort order, the second-to-last key for the secondary sort order, and so on. The keys argument must be
a sequence of objects that can be converted to arrays of the same shape. If a 2D array is provided for the keys
argument, it’s rows are interpreted as the sorting keys and sorting is according to the last row, second last row
etc.

Parameters

keys [(k, N) array or tuple containing k (N,)-shaped sequences] The k different “columns” to be
sorted. The last column (or row if keys is a 2D array) is the primary sort key.

axis [int, optional] Axis to be indirectly sorted. By default, sort over the last axis.

Returns

indices [(N,) ndarray of ints] Array of indices that sort the keys along the specified axis.

See also:

argsort Indirect sort.

ndarray.sort In-place sort.

sort Return a sorted copy of an array.

Examples

Sort names: first by surname, then by name.

>>> surnames = ('Hertz', 'Galilei', 'Hertz')
>>> first_names = ('Heinrich', 'Galileo', 'Gustav')
>>> ind = np.lexsort((first_names, surnames))
>>> ind
array([1, 2, 0])

>>> [surnames[i] + ", " + first_names[i] for i in ind]
['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich']

4.26. Sorting, searching, and counting 1105



NumPy Reference, Release 1.15.1

Sort two columns of numbers:

>>> a = [1,5,1,4,3,4,4] # First column
>>> b = [9,4,0,4,0,2,1] # Second column
>>> ind = np.lexsort((b,a)) # Sort by a, then by b
>>> print(ind)
[2 0 4 6 5 3 1]

>>> [(a[i],b[i]) for i in ind]
[(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]

Note that sorting is first according to the elements of a. Secondary sorting is according to the elements of b.

A normal argsort would have yielded:

>>> [(a[i],b[i]) for i in np.argsort(a)]
[(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)]

Structured arrays are sorted lexically by argsort:

>>> x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)],
... dtype=np.dtype([('x', int), ('y', int)]))

>>> np.argsort(x) # or np.argsort(x, order=('x', 'y'))
array([2, 0, 4, 6, 5, 3, 1])

numpy.argsort(a, axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort an array.

Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns an
array of indices of the same shape as a that index data along the given axis in sorted order.

Parameters

a [array_like] Array to sort.

axis [int or None, optional] Axis along which to sort. The default is -1 (the last axis). If None,
the flattened array is used.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm.

order [str or list of str, optional] When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and
not all fields need be specified, but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

Returns

index_array [ndarray, int] Array of indices that sort a along the specified axis. If a
is one-dimensional, a[index_array] yields a sorted a. More generally, np.
take_along_axis(a, index_array, axis=a) always yields the sorted a, irre-
spective of dimensionality.

See also:

sort Describes sorting algorithms used.

lexsort Indirect stable sort with multiple keys.

ndarray.sort Inplace sort.

argpartition Indirect partial sort.

1106 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

See sort for notes on the different sorting algorithms.

As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort order
is documented in sort.

Examples

One dimensional array:

>>> x = np.array([3, 1, 2])
>>> np.argsort(x)
array([1, 2, 0])

Two-dimensional array:

>>> x = np.array([[0, 3], [2, 2]])
>>> x
array([[0, 3],

[2, 2]])

>>> np.argsort(x, axis=0) # sorts along first axis (down)
array([[0, 1],

[1, 0]])

>>> np.argsort(x, axis=1) # sorts along last axis (across)
array([[0, 1],

[0, 1]])

Indices of the sorted elements of a N-dimensional array:

>>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape)
>>> ind
(array([0, 1, 1, 0]), array([0, 0, 1, 1]))
>>> x[ind] # same as np.sort(x, axis=None)
array([0, 2, 2, 3])

Sorting with keys:

>>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
>>> x
array([(1, 0), (0, 1)],

dtype=[('x', '<i4'), ('y', '<i4')])

>>> np.argsort(x, order=('x','y'))
array([1, 0])

>>> np.argsort(x, order=('y','x'))
array([0, 1])

numpy.msort(a)
Return a copy of an array sorted along the first axis.

Parameters

4.26. Sorting, searching, and counting 1107



NumPy Reference, Release 1.15.1

a [array_like] Array to be sorted.

Returns

sorted_array [ndarray] Array of the same type and shape as a.

See also:

sort

Notes

np.msort(a) is equivalent to np.sort(a, axis=0).

numpy.sort_complex(a)
Sort a complex array using the real part first, then the imaginary part.

Parameters

a [array_like] Input array

Returns

out [complex ndarray] Always returns a sorted complex array.

Examples

>>> np.sort_complex([5, 3, 6, 2, 1])
array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j])

>>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j])
array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j])

numpy.partition(a, kth, axis=-1, kind=’introselect’, order=None)
Return a partitioned copy of an array.

Creates a copy of the array with its elements rearranged in such a way that the value of the element in k-th
position is in the position it would be in a sorted array. All elements smaller than the k-th element are moved
before this element and all equal or greater are moved behind it. The ordering of the elements in the two
partitions is undefined.

New in version 1.8.0.

Parameters

a [array_like] Array to be sorted.

kth [int or sequence of ints] Element index to partition by. The k-th value of the element will
be in its final sorted position and all smaller elements will be moved before it and all equal
or greater elements behind it. The order of all elements in the partitions is undefined. If
provided with a sequence of k-th it will partition all elements indexed by k-th of them into
their sorted position at once.

axis [int or None, optional] Axis along which to sort. If None, the array is flattened before
sorting. The default is -1, which sorts along the last axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

1108 Chapter 4. Routines



NumPy Reference, Release 1.15.1

order [str or list of str, optional] When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string. Not all
fields need be specified, but unspecified fields will still be used, in the order in which they
come up in the dtype, to break ties.

Returns

partitioned_array [ndarray] Array of the same type and shape as a.

See also:

ndarray.partition Method to sort an array in-place.

argpartition Indirect partition.

sort Full sorting

Notes

The various selection algorithms are characterized by their average speed, worst case performance, work space
size, and whether they are stable. A stable sort keeps items with the same key in the same relative order. The
available algorithms have the following properties:

kind speed worst case work space stable
‘introselect’ 1 O(n) 0 no

All the partition algorithms make temporary copies of the data when partitioning along any but the last axis.
Consequently, partitioning along the last axis is faster and uses less space than partitioning along any other axis.

The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then the
order is determined by the real parts except when they are equal, in which case the order is determined by the
imaginary parts.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> np.partition(a, 3)
array([2, 1, 3, 4])

>>> np.partition(a, (1, 3))
array([1, 2, 3, 4])

numpy.argpartition(a, kth, axis=-1, kind=’introselect’, order=None)
Perform an indirect partition along the given axis using the algorithm specified by the kind keyword. It returns
an array of indices of the same shape as a that index data along the given axis in partitioned order.

New in version 1.8.0.

Parameters

a [array_like] Array to sort.

kth [int or sequence of ints] Element index to partition by. The k-th element will be in its
final sorted position and all smaller elements will be moved before it and all larger elements
behind it. The order all elements in the partitions is undefined. If provided with a sequence
of k-th it will partition all of them into their sorted position at once.

4.26. Sorting, searching, and counting 1109



NumPy Reference, Release 1.15.1

axis [int or None, optional] Axis along which to sort. The default is -1 (the last axis). If None,
the flattened array is used.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’

order [str or list of str, optional] When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and
not all fields need be specified, but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

Returns

index_array [ndarray, int] Array of indices that partition a along the specified axis. If a
is one-dimensional, a[index_array] yields a partitioned a. More generally, np.
take_along_axis(a, index_array, axis=a) always yields the partitioned a,
irrespective of dimensionality.

See also:

partition Describes partition algorithms used.

ndarray.partition Inplace partition.

argsort Full indirect sort

Notes

See partition for notes on the different selection algorithms.

Examples

One dimensional array:

>>> x = np.array([3, 4, 2, 1])
>>> x[np.argpartition(x, 3)]
array([2, 1, 3, 4])
>>> x[np.argpartition(x, (1, 3))]
array([1, 2, 3, 4])

>>> x = [3, 4, 2, 1]
>>> np.array(x)[np.argpartition(x, 3)]
array([2, 1, 3, 4])

4.26.2 Searching

argmax(a[, axis, out]) Returns the indices of the maximum values along an axis.
nanargmax(a[, axis]) Return the indices of the maximum values in the specified

axis ignoring NaNs.
argmin(a[, axis, out]) Returns the indices of the minimum values along an axis.
nanargmin(a[, axis]) Return the indices of the minimum values in the specified

axis ignoring NaNs.
argwhere(a) Find the indices of array elements that are non-zero,

grouped by element.
Continued on next page

1110 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Table 160 – continued from previous page
nonzero(a) Return the indices of the elements that are non-zero.
flatnonzero(a) Return indices that are non-zero in the flattened version of

a.
where(condition, [x, y]) Return elements, either from x or y, depending on condi-

tion.
searchsorted(a, v[, side, sorter]) Find indices where elements should be inserted to maintain

order.
extract(condition, arr) Return the elements of an array that satisfy some condition.

numpy.argmax(a, axis=None, out=None)
Returns the indices of the maximum values along an axis.

Parameters

a [array_like] Input array.

axis [int, optional] By default, the index is into the flattened array, otherwise along the specified
axis.

out [array, optional] If provided, the result will be inserted into this array. It should be of the
appropriate shape and dtype.

Returns

index_array [ndarray of ints] Array of indices into the array. It has the same shape as a.shape
with the dimension along axis removed.

See also:

ndarray.argmax, argmin

amax The maximum value along a given axis.

unravel_index Convert a flat index into an index tuple.

Notes

In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence are
returned.

Examples

>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],

[3, 4, 5]])
>>> np.argmax(a)
5
>>> np.argmax(a, axis=0)
array([1, 1, 1])
>>> np.argmax(a, axis=1)
array([2, 2])

Indexes of the maximal elements of a N-dimensional array:

4.26. Sorting, searching, and counting 1111



NumPy Reference, Release 1.15.1

>>> ind = np.unravel_index(np.argmax(a, axis=None), a.shape)
>>> ind
(1, 2)
>>> a[ind]
5

>>> b = np.arange(6)
>>> b[1] = 5
>>> b
array([0, 5, 2, 3, 4, 5])
>>> np.argmax(b) # Only the first occurrence is returned.
1

numpy.nanargmax(a, axis=None)
Return the indices of the maximum values in the specified axis ignoring NaNs. For all-NaN slices ValueError
is raised. Warning: the results cannot be trusted if a slice contains only NaNs and -Infs.

Parameters

a [array_like] Input data.

axis [int, optional] Axis along which to operate. By default flattened input is used.

Returns

index_array [ndarray] An array of indices or a single index value.

See also:

argmax, nanargmin

Examples

>>> a = np.array([[np.nan, 4], [2, 3]])
>>> np.argmax(a)
0
>>> np.nanargmax(a)
1
>>> np.nanargmax(a, axis=0)
array([1, 0])
>>> np.nanargmax(a, axis=1)
array([1, 1])

numpy.argmin(a, axis=None, out=None)
Returns the indices of the minimum values along an axis.

Parameters

a [array_like] Input array.

axis [int, optional] By default, the index is into the flattened array, otherwise along the specified
axis.

out [array, optional] If provided, the result will be inserted into this array. It should be of the
appropriate shape and dtype.

Returns

index_array [ndarray of ints] Array of indices into the array. It has the same shape as a.shape
with the dimension along axis removed.

1112 Chapter 4. Routines



NumPy Reference, Release 1.15.1

See also:

ndarray.argmin, argmax

amin The minimum value along a given axis.

unravel_index Convert a flat index into an index tuple.

Notes

In case of multiple occurrences of the minimum values, the indices corresponding to the first occurrence are
returned.

Examples

>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],

[3, 4, 5]])
>>> np.argmin(a)
0
>>> np.argmin(a, axis=0)
array([0, 0, 0])
>>> np.argmin(a, axis=1)
array([0, 0])

Indices of the minimum elements of a N-dimensional array:

>>> ind = np.unravel_index(np.argmin(a, axis=None), a.shape)
>>> ind
(0, 0)
>>> a[ind]
0

>>> b = np.arange(6)
>>> b[4] = 0
>>> b
array([0, 1, 2, 3, 0, 5])
>>> np.argmin(b) # Only the first occurrence is returned.
0

numpy.nanargmin(a, axis=None)
Return the indices of the minimum values in the specified axis ignoring NaNs. For all-NaN slices ValueError
is raised. Warning: the results cannot be trusted if a slice contains only NaNs and Infs.

Parameters

a [array_like] Input data.

axis [int, optional] Axis along which to operate. By default flattened input is used.

Returns

index_array [ndarray] An array of indices or a single index value.

See also:

argmin, nanargmax

4.26. Sorting, searching, and counting 1113



NumPy Reference, Release 1.15.1

Examples

>>> a = np.array([[np.nan, 4], [2, 3]])
>>> np.argmin(a)
0
>>> np.nanargmin(a)
2
>>> np.nanargmin(a, axis=0)
array([1, 1])
>>> np.nanargmin(a, axis=1)
array([1, 0])

numpy.argwhere(a)
Find the indices of array elements that are non-zero, grouped by element.

Parameters

a [array_like] Input data.

Returns

index_array [ndarray] Indices of elements that are non-zero. Indices are grouped by element.

See also:

where, nonzero

Notes

np.argwhere(a) is the same as np.transpose(np.nonzero(a)).

The output of argwhere is not suitable for indexing arrays. For this purpose use nonzero(a) instead.

Examples

>>> x = np.arange(6).reshape(2,3)
>>> x
array([[0, 1, 2],

[3, 4, 5]])
>>> np.argwhere(x>1)
array([[0, 2],

[1, 0],
[1, 1],
[1, 2]])

numpy.flatnonzero(a)
Return indices that are non-zero in the flattened version of a.

This is equivalent to np.nonzero(np.ravel(a))[0].

Parameters

a [array_like] Input data.

Returns

res [ndarray] Output array, containing the indices of the elements of a.ravel() that are non-zero.

See also:

1114 Chapter 4. Routines



NumPy Reference, Release 1.15.1

nonzero Return the indices of the non-zero elements of the input array.

ravel Return a 1-D array containing the elements of the input array.

Examples

>>> x = np.arange(-2, 3)
>>> x
array([-2, -1, 0, 1, 2])
>>> np.flatnonzero(x)
array([0, 1, 3, 4])

Use the indices of the non-zero elements as an index array to extract these elements:

>>> x.ravel()[np.flatnonzero(x)]
array([-2, -1, 1, 2])

numpy.searchsorted(a, v, side=’left’, sorter=None)
Find indices where elements should be inserted to maintain order.

Find the indices into a sorted array a such that, if the corresponding elements in v were inserted before the
indices, the order of a would be preserved.

Assuming that a is sorted:

side returned index i satisfies
left a[i-1] < v <= a[i]
right a[i-1] <= v < a[i]

Parameters

a [1-D array_like] Input array. If sorter is None, then it must be sorted in ascending order,
otherwise sorter must be an array of indices that sort it.

v [array_like] Values to insert into a.

side [{‘left’, ‘right’}, optional] If ‘left’, the index of the first suitable location found is given. If
‘right’, return the last such index. If there is no suitable index, return either 0 or N (where
N is the length of a).

sorter [1-D array_like, optional] Optional array of integer indices that sort array a into ascend-
ing order. They are typically the result of argsort.

New in version 1.7.0.

Returns

indices [array of ints] Array of insertion points with the same shape as v.

See also:

sort Return a sorted copy of an array.

histogram Produce histogram from 1-D data.

4.26. Sorting, searching, and counting 1115



NumPy Reference, Release 1.15.1

Notes

Binary search is used to find the required insertion points.

As of NumPy 1.4.0 searchsorted works with real/complex arrays containing nan values. The enhanced
sort order is documented in sort.

This function is a faster version of the builtin python bisect.bisect_left (side='left') and
bisect.bisect_right (side='right') functions, which is also vectorized in the v argument.

Examples

>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side='right')
3
>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])

numpy.extract(condition, arr)
Return the elements of an array that satisfy some condition.

This is equivalent to np.compress(ravel(condition), ravel(arr)). If condition is boolean np.
extract is equivalent to arr[condition].

Note that place does the exact opposite of extract.

Parameters

condition [array_like] An array whose nonzero or True entries indicate the elements of arr to
extract.

arr [array_like] Input array of the same size as condition.

Returns

extract [ndarray] Rank 1 array of values from arr where condition is True.

See also:

take, put, copyto, compress, place

Examples

>>> arr = np.arange(12).reshape((3, 4))
>>> arr
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> condition = np.mod(arr, 3)==0
>>> condition
array([[ True, False, False, True],

[False, False, True, False],
[False, True, False, False]])

>>> np.extract(condition, arr)
array([0, 3, 6, 9])

If condition is boolean:

1116 Chapter 4. Routines

https://docs.python.org/dev/library/bisect.html#bisect.bisect_left
https://docs.python.org/dev/library/bisect.html#bisect.bisect_right


NumPy Reference, Release 1.15.1

>>> arr[condition]
array([0, 3, 6, 9])

4.26.3 Counting

count_nonzero(a[, axis]) Counts the number of non-zero values in the array a.

numpy.count_nonzero(a, axis=None)
Counts the number of non-zero values in the array a.

The word “non-zero” is in reference to the Python 2.x built-in method __nonzero__() (renamed
__bool__() in Python 3.x) of Python objects that tests an object’s “truthfulness”. For example, any num-
ber is considered truthful if it is nonzero, whereas any string is considered truthful if it is not the empty
string. Thus, this function (recursively) counts how many elements in a (and in sub-arrays thereof) have their
__nonzero__() or __bool__() method evaluated to True.

Parameters

a [array_like] The array for which to count non-zeros.

axis [int or tuple, optional] Axis or tuple of axes along which to count non-zeros. Default is
None, meaning that non-zeros will be counted along a flattened version of a.

New in version 1.12.0.

Returns

count [int or array of int] Number of non-zero values in the array along a given axis. Otherwise,
the total number of non-zero values in the array is returned.

See also:

nonzero Return the coordinates of all the non-zero values.

Examples

>>> np.count_nonzero(np.eye(4))
4
>>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]])
5
>>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0)
array([1, 1, 1, 1, 1])
>>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1)
array([2, 3])

4.27 Statistics

4.27.1 Order statistics

amin(a[, axis, out, keepdims, initial]) Return the minimum of an array or minimum along an axis.
Continued on next page

4.27. Statistics 1117



NumPy Reference, Release 1.15.1

Table 162 – continued from previous page
amax(a[, axis, out, keepdims, initial]) Return the maximum of an array or maximum along an

axis.
nanmin(a[, axis, out, keepdims]) Return minimum of an array or minimum along an axis,

ignoring any NaNs.
nanmax(a[, axis, out, keepdims]) Return the maximum of an array or maximum along an

axis, ignoring any NaNs.
ptp(a[, axis, out, keepdims]) Range of values (maximum - minimum) along an axis.
percentile(a, q[, axis, out, . . . ]) Compute the qth percentile of the data along the specified

axis.
nanpercentile(a, q[, axis, out, . . . ]) Compute the qth percentile of the data along the specified

axis, while ignoring nan values.
quantile(a, q[, axis, out, overwrite_input, . . . ]) Compute the ‘q‘th quantile of the data along the specified

axis. . . versionadded:: 1.15.0.
nanquantile(a, q[, axis, out, . . . ]) Compute the qth quantile of the data along the specified

axis, while ignoring nan values.

numpy.amin(a, axis=None, out=None, keepdims=<no value>, initial=<no value>)
Return the minimum of an array or minimum along an axis.

Parameters

a [array_like] Input data.

axis [None or int or tuple of ints, optional] Axis or axes along which to operate. By default,
flattened input is used.

New in version 1.7.0.

If this is a tuple of ints, the minimum is selected over multiple axes, instead of a single axis
or all the axes as before.

out [ndarray, optional] Alternative output array in which to place the result. Must be of the
same shape and buffer length as the expected output. See doc.ufuncs (Section “Output
arguments”) for more details.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the amin method
of sub-classes of ndarray , however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

initial [scalar, optional] The maximum value of an output element. Must be present to allow
computation on empty slice. See reduce for details.

New in version 1.15.0.

Returns

amin [ndarray or scalar] Minimum of a. If axis is None, the result is a scalar value. If axis is
given, the result is an array of dimension a.ndim - 1.

See also:

amax The maximum value of an array along a given axis, propagating any NaNs.

nanmin The minimum value of an array along a given axis, ignoring any NaNs.

minimum Element-wise minimum of two arrays, propagating any NaNs.

1118 Chapter 4. Routines



NumPy Reference, Release 1.15.1

fmin Element-wise minimum of two arrays, ignoring any NaNs.

argmin Return the indices of the minimum values.

nanmax, maximum, fmax

Notes

NaN values are propagated, that is if at least one item is NaN, the corresponding min value will be NaN as well.
To ignore NaN values (MATLAB behavior), please use nanmin.

Don’t use amin for element-wise comparison of 2 arrays; when a.shape[0] is 2, minimum(a[0],
a[1]) is faster than amin(a, axis=0).

Examples

>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],

[2, 3]])
>>> np.amin(a) # Minimum of the flattened array
0
>>> np.amin(a, axis=0) # Minima along the first axis
array([0, 1])
>>> np.amin(a, axis=1) # Minima along the second axis
array([0, 2])

>>> b = np.arange(5, dtype=float)
>>> b[2] = np.NaN
>>> np.amin(b)
nan
>>> np.nanmin(b)
0.0

>>> np.min([[-50], [10]], axis=-1, initial=0)
array([-50, 0])

Notice that the initial value is used as one of the elements for which the minimum is determined, unlike for the
default argument Python’s max function, which is only used for empty iterables.

Notice that this isn’t the same as Python’s default argument.

>>> np.min([6], initial=5)
5
>>> min([6], default=5)
6

numpy.amax(a, axis=None, out=None, keepdims=<no value>, initial=<no value>)
Return the maximum of an array or maximum along an axis.

Parameters

a [array_like] Input data.

axis [None or int or tuple of ints, optional] Axis or axes along which to operate. By default,
flattened input is used.

4.27. Statistics 1119



NumPy Reference, Release 1.15.1

New in version 1.7.0.

If this is a tuple of ints, the maximum is selected over multiple axes, instead of a single axis
or all the axes as before.

out [ndarray, optional] Alternative output array in which to place the result. Must be of the
same shape and buffer length as the expected output. See doc.ufuncs (Section “Output
arguments”) for more details.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the amax method
of sub-classes of ndarray , however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

initial [scalar, optional] The minimum value of an output element. Must be present to allow
computation on empty slice. See reduce for details.

New in version 1.15.0.

Returns

amax [ndarray or scalar] Maximum of a. If axis is None, the result is a scalar value. If axis is
given, the result is an array of dimension a.ndim - 1.

See also:

amin The minimum value of an array along a given axis, propagating any NaNs.

nanmax The maximum value of an array along a given axis, ignoring any NaNs.

maximum Element-wise maximum of two arrays, propagating any NaNs.

fmax Element-wise maximum of two arrays, ignoring any NaNs.

argmax Return the indices of the maximum values.

nanmin, minimum, fmin

Notes

NaN values are propagated, that is if at least one item is NaN, the corresponding max value will be NaN as well.
To ignore NaN values (MATLAB behavior), please use nanmax.

Don’t use amax for element-wise comparison of 2 arrays; when a.shape[0] is 2, maximum(a[0],
a[1]) is faster than amax(a, axis=0).

Examples

>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],

[2, 3]])
>>> np.amax(a) # Maximum of the flattened array
3
>>> np.amax(a, axis=0) # Maxima along the first axis

(continues on next page)

1120 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

array([2, 3])
>>> np.amax(a, axis=1) # Maxima along the second axis
array([1, 3])

>>> b = np.arange(5, dtype=float)
>>> b[2] = np.NaN
>>> np.amax(b)
nan
>>> np.nanmax(b)
4.0

You can use an initial value to compute the maximum of an empty slice, or to initialize it to a different value:

>>> np.max([[-50], [10]], axis=-1, initial=0)
array([ 0, 10])

Notice that the initial value is used as one of the elements for which the maximum is determined, unlike for the
default argument Python’s max function, which is only used for empty iterables.

>>> np.max([5], initial=6)
6
>>> max([5], default=6)
5

numpy.nanmin(a, axis=None, out=None, keepdims=<no value>)
Return minimum of an array or minimum along an axis, ignoring any NaNs. When all-NaN slices are encoun-
tered a RuntimeWarning is raised and Nan is returned for that slice.

Parameters

a [array_like] Array containing numbers whose minimum is desired. If a is not an array, a
conversion is attempted.

axis [{int, tuple of int, None}, optional] Axis or axes along which the minimum is computed.
The default is to compute the minimum of the flattened array.

out [ndarray, optional] Alternate output array in which to place the result. The default is None;
if provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See doc.ufuncs for details.

New in version 1.8.0.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original a.

If the value is anything but the default, then keepdims will be passed through to the min
method of sub-classes of ndarray . If the sub-classes methods does not implement keep-
dims any exceptions will be raised.

New in version 1.8.0.

Returns

nanmin [ndarray] An array with the same shape as a, with the specified axis removed. If a is a
0-d array, or if axis is None, an ndarray scalar is returned. The same dtype as a is returned.

See also:

nanmax The maximum value of an array along a given axis, ignoring any NaNs.

4.27. Statistics 1121

https://docs.python.org/dev/library/functions.html#min


NumPy Reference, Release 1.15.1

amin The minimum value of an array along a given axis, propagating any NaNs.

fmin Element-wise minimum of two arrays, ignoring any NaNs.

minimum Element-wise minimum of two arrays, propagating any NaNs.

isnan Shows which elements are Not a Number (NaN).

isfinite Shows which elements are neither NaN nor infinity.

amax, fmax, maximum

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Positive infinity is treated as a very large number and negative infinity is
treated as a very small (i.e. negative) number.

If the input has a integer type the function is equivalent to np.min.

Examples

>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanmin(a)
1.0
>>> np.nanmin(a, axis=0)
array([ 1., 2.])
>>> np.nanmin(a, axis=1)
array([ 1., 3.])

When positive infinity and negative infinity are present:

>>> np.nanmin([1, 2, np.nan, np.inf])
1.0
>>> np.nanmin([1, 2, np.nan, np.NINF])
-inf

numpy.nanmax(a, axis=None, out=None, keepdims=<no value>)
Return the maximum of an array or maximum along an axis, ignoring any NaNs. When all-NaN slices are
encountered a RuntimeWarning is raised and NaN is returned for that slice.

Parameters

a [array_like] Array containing numbers whose maximum is desired. If a is not an array, a
conversion is attempted.

axis [{int, tuple of int, None}, optional] Axis or axes along which the maximum is computed.
The default is to compute the maximum of the flattened array.

out [ndarray, optional] Alternate output array in which to place the result. The default is None;
if provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See doc.ufuncs for details.

New in version 1.8.0.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original a.

1122 Chapter 4. Routines



NumPy Reference, Release 1.15.1

If the value is anything but the default, then keepdims will be passed through to the max
method of sub-classes of ndarray . If the sub-classes methods does not implement keep-
dims any exceptions will be raised.

New in version 1.8.0.

Returns

nanmax [ndarray] An array with the same shape as a, with the specified axis removed. If a is a
0-d array, or if axis is None, an ndarray scalar is returned. The same dtype as a is returned.

See also:

nanmin The minimum value of an array along a given axis, ignoring any NaNs.

amax The maximum value of an array along a given axis, propagating any NaNs.

fmax Element-wise maximum of two arrays, ignoring any NaNs.

maximum Element-wise maximum of two arrays, propagating any NaNs.

isnan Shows which elements are Not a Number (NaN).

isfinite Shows which elements are neither NaN nor infinity.

amin, fmin, minimum

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Positive infinity is treated as a very large number and negative infinity is
treated as a very small (i.e. negative) number.

If the input has a integer type the function is equivalent to np.max.

Examples

>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanmax(a)
3.0
>>> np.nanmax(a, axis=0)
array([ 3., 2.])
>>> np.nanmax(a, axis=1)
array([ 2., 3.])

When positive infinity and negative infinity are present:

>>> np.nanmax([1, 2, np.nan, np.NINF])
2.0
>>> np.nanmax([1, 2, np.nan, np.inf])
inf

numpy.ptp(a, axis=None, out=None, keepdims=<no value>)
Range of values (maximum - minimum) along an axis.

The name of the function comes from the acronym for ‘peak to peak’.

Parameters

4.27. Statistics 1123

https://docs.python.org/dev/library/functions.html#max


NumPy Reference, Release 1.15.1

a [array_like] Input values.

axis [None or int or tuple of ints, optional] Axis along which to find the peaks. By default,
flatten the array. axis may be negative, in which case it counts from the last to the first axis.

New in version 1.15.0.

If this is a tuple of ints, a reduction is performed on multiple axes, instead of a single axis
or all the axes as before.

out [array_like] Alternative output array in which to place the result. It must have the same
shape and buffer length as the expected output, but the type of the output values will be cast
if necessary.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the ptpmethod of
sub-classes of ndarray , however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns

ptp [ndarray] A new array holding the result, unless out was specified, in which case a reference
to out is returned.

Examples

>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],

[2, 3]])

>>> np.ptp(x, axis=0)
array([2, 2])

>>> np.ptp(x, axis=1)
array([1, 1])

numpy.percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation=’linear’, keep-
dims=False)

Compute the qth percentile of the data along the specified axis.

Returns the qth percentile(s) of the array elements.

Parameters

a [array_like] Input array or object that can be converted to an array.

q [array_like of float] Percentile or sequence of percentiles to compute, which must be between
0 and 100 inclusive.

axis [{int, tuple of int, None}, optional] Axis or axes along which the percentiles are computed.
The default is to compute the percentile(s) along a flattened version of the array.

Changed in version 1.9.0: A tuple of axes is supported

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output, but the type (of the output) will be cast
if necessary.

1124 Chapter 4. Routines



NumPy Reference, Release 1.15.1

overwrite_input [bool, optional] If True, then allow the input array a to be modified by in-
termediate calculations, to save memory. In this case, the contents of the input a after this
function completes is undefined.

interpolation [{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}] This optional parameter
specifies the interpolation method to use when the desired percentile lies between two data
points i < j:

• ‘linear’: i + (j - i) * fraction, where fraction is the fractional part of the
index surrounded by i and j.

• ‘lower’: i.

• ‘higher’: j.

• ‘nearest’: i or j, whichever is nearest.

• ‘midpoint’: (i + j) / 2.

New in version 1.9.0.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original array a.

New in version 1.9.0.

Returns

percentile [scalar or ndarray] If q is a single percentile and axis=None, then the result is a scalar.
If multiple percentiles are given, first axis of the result corresponds to the percentiles. The
other axes are the axes that remain after the reduction of a. If the input contains integers
or floats smaller than float64, the output data-type is float64. Otherwise, the output
data-type is the same as that of the input. If out is specified, that array is returned instead.

See also:

mean

median equivalent to percentile(..., 50)

nanpercentile

quantile equivalent to percentile, except with q in the range [0, 1].

Notes

Given a vector V of length N, the q-th percentile of V is the value q/100 of the way from the minimum to
the maximum in a sorted copy of V. The values and distances of the two nearest neighbors as well as the
interpolation parameter will determine the percentile if the normalized ranking does not match the location of
q exactly. This function is the same as the median if q=50, the same as the minimum if q=0 and the same as
the maximum if q=100.

Examples

>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],

[ 3, 2, 1]])

(continues on next page)

4.27. Statistics 1125



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> np.percentile(a, 50)
3.5
>>> np.percentile(a, 50, axis=0)
array([[ 6.5, 4.5, 2.5]])
>>> np.percentile(a, 50, axis=1)
array([ 7., 2.])
>>> np.percentile(a, 50, axis=1, keepdims=True)
array([[ 7.],

[ 2.]])

>>> m = np.percentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.percentile(a, 50, axis=0, out=out)
array([[ 6.5, 4.5, 2.5]])
>>> m
array([[ 6.5, 4.5, 2.5]])

>>> b = a.copy()
>>> np.percentile(b, 50, axis=1, overwrite_input=True)
array([ 7., 2.])
>>> assert not np.all(a == b)

The different types of interpolation can be visualized graphically:

import matplotlib.pyplot as plt

a = np.arange(4)
p = np.linspace(0, 100, 6001)
ax = plt.gca()
lines = [

('linear', None),
('higher', '--'),
('lower', '--'),
('nearest', '-.'),
('midpoint', '-.'),

]
for interpolation, style in lines:

ax.plot(
p, np.percentile(a, p, interpolation=interpolation),
label=interpolation, linestyle=style)

ax.set(
title='Interpolation methods for list: ' + str(a),
xlabel='Percentile',
ylabel='List item returned',
yticks=a)

ax.legend()
plt.show()

numpy.nanpercentile(a, q, axis=None, out=None, overwrite_input=False, interpolation=’linear’,
keepdims=<no value>)

Compute the qth percentile of the data along the specified axis, while ignoring nan values.

Returns the qth percentile(s) of the array elements.

New in version 1.9.0.

Parameters

1126 Chapter 4. Routines



NumPy Reference, Release 1.15.1

0 20 40 60 80 100
Percentile

0

1

2

3

Lis
t i

te
m

 re
tu

rn
ed

Interpolation methods for list: [0 1 2 3]

linear
higher
lower
nearest
midpoint

a [array_like] Input array or object that can be converted to an array, containing nan values to
be ignored.

q [array_like of float] Percentile or sequence of percentiles to compute, which must be between
0 and 100 inclusive.

axis [{int, tuple of int, None}, optional] Axis or axes along which the percentiles are computed.
The default is to compute the percentile(s) along a flattened version of the array.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output, but the type (of the output) will be cast
if necessary.

overwrite_input [bool, optional] If True, then allow the input array a to be modified by in-
termediate calculations, to save memory. In this case, the contents of the input a after this
function completes is undefined.

interpolation [{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}] This optional parameter
specifies the interpolation method to use when the desired percentile lies between two data
points i < j:

• ‘linear’: i + (j - i) * fraction, where fraction is the fractional part of the
index surrounded by i and j.

• ‘lower’: i.

• ‘higher’: j.

• ‘nearest’: i or j, whichever is nearest.

• ‘midpoint’: (i + j) / 2.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original array a.

If this is anything but the default value it will be passed through (in the special case of an
empty array) to the mean function of the underlying array. If the array is a sub-class and
mean does not have the kwarg keepdims this will raise a RuntimeError.

Returns

4.27. Statistics 1127



NumPy Reference, Release 1.15.1

percentile [scalar or ndarray] If q is a single percentile and axis=None, then the result is a scalar.
If multiple percentiles are given, first axis of the result corresponds to the percentiles. The
other axes are the axes that remain after the reduction of a. If the input contains integers
or floats smaller than float64, the output data-type is float64. Otherwise, the output
data-type is the same as that of the input. If out is specified, that array is returned instead.

See also:

nanmean

nanmedian equivalent to nanpercentile(..., 50)

percentile, median, mean

nanquantile equivalent to nanpercentile, but with q in the range [0, 1].

Notes

Given a vector V of length N, the q-th percentile of V is the value q/100 of the way from the minimum to
the maximum in a sorted copy of V. The values and distances of the two nearest neighbors as well as the
interpolation parameter will determine the percentile if the normalized ranking does not match the location of
q exactly. This function is the same as the median if q=50, the same as the minimum if q=0 and the same as
the maximum if q=100.

Examples

>>> a = np.array([[10., 7., 4.], [3., 2., 1.]])
>>> a[0][1] = np.nan
>>> a
array([[ 10., nan, 4.],

[ 3., 2., 1.]])
>>> np.percentile(a, 50)
nan
>>> np.nanpercentile(a, 50)
3.5
>>> np.nanpercentile(a, 50, axis=0)
array([ 6.5, 2., 2.5])
>>> np.nanpercentile(a, 50, axis=1, keepdims=True)
array([[ 7.],

[ 2.]])
>>> m = np.nanpercentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.nanpercentile(a, 50, axis=0, out=out)
array([ 6.5, 2., 2.5])
>>> m
array([ 6.5, 2. , 2.5])

>>> b = a.copy()
>>> np.nanpercentile(b, 50, axis=1, overwrite_input=True)
array([ 7., 2.])
>>> assert not np.all(a==b)

numpy.quantile(a, q, axis=None, out=None, overwrite_input=False, interpolation=’linear’, keep-
dims=False)

Compute the ‘q‘th quantile of the data along the specified axis. ..versionadded:: 1.15.0

Parameters

1128 Chapter 4. Routines



NumPy Reference, Release 1.15.1

a [array_like] Input array or object that can be converted to an array.

q [array_like of float] Quantile or sequence of quantiles to compute, which must be between 0
and 1 inclusive.

axis [{int, tuple of int, None}, optional] Axis or axes along which the quantiles are computed.
The default is to compute the quantile(s) along a flattened version of the array.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output, but the type (of the output) will be cast
if necessary.

overwrite_input [bool, optional] If True, then allow the input array a to be modified by in-
termediate calculations, to save memory. In this case, the contents of the input a after this
function completes is undefined.

interpolation [{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}] This optional parameter
specifies the interpolation method to use when the desired quantile lies between two data
points i < j:

• linear: i + (j - i) * fraction, where fraction is the fractional part of the
index surrounded by i and j.

• lower: i.

• higher: j.

• nearest: i or j, whichever is nearest.

• midpoint: (i + j) / 2.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original array a.

Returns

quantile [scalar or ndarray] If q is a single quantile and axis=None, then the result is a scalar.
If multiple quantiles are given, first axis of the result corresponds to the quantiles. The other
axes are the axes that remain after the reduction of a. If the input contains integers or floats
smaller than float64, the output data-type is float64. Otherwise, the output data-type
is the same as that of the input. If out is specified, that array is returned instead.

See also:

mean

percentile equivalent to quantile, but with q in the range [0, 100].

median equivalent to quantile(..., 0.5)

nanquantile

Notes

Given a vector V of length N, the q-th quantile of V is the value q of the way from the minimum to the maximum
in a sorted copy of V. The values and distances of the two nearest neighbors as well as the interpolation parameter
will determine the quantile if the normalized ranking does not match the location of q exactly. This function is
the same as the median if q=0.5, the same as the minimum if q=0.0 and the same as the maximum if q=1.0.

4.27. Statistics 1129



NumPy Reference, Release 1.15.1

Examples

>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],

[ 3, 2, 1]])
>>> np.quantile(a, 0.5)
3.5
>>> np.quantile(a, 0.5, axis=0)
array([[ 6.5, 4.5, 2.5]])
>>> np.quantile(a, 0.5, axis=1)
array([ 7., 2.])
>>> np.quantile(a, 0.5, axis=1, keepdims=True)
array([[ 7.],

[ 2.]])
>>> m = np.quantile(a, 0.5, axis=0)
>>> out = np.zeros_like(m)
>>> np.quantile(a, 0.5, axis=0, out=out)
array([[ 6.5, 4.5, 2.5]])
>>> m
array([[ 6.5, 4.5, 2.5]])
>>> b = a.copy()
>>> np.quantile(b, 0.5, axis=1, overwrite_input=True)
array([ 7., 2.])
>>> assert not np.all(a == b)

numpy.nanquantile(a, q, axis=None, out=None, overwrite_input=False, interpolation=’linear’, keep-
dims=<no value>)

Compute the qth quantile of the data along the specified axis, while ignoring nan values. Returns the qth
quantile(s) of the array elements. .. versionadded:: 1.15.0

Parameters

a [array_like] Input array or object that can be converted to an array, containing nan values to
be ignored

q [array_like of float] Quantile or sequence of quantiles to compute, which must be between 0
and 1 inclusive.

axis [{int, tuple of int, None}, optional] Axis or axes along which the quantiles are computed.
The default is to compute the quantile(s) along a flattened version of the array.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output, but the type (of the output) will be cast
if necessary.

overwrite_input [bool, optional] If True, then allow the input array a to be modified by in-
termediate calculations, to save memory. In this case, the contents of the input a after this
function completes is undefined.

interpolation [{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}] This optional parameter
specifies the interpolation method to use when the desired quantile lies between two data
points i < j:

• linear: i + (j - i) * fraction, where fraction is the fractional part of the
index surrounded by i and j.

• lower: i.

• higher: j.

1130 Chapter 4. Routines



NumPy Reference, Release 1.15.1

• nearest: i or j, whichever is nearest.

• midpoint: (i + j) / 2.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original array a.

If this is anything but the default value it will be passed through (in the special case of an
empty array) to the mean function of the underlying array. If the array is a sub-class and
mean does not have the kwarg keepdims this will raise a RuntimeError.

Returns

quantile [scalar or ndarray] If q is a single percentile and axis=None, then the result is a scalar.
If multiple quantiles are given, first axis of the result corresponds to the quantiles. The other
axes are the axes that remain after the reduction of a. If the input contains integers or floats
smaller than float64, the output data-type is float64. Otherwise, the output data-type
is the same as that of the input. If out is specified, that array is returned instead.

See also:

quantile, nanmean, nanmedian

nanmedian equivalent to nanquantile(..., 0.5)

nanpercentile same as nanquantile, but with q in the range [0, 100].

Examples

>>> a = np.array([[10., 7., 4.], [3., 2., 1.]])
>>> a[0][1] = np.nan
>>> a
array([[ 10., nan, 4.],

[ 3., 2., 1.]])
>>> np.quantile(a, 0.5)
nan
>>> np.nanquantile(a, 0.5)
3.5
>>> np.nanquantile(a, 0.5, axis=0)
array([ 6.5, 2., 2.5])
>>> np.nanquantile(a, 0.5, axis=1, keepdims=True)
array([[ 7.],

[ 2.]])
>>> m = np.nanquantile(a, 0.5, axis=0)
>>> out = np.zeros_like(m)
>>> np.nanquantile(a, 0.5, axis=0, out=out)
array([ 6.5, 2., 2.5])
>>> m
array([ 6.5, 2. , 2.5])
>>> b = a.copy()
>>> np.nanquantile(b, 0.5, axis=1, overwrite_input=True)
array([ 7., 2.])
>>> assert not np.all(a==b)

4.27.2 Averages and variances

4.27. Statistics 1131



NumPy Reference, Release 1.15.1

median(a[, axis, out, overwrite_input, keepdims]) Compute the median along the specified axis.
average(a[, axis, weights, returned]) Compute the weighted average along the specified axis.
mean(a[, axis, dtype, out, keepdims]) Compute the arithmetic mean along the specified axis.
std(a[, axis, dtype, out, ddof, keepdims]) Compute the standard deviation along the specified axis.
var(a[, axis, dtype, out, ddof, keepdims]) Compute the variance along the specified axis.
nanmedian(a[, axis, out, overwrite_input, . . . ]) Compute the median along the specified axis, while ignor-

ing NaNs.
nanmean(a[, axis, dtype, out, keepdims]) Compute the arithmetic mean along the specified axis, ig-

noring NaNs.
nanstd(a[, axis, dtype, out, ddof, keepdims]) Compute the standard deviation along the specified axis,

while ignoring NaNs.
nanvar(a[, axis, dtype, out, ddof, keepdims]) Compute the variance along the specified axis, while ignor-

ing NaNs.

numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)
Compute the median along the specified axis.

Returns the median of the array elements.

Parameters

a [array_like] Input array or object that can be converted to an array.

axis [{int, sequence of int, None}, optional] Axis or axes along which the medians are com-
puted. The default is to compute the median along a flattened version of the array. A
sequence of axes is supported since version 1.9.0.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output, but the type (of the output) will be cast
if necessary.

overwrite_input [bool, optional] If True, then allow use of memory of input array a for calcula-
tions. The input array will be modified by the call to median. This will save memory when
you do not need to preserve the contents of the input array. Treat the input as undefined, but
it will probably be fully or partially sorted. Default is False. If overwrite_input is True and
a is not already an ndarray , an error will be raised.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original arr.

New in version 1.9.0.

Returns

median [ndarray] A new array holding the result. If the input contains integers or floats smaller
than float64, then the output data-type is np.float64. Otherwise, the data-type of the
output is the same as that of the input. If out is specified, that array is returned instead.

See also:

mean, percentile

Notes

Given a vector V of length N, the median of V is the middle value of a sorted copy of V, V_sorted - i e.,
V_sorted[(N-1)/2], when N is odd, and the average of the two middle values of V_sorted when N is
even.

1132 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],

[ 3, 2, 1]])
>>> np.median(a)
3.5
>>> np.median(a, axis=0)
array([ 6.5, 4.5, 2.5])
>>> np.median(a, axis=1)
array([ 7., 2.])
>>> m = np.median(a, axis=0)
>>> out = np.zeros_like(m)
>>> np.median(a, axis=0, out=m)
array([ 6.5, 4.5, 2.5])
>>> m
array([ 6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.median(b, axis=1, overwrite_input=True)
array([ 7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.median(b, axis=None, overwrite_input=True)
3.5
>>> assert not np.all(a==b)

numpy.average(a, axis=None, weights=None, returned=False)
Compute the weighted average along the specified axis.

Parameters

a [array_like] Array containing data to be averaged. If a is not an array, a conversion is at-
tempted.

axis [None or int or tuple of ints, optional] Axis or axes along which to average a. The default,
axis=None, will average over all of the elements of the input array. If axis is negative it
counts from the last to the first axis.

New in version 1.7.0.

If axis is a tuple of ints, averaging is performed on all of the axes specified in the tuple
instead of a single axis or all the axes as before.

weights [array_like, optional] An array of weights associated with the values in a. Each value
in a contributes to the average according to its associated weight. The weights array can
either be 1-D (in which case its length must be the size of a along the given axis) or of the
same shape as a. If weights=None, then all data in a are assumed to have a weight equal to
one.

returned [bool, optional] Default is False. If True, the tuple (average, sum_of_weights)
is returned, otherwise only the average is returned. If weights=None, sum_of_weights is
equivalent to the number of elements over which the average is taken.

Returns

average, [sum_of_weights] [array_type or double] Return the average along the specified axis.
When returned is True, return a tuple with the average as the first element and the sum of
the weights as the second element. The return type is Float if a is of integer type, otherwise
it is of the same type as a. sum_of_weights is of the same type as average.

4.27. Statistics 1133



NumPy Reference, Release 1.15.1

Raises

ZeroDivisionError When all weights along axis are zero. See numpy.ma.average for a
version robust to this type of error.

TypeError When the length of 1D weights is not the same as the shape of a along axis.

See also:

mean

ma.average average for masked arrays – useful if your data contains “missing” values

Examples

>>> data = range(1,5)
>>> data
[1, 2, 3, 4]
>>> np.average(data)
2.5
>>> np.average(range(1,11), weights=range(10,0,-1))
4.0

>>> data = np.arange(6).reshape((3,2))
>>> data
array([[0, 1],

[2, 3],
[4, 5]])

>>> np.average(data, axis=1, weights=[1./4, 3./4])
array([ 0.75, 2.75, 4.75])
>>> np.average(data, weights=[1./4, 3./4])
Traceback (most recent call last):
...
TypeError: Axis must be specified when shapes of a and weights differ.

numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<no value>)
Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, otherwise
over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters

a [array_like] Array containing numbers whose mean is desired. If a is not an array, a conver-
sion is attempted.

axis [None or int or tuple of ints, optional] Axis or axes along which the means are computed.
The default is to compute the mean of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or
all the axes as before.

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the input dtype.

out [ndarray, optional] Alternate output array in which to place the result. The default is None;
if provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See doc.ufuncs for details.

1134 Chapter 4. Routines



NumPy Reference, Release 1.15.1

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the mean method
of sub-classes of ndarray , however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns

m [ndarray, see dtype parameter above] If out=None, returns a new array containing the mean
values, otherwise a reference to the output array is returned.

See also:

average Weighted average

std, var, nanmean, nanstd, nanvar

Notes

The arithmetic mean is the sum of the elements along the axis divided by the number of elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending
on the input data, this can cause the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-precision accumulator using the dtype keyword can alleviate this issue.

By default, float16 results are computed using float32 intermediates for extra precision.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array([ 2., 3.])
>>> np.mean(a, axis=1)
array([ 1.5, 3.5])

In single precision, mean can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.mean(a)
0.54999924

Computing the mean in float64 is more accurate:

>>> np.mean(a, dtype=np.float64)
0.55000000074505806

numpy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>)
Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard
deviation is computed for the flattened array by default, otherwise over the specified axis.

4.27. Statistics 1135



NumPy Reference, Release 1.15.1

Parameters

a [array_like] Calculate the standard deviation of these values.

axis [None or int or tuple of ints, optional] Axis or axes along which the standard deviation is
computed. The default is to compute the standard deviation of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a standard deviation is performed over multiple axes, instead of a
single axis or all the axes as before.

dtype [dtype, optional] Type to use in computing the standard deviation. For arrays of integer
type the default is float64, for arrays of float types it is the same as the array type.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape as the expected output but the type (of the calculated values) will be cast if
necessary.

ddof [int, optional] Means Delta Degrees of Freedom. The divisor used in calculations is N -
ddof, where N represents the number of elements. By default ddof is zero.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the std method of
sub-classes of ndarray , however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns

standard_deviation [ndarray, see dtype parameter above.] If out is None, return a new array
containing the standard deviation, otherwise return a reference to the output array.

See also:

var, mean, nanmean, nanstd, nanvar

numpy.doc.ufuncs Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared deviations from the mean, i.e., std =
sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as x.sum() / N, where N = len(x). If, however,
ddof is specified, the divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum likelihood estimate
of the variance for normally distributed variables. The standard deviation computed in this function is the
square root of the estimated variance, so even with ddof=1, it will not be an unbiased estimate of the standard
deviation per se.

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real
and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-
accuracy accumulator using the dtype keyword can alleviate this issue.

1136 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0)
array([ 1., 1.])
>>> np.std(a, axis=1)
array([ 0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.std(a)
0.45000005

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925494177

numpy.var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>)
Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed
for the flattened array by default, otherwise over the specified axis.

Parameters

a [array_like] Array containing numbers whose variance is desired. If a is not an array, a con-
version is attempted.

axis [None or int or tuple of ints, optional] Axis or axes along which the variance is computed.
The default is to compute the variance of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a variance is performed over multiple axes, instead of a single axis
or all the axes as before.

dtype [data-type, optional] Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

out [ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output, but the type is cast if necessary.

ddof [int, optional] “Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of elements. By default ddof is zero.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the var method of
sub-classes of ndarray , however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns

4.27. Statistics 1137



NumPy Reference, Release 1.15.1

variance [ndarray, see dtype parameter above] If out=None, returns a new array containing
the variance; otherwise, a reference to the output array is returned.

See also:

std, mean, nanmean, nanstd, nanvar

numpy.doc.ufuncs Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean(abs(x - x.
mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x). If, however, ddof is specified, the
divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator
of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying
a higher-accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([ 1., 1.])
>>> np.var(a, axis=1)
array([ 0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.var(a)
0.20250003

Computing the variance in float64 is more accurate:

>>> np.var(a, dtype=np.float64)
0.20249999932944759
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.2025

numpy.nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=<no value>)
Compute the median along the specified axis, while ignoring NaNs.

Returns the median of the array elements.

New in version 1.9.0.

1138 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Parameters

a [array_like] Input array or object that can be converted to an array.

axis [{int, sequence of int, None}, optional] Axis or axes along which the medians are com-
puted. The default is to compute the median along a flattened version of the array. A
sequence of axes is supported since version 1.9.0.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output, but the type (of the output) will be cast
if necessary.

overwrite_input [bool, optional] If True, then allow use of memory of input array a for calcula-
tions. The input array will be modified by the call to median. This will save memory when
you do not need to preserve the contents of the input array. Treat the input as undefined, but
it will probably be fully or partially sorted. Default is False. If overwrite_input is True and
a is not already an ndarray , an error will be raised.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original a.

If this is anything but the default value it will be passed through (in the special case of an
empty array) to the mean function of the underlying array. If the array is a sub-class and
mean does not have the kwarg keepdims this will raise a RuntimeError.

Returns

median [ndarray] A new array holding the result. If the input contains integers or floats smaller
than float64, then the output data-type is np.float64. Otherwise, the data-type of the
output is the same as that of the input. If out is specified, that array is returned instead.

See also:

mean, median, percentile

Notes

Given a vector V of length N, the median of V is the middle value of a sorted copy of V, V_sorted - i.e.,
V_sorted[(N-1)/2], when N is odd and the average of the two middle values of V_sorted when N is
even.

Examples

>>> a = np.array([[10.0, 7, 4], [3, 2, 1]])
>>> a[0, 1] = np.nan
>>> a
array([[ 10., nan, 4.],

[ 3., 2., 1.]])
>>> np.median(a)
nan
>>> np.nanmedian(a)
3.0
>>> np.nanmedian(a, axis=0)
array([ 6.5, 2., 2.5])
>>> np.median(a, axis=1)
array([ 7., 2.])

(continues on next page)

4.27. Statistics 1139



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> b = a.copy()
>>> np.nanmedian(b, axis=1, overwrite_input=True)
array([ 7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.nanmedian(b, axis=None, overwrite_input=True)
3.0
>>> assert not np.all(a==b)

numpy.nanmean(a, axis=None, dtype=None, out=None, keepdims=<no value>)
Compute the arithmetic mean along the specified axis, ignoring NaNs.

Returns the average of the array elements. The average is taken over the flattened array by default, otherwise
over the specified axis. float64 intermediate and return values are used for integer inputs.

For all-NaN slices, NaN is returned and a RuntimeWarning is raised.

New in version 1.8.0.

Parameters

a [array_like] Array containing numbers whose mean is desired. If a is not an array, a conver-
sion is attempted.

axis [{int, tuple of int, None}, optional] Axis or axes along which the means are computed. The
default is to compute the mean of the flattened array.

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default
is float64; for inexact inputs, it is the same as the input dtype.

out [ndarray, optional] Alternate output array in which to place the result. The default is None;
if provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See doc.ufuncs for details.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original a.

If the value is anything but the default, then keepdims will be passed through to the mean or
sum methods of sub-classes of ndarray . If the sub-classes methods does not implement
keepdims any exceptions will be raised.

Returns

m [ndarray, see dtype parameter above] If out=None, returns a new array containing the mean
values, otherwise a reference to the output array is returned. Nan is returned for slices that
contain only NaNs.

See also:

average Weighted average

mean Arithmetic mean taken while not ignoring NaNs

var, nanvar

1140 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

The arithmetic mean is the sum of the non-NaN elements along the axis divided by the number of non-NaN
elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending on
the input data, this can cause the results to be inaccurate, especially for float32. Specifying a higher-precision
accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.nanmean(a)
2.6666666666666665
>>> np.nanmean(a, axis=0)
array([ 2., 4.])
>>> np.nanmean(a, axis=1)
array([ 1., 3.5])

numpy.nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>)
Compute the standard deviation along the specified axis, while ignoring NaNs.

Returns the standard deviation, a measure of the spread of a distribution, of the non-NaN array elements. The
standard deviation is computed for the flattened array by default, otherwise over the specified axis.

For all-NaN slices or slices with zero degrees of freedom, NaN is returned and a RuntimeWarning is raised.

New in version 1.8.0.

Parameters

a [array_like] Calculate the standard deviation of the non-NaN values.

axis [{int, tuple of int, None}, optional] Axis or axes along which the standard deviation is
computed. The default is to compute the standard deviation of the flattened array.

dtype [dtype, optional] Type to use in computing the standard deviation. For arrays of integer
type the default is float64, for arrays of float types it is the same as the array type.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape as the expected output but the type (of the calculated values) will be cast if
necessary.

ddof [int, optional] Means Delta Degrees of Freedom. The divisor used in calculations is N -
ddof, where N represents the number of non-NaN elements. By default ddof is zero.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original a.

If this value is anything but the default it is passed through as-is to the relevant functions of
the sub-classes. If these functions do not have a keepdims kwarg, a RuntimeError will be
raised.

Returns

standard_deviation [ndarray, see dtype parameter above.] If out is None, return a new array
containing the standard deviation, otherwise return a reference to the output array. If ddof
is >= the number of non-NaN elements in a slice or the slice contains only NaNs, then the
result for that slice is NaN.

4.27. Statistics 1141



NumPy Reference, Release 1.15.1

See also:

var, mean, std, nanvar, nanmean

numpy.doc.ufuncs Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared deviations from the mean: std =
sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as x.sum() / N, where N = len(x). If, however,
ddof is specified, the divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum likelihood estimate
of the variance for normally distributed variables. The standard deviation computed in this function is the
square root of the estimated variance, so even with ddof=1, it will not be an unbiased estimate of the standard
deviation per se.

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real
and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-
accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.nanstd(a)
1.247219128924647
>>> np.nanstd(a, axis=0)
array([ 1., 0.])
>>> np.nanstd(a, axis=1)
array([ 0., 0.5])

numpy.nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>)
Compute the variance along the specified axis, while ignoring NaNs.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed
for the flattened array by default, otherwise over the specified axis.

For all-NaN slices or slices with zero degrees of freedom, NaN is returned and a RuntimeWarning is raised.

New in version 1.8.0.

Parameters

a [array_like] Array containing numbers whose variance is desired. If a is not an array, a con-
version is attempted.

axis [{int, tuple of int, None}, optional] Axis or axes along which the variance is computed.
The default is to compute the variance of the flattened array.

dtype [data-type, optional] Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

out [ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output, but the type is cast if necessary.

1142 Chapter 4. Routines



NumPy Reference, Release 1.15.1

ddof [int, optional] “Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of non-NaN elements. By default ddof is zero.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original a.

Returns

variance [ndarray, see dtype parameter above] If out is None, return a new array containing
the variance, otherwise return a reference to the output array. If ddof is >= the number of
non-NaN elements in a slice or the slice contains only NaNs, then the result for that slice is
NaN.

See also:

std Standard deviation

mean Average

var Variance while not ignoring NaNs

nanstd, nanmean

numpy.doc.ufuncs Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean(abs(x - x.
mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x). If, however, ddof is specified, the
divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator
of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying
a higher-accuracy accumulator using the dtype keyword can alleviate this issue.

For this function to work on sub-classes of ndarray, they must define sum with the kwarg keepdims

Examples

>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.var(a)
1.5555555555555554
>>> np.nanvar(a, axis=0)
array([ 1., 0.])
>>> np.nanvar(a, axis=1)
array([ 0., 0.25])

4.27. Statistics 1143



NumPy Reference, Release 1.15.1

4.27.3 Correlating

corrcoef(x[, y, rowvar, bias, ddof]) Return Pearson product-moment correlation coefficients.
correlate(a, v[, mode]) Cross-correlation of two 1-dimensional sequences.
cov(m[, y, rowvar, bias, ddof, fweights, . . . ]) Estimate a covariance matrix, given data and weights.

numpy.corrcoef(x, y=None, rowvar=True, bias=<no value>, ddof=<no value>)
Return Pearson product-moment correlation coefficients.

Please refer to the documentation for cov for more detail. The relationship between the correlation coefficient
matrix, R, and the covariance matrix, C, is

𝑅𝑖𝑗 =
𝐶𝑖𝑗√︀

𝐶𝑖𝑖 * 𝐶𝑗𝑗

The values of R are between -1 and 1, inclusive.

Parameters

x [array_like] A 1-D or 2-D array containing multiple variables and observations. Each row of
x represents a variable, and each column a single observation of all those variables. Also see
rowvar below.

y [array_like, optional] An additional set of variables and observations. y has the same shape as
x.

rowvar [bool, optional] If rowvar is True (default), then each row represents a variable, with
observations in the columns. Otherwise, the relationship is transposed: each column repre-
sents a variable, while the rows contain observations.

bias [_NoValue, optional] Has no effect, do not use.

Deprecated since version 1.10.0.

ddof [_NoValue, optional] Has no effect, do not use.

Deprecated since version 1.10.0.

Returns

R [ndarray] The correlation coefficient matrix of the variables.

See also:

cov Covariance matrix

Notes

Due to floating point rounding the resulting array may not be Hermitian, the diagonal elements may not be 1,
and the elements may not satisfy the inequality abs(a) <= 1. The real and imaginary parts are clipped to the
interval [-1, 1] in an attempt to improve on that situation but is not much help in the complex case.

This function accepts but discards arguments bias and ddof. This is for backwards compatibility with previous
versions of this function. These arguments had no effect on the return values of the function and can be safely
ignored in this and previous versions of numpy.

numpy.correlate(a, v, mode=’valid’)
Cross-correlation of two 1-dimensional sequences.

This function computes the correlation as generally defined in signal processing texts:

1144 Chapter 4. Routines



NumPy Reference, Release 1.15.1

c_{av}[k] = sum_n a[n+k] * conj(v[n])

with a and v sequences being zero-padded where necessary and conj being the conjugate.

Parameters

a, v [array_like] Input sequences.

mode [{‘valid’, ‘same’, ‘full’}, optional] Refer to the convolve docstring. Note that the
default is ‘valid’, unlike convolve, which uses ‘full’.

old_behavior [bool] old_behavior was removed in NumPy 1.10. If you need the old behavior,
use multiarray.correlate.

Returns

out [ndarray] Discrete cross-correlation of a and v.

See also:

convolve Discrete, linear convolution of two one-dimensional sequences.

multiarray.correlate Old, no conjugate, version of correlate.

Notes

The definition of correlation above is not unique and sometimes correlation may be defined differently. Another
common definition is:

c'_{av}[k] = sum_n a[n] conj(v[n+k])

which is related to c_{av}[k] by c'_{av}[k] = c_{av}[-k].

Examples

>>> np.correlate([1, 2, 3], [0, 1, 0.5])
array([ 3.5])
>>> np.correlate([1, 2, 3], [0, 1, 0.5], "same")
array([ 2. , 3.5, 3. ])
>>> np.correlate([1, 2, 3], [0, 1, 0.5], "full")
array([ 0.5, 2. , 3.5, 3. , 0. ])

Using complex sequences:

>>> np.correlate([1+1j, 2, 3-1j], [0, 1, 0.5j], 'full')
array([ 0.5-0.5j, 1.0+0.j , 1.5-1.5j, 3.0-1.j , 0.0+0.j ])

Note that you get the time reversed, complex conjugated result when the two input sequences change places,
i.e., c_{va}[k] = c^{*}_{av}[-k]:

>>> np.correlate([0, 1, 0.5j], [1+1j, 2, 3-1j], 'full')
array([ 0.0+0.j , 3.0+1.j , 1.5+1.5j, 1.0+0.j , 0.5+0.5j])

numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)
Estimate a covariance matrix, given data and weights.

4.27. Statistics 1145



NumPy Reference, Release 1.15.1

Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples,
𝑋 = [𝑥1, 𝑥2, ...𝑥𝑁 ]𝑇 , then the covariance matrix element 𝐶𝑖𝑗 is the covariance of 𝑥𝑖 and 𝑥𝑗 . The element 𝐶𝑖𝑖

is the variance of 𝑥𝑖.

See the notes for an outline of the algorithm.

Parameters

m [array_like] A 1-D or 2-D array containing multiple variables and observations. Each row of
m represents a variable, and each column a single observation of all those variables. Also
see rowvar below.

y [array_like, optional] An additional set of variables and observations. y has the same form as
that of m.

rowvar [bool, optional] If rowvar is True (default), then each row represents a variable, with
observations in the columns. Otherwise, the relationship is transposed: each column repre-
sents a variable, while the rows contain observations.

bias [bool, optional] Default normalization (False) is by (N - 1), where N is the number of
observations given (unbiased estimate). If bias is True, then normalization is by N. These
values can be overridden by using the keyword ddof in numpy versions >= 1.5.

ddof [int, optional] If not None the default value implied by bias is overridden. Note that
ddof=1 will return the unbiased estimate, even if both fweights and aweights are specified,
and ddof=0 will return the simple average. See the notes for the details. The default value
is None.

New in version 1.5.

fweights [array_like, int, optional] 1-D array of integer frequency weights; the number of times
each observation vector should be repeated.

New in version 1.10.

aweights [array_like, optional] 1-D array of observation vector weights. These relative weights
are typically large for observations considered “important” and smaller for observations con-
sidered less “important”. If ddof=0 the array of weights can be used to assign probabilities
to observation vectors.

New in version 1.10.

Returns

out [ndarray] The covariance matrix of the variables.

See also:

corrcoef Normalized covariance matrix

Notes

Assume that the observations are in the columns of the observation array m and let f = fweights and a =
aweights for brevity. The steps to compute the weighted covariance are as follows:

>>> w = f * a
>>> v1 = np.sum(w)
>>> v2 = np.sum(w * a)
>>> m -= np.sum(m * w, axis=1, keepdims=True) / v1
>>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2)

1146 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Note that when a == 1, the normalization factor v1 / (v1**2 - ddof * v2) goes over to 1 / (np.
sum(f) - ddof) as it should.

Examples

Consider two variables, 𝑥0 and 𝑥1, which correlate perfectly, but in opposite directions:

>>> x = np.array([[0, 2], [1, 1], [2, 0]]).T
>>> x
array([[0, 1, 2],

[2, 1, 0]])

Note how 𝑥0 increases while 𝑥1 decreases. The covariance matrix shows this clearly:

>>> np.cov(x)
array([[ 1., -1.],

[-1., 1.]])

Note that element 𝐶0,1, which shows the correlation between 𝑥0 and 𝑥1, is negative.

Further, note how x and y are combined:

>>> x = [-2.1, -1, 4.3]
>>> y = [3, 1.1, 0.12]
>>> X = np.stack((x, y), axis=0)
>>> print(np.cov(X))
[[ 11.71 -4.286 ]
[ -4.286 2.14413333]]

>>> print(np.cov(x, y))
[[ 11.71 -4.286 ]
[ -4.286 2.14413333]]

>>> print(np.cov(x))
11.71

4.27.4 Histograms

histogram(a[, bins, range, normed, weights, . . . ]) Compute the histogram of a set of data.
histogram2d(x, y[, bins, range, normed, . . . ]) Compute the bi-dimensional histogram of two data sam-

ples.
histogramdd(sample[, bins, range, normed, . . . ]) Compute the multidimensional histogram of some data.
bincount(x[, weights, minlength]) Count number of occurrences of each value in array of non-

negative ints.
histogram_bin_edges(a[, bins, range, weights]) Function to calculate only the edges of the bins used by the

histogram function.
digitize(x, bins[, right]) Return the indices of the bins to which each value in input

array belongs.

numpy.histogram(a, bins=10, range=None, normed=None, weights=None, density=None)
Compute the histogram of a set of data.

Parameters

a [array_like] Input data. The histogram is computed over the flattened array.

4.27. Statistics 1147



NumPy Reference, Release 1.15.1

bins [int or sequence of scalars or str, optional] If bins is an int, it defines the number of equal-
width bins in the given range (10, by default). If bins is a sequence, it defines the bin edges,
including the rightmost edge, allowing for non-uniform bin widths.

New in version 1.11.0.

If bins is a string, it defines the method used to calculate the optimal bin width, as defined
by histogram_bin_edges.

range [(float, float), optional] The lower and upper range of the bins. If not provided, range is
simply (a.min(), a.max()). Values outside the range are ignored. The first element
of the range must be less than or equal to the second. range affects the automatic bin
computation as well. While bin width is computed to be optimal based on the actual data
within range, the bin count will fill the entire range including portions containing no data.

normed [bool, optional] Deprecated since version 1.6.0.

This is equivalent to the density argument, but produces incorrect results for unequal bin
widths. It should not be used.

Changed in version 1.15.0: DeprecationWarnings are actually emitted.

weights [array_like, optional] An array of weights, of the same shape as a. Each value in a only
contributes its associated weight towards the bin count (instead of 1). If density is True, the
weights are normalized, so that the integral of the density over the range remains 1.

density [bool, optional] If False, the result will contain the number of samples in each bin. If
True, the result is the value of the probability density function at the bin, normalized such
that the integral over the range is 1. Note that the sum of the histogram values will not be
equal to 1 unless bins of unity width are chosen; it is not a probability mass function.

Overrides the normed keyword if given.

Returns

hist [array] The values of the histogram. See density and weights for a description of the possi-
ble semantics.

bin_edges [array of dtype float] Return the bin edges (length(hist)+1).

See also:

histogramdd, bincount, searchsorted, digitize, histogram_bin_edges

Notes

All but the last (righthand-most) bin is half-open. In other words, if bins is:

[1, 2, 3, 4]

then the first bin is [1, 2) (including 1, but excluding 2) and the second [2, 3). The last bin, however, is
[3, 4], which includes 4.

Examples

>>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
(array([0, 2, 1]), array([0, 1, 2, 3]))
>>> np.histogram(np.arange(4), bins=np.arange(5), density=True)

(continues on next page)

1148 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

(array([ 0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4]))
>>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
(array([1, 4, 1]), array([0, 1, 2, 3]))

>>> a = np.arange(5)
>>> hist, bin_edges = np.histogram(a, density=True)
>>> hist
array([ 0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5])
>>> hist.sum()
2.4999999999999996
>>> np.sum(hist * np.diff(bin_edges))
1.0

New in version 1.11.0.

Automated Bin Selection Methods example, using 2 peak random data with 2000 points:

>>> import matplotlib.pyplot as plt
>>> rng = np.random.RandomState(10) # deterministic random data
>>> a = np.hstack((rng.normal(size=1000),
... rng.normal(loc=5, scale=2, size=1000)))
>>> plt.hist(a, bins='auto') # arguments are passed to np.histogram
>>> plt.title("Histogram with 'auto' bins")
>>> plt.show()

2 0 2 4 6 8 10
0

50

100

150

200

250

300

350
Histogram with 'auto' bins

numpy.histogram2d(x, y, bins=10, range=None, normed=None, weights=None, density=None)
Compute the bi-dimensional histogram of two data samples.

Parameters

x [array_like, shape (N,)] An array containing the x coordinates of the points to be his-
togrammed.

y [array_like, shape (N,)] An array containing the y coordinates of the points to be his-
togrammed.

bins [int or array_like or [int, int] or [array, array], optional] The bin specification:

4.27. Statistics 1149



NumPy Reference, Release 1.15.1

• If int, the number of bins for the two dimensions (nx=ny=bins).

• If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).

• If [int, int], the number of bins in each dimension (nx, ny = bins).

• If [array, array], the bin edges in each dimension (x_edges, y_edges = bins).

• A combination [int, array] or [array, int], where int is the number of bins and array is the
bin edges.

range [array_like, shape(2,2), optional] The leftmost and rightmost edges of the bins along
each dimension (if not specified explicitly in the bins parameters): [[xmin, xmax],
[ymin, ymax]]. All values outside of this range will be considered outliers and not
tallied in the histogram.

density [bool, optional] If False, the default, returns the number of samples in each bin. If True,
returns the probability density function at the bin, bin_count / sample_count /
bin_area.

normed [bool, optional] An alias for the density argument that behaves identically. To avoid
confusion with the broken normed argument to histogram, density should be preferred.

weights [array_like, shape(N,), optional] An array of values w_iweighing each sample (x_i,
y_i). Weights are normalized to 1 if normed is True. If normed is False, the values of the
returned histogram are equal to the sum of the weights belonging to the samples falling into
each bin.

Returns

H [ndarray, shape(nx, ny)] The bi-dimensional histogram of samples x and y. Values in x are
histogrammed along the first dimension and values in y are histogrammed along the second
dimension.

xedges [ndarray, shape(nx+1,)] The bin edges along the first dimension.

yedges [ndarray, shape(ny+1,)] The bin edges along the second dimension.

See also:

histogram 1D histogram

histogramdd Multidimensional histogram

Notes

When normed is True, then the returned histogram is the sample density, defined such that the sum over bins of
the product bin_value * bin_area is 1.

Please note that the histogram does not follow the Cartesian convention where x values are on the abscissa and
y values on the ordinate axis. Rather, x is histogrammed along the first dimension of the array (vertical), and y
along the second dimension of the array (horizontal). This ensures compatibility with histogramdd.

Examples

>>> import matplotlib as mpl
>>> import matplotlib.pyplot as plt

Construct a 2-D histogram with variable bin width. First define the bin edges:

1150 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> xedges = [0, 1, 3, 5]
>>> yedges = [0, 2, 3, 4, 6]

Next we create a histogram H with random bin content:

>>> x = np.random.normal(2, 1, 100)
>>> y = np.random.normal(1, 1, 100)
>>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges))
>>> H = H.T # Let each row list bins with common y range.

imshow can only display square bins:

>>> fig = plt.figure(figsize=(7, 3))
>>> ax = fig.add_subplot(131, title='imshow: square bins')
>>> plt.imshow(H, interpolation='nearest', origin='low',
... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])

pcolormesh can display actual edges:

>>> ax = fig.add_subplot(132, title='pcolormesh: actual edges',
... aspect='equal')
>>> X, Y = np.meshgrid(xedges, yedges)
>>> ax.pcolormesh(X, Y, H)

NonUniformImage can be used to display actual bin edges with interpolation:

>>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated',
... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]])
>>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear')
>>> xcenters = (xedges[:-1] + xedges[1:]) / 2
>>> ycenters = (yedges[:-1] + yedges[1:]) / 2
>>> im.set_data(xcenters, ycenters, H)
>>> ax.images.append(im)
>>> plt.show()

0 2 4
0

1

2

3

4

5

6
imshow: square bins

0 2 4
0

1

2

3

4

5

6
pcolormesh: actual edges

0 2 4
0

1

2

3

4

5

6
NonUniformImage: interpolated

numpy.histogramdd(sample, bins=10, range=None, normed=None, weights=None, density=None)
Compute the multidimensional histogram of some data.

Parameters

4.27. Statistics 1151

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.imshow.html#matplotlib.pyplot.imshow
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.pcolormesh.html#matplotlib.pyplot.pcolormesh
https://matplotlib.org/api/image_api.html#matplotlib.image.NonUniformImage


NumPy Reference, Release 1.15.1

sample [(N, D) array, or (D, N) array_like] The data to be histogrammed.

Note the unusual interpretation of sample when an array_like:

• When an array, each row is a coordinate in a D-dimensional space - such as
histogramgramdd(np.array([p1, p2, p3])).

• When an array_like, each element is the list of values for single coordinate - such as
histogramgramdd((X, Y, Z)).

The first form should be preferred.

bins [sequence or int, optional] The bin specification:

• A sequence of arrays describing the bin edges along each dimension.

• The number of bins for each dimension (nx, ny, . . . =bins)

• The number of bins for all dimensions (nx=ny=. . . =bins).

range [sequence, optional] A sequence of length D, each an optional (lower, upper) tuple giv-
ing the outer bin edges to be used if the edges are not given explicitly in bins. An entry
of None in the sequence results in the minimum and maximum values being used for the
corresponding dimension. The default, None, is equivalent to passing a tuple of D None
values.

density [bool, optional] If False, the default, returns the number of samples in each bin. If True,
returns the probability density function at the bin, bin_count / sample_count /
bin_volume.

normed [bool, optional] An alias for the density argument that behaves identically. To avoid
confusion with the broken normed argument to histogram, density should be preferred.

weights [(N,) array_like, optional] An array of values w_i weighing each sample (x_i, y_i, z_i,
. . . ). Weights are normalized to 1 if normed is True. If normed is False, the values of the
returned histogram are equal to the sum of the weights belonging to the samples falling into
each bin.

Returns

H [ndarray] The multidimensional histogram of sample x. See normed and weights for the
different possible semantics.

edges [list] A list of D arrays describing the bin edges for each dimension.

See also:

histogram 1-D histogram

histogram2d 2-D histogram

Examples

>>> r = np.random.randn(100,3)
>>> H, edges = np.histogramdd(r, bins = (5, 8, 4))
>>> H.shape, edges[0].size, edges[1].size, edges[2].size
((5, 8, 4), 6, 9, 5)

numpy.bincount(x, weights=None, minlength=0)
Count number of occurrences of each value in array of non-negative ints.

1152 Chapter 4. Routines



NumPy Reference, Release 1.15.1

The number of bins (of size 1) is one larger than the largest value in x. If minlength is specified, there will be
at least this number of bins in the output array (though it will be longer if necessary, depending on the contents
of x). Each bin gives the number of occurrences of its index value in x. If weights is specified the input array is
weighted by it, i.e. if a value n is found at position i, out[n] += weight[i] instead of out[n] += 1.

Parameters

x [array_like, 1 dimension, nonnegative ints] Input array.

weights [array_like, optional] Weights, array of the same shape as x.

minlength [int, optional] A minimum number of bins for the output array.

New in version 1.6.0.

Returns

out [ndarray of ints] The result of binning the input array. The length of out is equal to np.
amax(x)+1.

Raises

ValueError If the input is not 1-dimensional, or contains elements with negative values, or if
minlength is negative.

TypeError If the type of the input is float or complex.

See also:

histogram, digitize, unique

Examples

>>> np.bincount(np.arange(5))
array([1, 1, 1, 1, 1])
>>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7]))
array([1, 3, 1, 1, 0, 0, 0, 1])

>>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23])
>>> np.bincount(x).size == np.amax(x)+1
True

The input array needs to be of integer dtype, otherwise a TypeError is raised:

>>> np.bincount(np.arange(5, dtype=float))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: array cannot be safely cast to required type

A possible use of bincount is to perform sums over variable-size chunks of an array, using the weights
keyword.

>>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
>>> x = np.array([0, 1, 1, 2, 2, 2])
>>> np.bincount(x, weights=w)
array([ 0.3, 0.7, 1.1])

numpy.histogram_bin_edges(a, bins=10, range=None, weights=None)
Function to calculate only the edges of the bins used by the histogram function.

Parameters

4.27. Statistics 1153



NumPy Reference, Release 1.15.1

a [array_like] Input data. The histogram is computed over the flattened array.

bins [int or sequence of scalars or str, optional] If bins is an int, it defines the number of equal-
width bins in the given range (10, by default). If bins is a sequence, it defines the bin edges,
including the rightmost edge, allowing for non-uniform bin widths.

If bins is a string from the list below, histogram_bin_edges will use the method cho-
sen to calculate the optimal bin width and consequently the number of bins (see Notes for
more detail on the estimators) from the data that falls within the requested range. While
the bin width will be optimal for the actual data in the range, the number of bins will be
computed to fill the entire range, including the empty portions. For visualisation, using the
‘auto’ option is suggested. Weighted data is not supported for automated bin size selection.

‘auto’ Maximum of the ‘sturges’ and ‘fd’ estimators. Provides good all around perfor-
mance.

‘fd’ (Freedman Diaconis Estimator) Robust (resilient to outliers) estimator that takes into
account data variability and data size.

‘doane’ An improved version of Sturges’ estimator that works better with non-normal
datasets.

‘scott’ Less robust estimator that that takes into account data variability and data size.

‘rice’ Estimator does not take variability into account, only data size. Commonly overesti-
mates number of bins required.

‘sturges’ R’s default method, only accounts for data size. Only optimal for gaussian data
and underestimates number of bins for large non-gaussian datasets.

‘sqrt’ Square root (of data size) estimator, used by Excel and other programs for its speed
and simplicity.

range [(float, float), optional] The lower and upper range of the bins. If not provided, range is
simply (a.min(), a.max()). Values outside the range are ignored. The first element
of the range must be less than or equal to the second. range affects the automatic bin
computation as well. While bin width is computed to be optimal based on the actual data
within range, the bin count will fill the entire range including portions containing no data.

weights [array_like, optional] An array of weights, of the same shape as a. Each value in a only
contributes its associated weight towards the bin count (instead of 1). This is currently not
used by any of the bin estimators, but may be in the future.

Returns

bin_edges [array of dtype float] The edges to pass into histogram

See also:

histogram

Notes

The methods to estimate the optimal number of bins are well founded in literature, and are inspired by the
choices R provides for histogram visualisation. Note that having the number of bins proportional to 𝑛1/3 is
asymptotically optimal, which is why it appears in most estimators. These are simply plug-in methods that give
good starting points for number of bins. In the equations below, ℎ is the binwidth and 𝑛ℎ is the number of bins.
All estimators that compute bin counts are recast to bin width using the ptp of the data. The final bin count is
obtained from np.round(np.ceil(range / h)).

1154 Chapter 4. Routines



NumPy Reference, Release 1.15.1

‘Auto’ (maximum of the ‘Sturges’ and ‘FD’ estimators) A compromise to get a good value. For small
datasets the Sturges value will usually be chosen, while larger datasets will usually default to FD. Avoids
the overly conservative behaviour of FD and Sturges for small and large datasets respectively. Switchover
point is usually 𝑎.𝑠𝑖𝑧𝑒 ≈ 1000.

‘FD’ (Freedman Diaconis Estimator)

ℎ = 2
𝐼𝑄𝑅

𝑛1/3

The binwidth is proportional to the interquartile range (IQR) and inversely proportional to cube root of
a.size. Can be too conservative for small datasets, but is quite good for large datasets. The IQR is very
robust to outliers.

‘Scott’

ℎ = 𝜎
3

√︂
24 *

√
𝜋

𝑛

The binwidth is proportional to the standard deviation of the data and inversely proportional to cube root
of x.size. Can be too conservative for small datasets, but is quite good for large datasets. The standard
deviation is not very robust to outliers. Values are very similar to the Freedman-Diaconis estimator in the
absence of outliers.

‘Rice’

𝑛ℎ = 2𝑛1/3

The number of bins is only proportional to cube root of a.size. It tends to overestimate the number of
bins and it does not take into account data variability.

‘Sturges’

𝑛ℎ = log2 𝑛 + 1

The number of bins is the base 2 log of a.size. This estimator assumes normality of data and is too
conservative for larger, non-normal datasets. This is the default method in R’s hist method.

‘Doane’

𝑛ℎ = 1 + log2(𝑛) + log2(1 +
|𝑔1|
𝜎𝑔1

)

𝑔1 = 𝑚𝑒𝑎𝑛[(
𝑥− 𝜇

𝜎
)3]

𝜎𝑔1 =

√︃
6(𝑛− 2)

(𝑛 + 1)(𝑛 + 3)

An improved version of Sturges’ formula that produces better estimates for non-normal datasets. This
estimator attempts to account for the skew of the data.

‘Sqrt’

𝑛ℎ =
√
𝑛

The simplest and fastest estimator. Only takes into account the data size.

Examples

4.27. Statistics 1155



NumPy Reference, Release 1.15.1

>>> arr = np.array([0, 0, 0, 1, 2, 3, 3, 4, 5])
>>> np.histogram_bin_edges(arr, bins='auto', range=(0, 1))
array([0. , 0.25, 0.5 , 0.75, 1. ])
>>> np.histogram_bin_edges(arr, bins=2)
array([0. , 2.5, 5. ])

For consistency with histogram, an array of pre-computed bins is passed through unmodified:

>>> np.histogram_bin_edges(arr, [1, 2])
array([1, 2])

This function allows one set of bins to be computed, and reused across multiple histograms:

>>> shared_bins = np.histogram_bin_edges(arr, bins='auto')
>>> shared_bins
array([0., 1., 2., 3., 4., 5.])

>>> group_id = np.array([0, 1, 1, 0, 1, 1, 0, 1, 1])
>>> hist_0, _ = np.histogram(arr[group_id == 0], bins=shared_bins)
>>> hist_1, _ = np.histogram(arr[group_id == 1], bins=shared_bins)

>>> hist_0; hist_1
array([1, 1, 0, 1, 0])
array([2, 0, 1, 1, 2])

Which gives more easily comparable results than using separate bins for each histogram:

>>> hist_0, bins_0 = np.histogram(arr[group_id == 0], bins='auto')
>>> hist_1, bins_1 = np.histogram(arr[group_id == 1], bins='auto')
>>> hist_0; hist1
array([1, 1, 1])
array([2, 1, 1, 2])
>>> bins_0; bins_1
array([0., 1., 2., 3.])
array([0. , 1.25, 2.5 , 3.75, 5. ])

numpy.digitize(x, bins, right=False)
Return the indices of the bins to which each value in input array belongs.

right order of bins returned index i satisfies
False increasing bins[i-1] <= x < bins[i]
True increasing bins[i-1] < x <= bins[i]
False decreasing bins[i-1] > x >= bins[i]
True decreasing bins[i-1] >= x > bins[i]

If values in x are beyond the bounds of bins, 0 or len(bins) is returned as appropriate.

Parameters

x [array_like] Input array to be binned. Prior to NumPy 1.10.0, this array had to be 1-
dimensional, but can now have any shape.

bins [array_like] Array of bins. It has to be 1-dimensional and monotonic.

right [bool, optional] Indicating whether the intervals include the right or the left bin edge.
Default behavior is (right==False) indicating that the interval does not include the right edge.

1156 Chapter 4. Routines



NumPy Reference, Release 1.15.1

The left bin end is open in this case, i.e., bins[i-1] <= x < bins[i] is the default behavior for
monotonically increasing bins.

Returns

indices [ndarray of ints] Output array of indices, of same shape as x.

Raises

ValueError If bins is not monotonic.

TypeError If the type of the input is complex.

See also:

bincount, histogram, unique, searchsorted

Notes

If values in x are such that they fall outside the bin range, attempting to index bins with the indices that
digitize returns will result in an IndexError.

New in version 1.10.0.

np.digitize is implemented in terms of np.searchsorted. This means that a binary search is used to bin the
values, which scales much better for larger number of bins than the previous linear search. It also removes the
requirement for the input array to be 1-dimensional.

For monotonically _increasing_ bins, the following are equivalent:

np.digitize(x, bins, right=True)
np.searchsorted(bins, x, side='left')

Note that as the order of the arguments are reversed, the side must be too. The searchsorted call is
marginally faster, as it does not do any monotonicity checks. Perhaps more importantly, it supports all dtypes.

Examples

>>> x = np.array([0.2, 6.4, 3.0, 1.6])
>>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0])
>>> inds = np.digitize(x, bins)
>>> inds
array([1, 4, 3, 2])
>>> for n in range(x.size):
... print(bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]])
...
0.0 <= 0.2 < 1.0
4.0 <= 6.4 < 10.0
2.5 <= 3.0 < 4.0
1.0 <= 1.6 < 2.5

>>> x = np.array([1.2, 10.0, 12.4, 15.5, 20.])
>>> bins = np.array([0, 5, 10, 15, 20])
>>> np.digitize(x,bins,right=True)
array([1, 2, 3, 4, 4])
>>> np.digitize(x,bins,right=False)
array([1, 3, 3, 4, 5])

4.27. Statistics 1157



NumPy Reference, Release 1.15.1

4.28 Test Support (numpy.testing)

Common test support for all numpy test scripts.

This single module should provide all the common functionality for numpy tests in a single location, so that test scripts
can just import it and work right away. For background, see the Testing Guidelines

4.28.1 Asserts

assert_almost_equal(actual, desired[, . . . ]) Raises an AssertionError if two items are not equal up to
desired precision.

assert_approx_equal(actual, desired[, . . . ]) Raises an AssertionError if two items are not equal up to
significant digits.

assert_array_almost_equal(x, y[, decimal, . . . ]) Raises an AssertionError if two objects are not equal up to
desired precision.

assert_allclose(actual, desired[, rtol, . . . ]) Raises an AssertionError if two objects are not equal up to
desired tolerance.

assert_array_almost_equal_nulp(x, y[, nulp]) Compare two arrays relatively to their spacing.
assert_array_max_ulp(a, b[, maxulp, dtype]) Check that all items of arrays differ in at most N Units in

the Last Place.
assert_array_equal(x, y[, err_msg, verbose]) Raises an AssertionError if two array_like objects are not

equal.
assert_array_less(x, y[, err_msg, verbose]) Raises an AssertionError if two array_like objects are not

ordered by less than.
assert_equal(actual, desired[, err_msg, verbose]) Raises an AssertionError if two objects are not equal.
assert_raises(exception_class, callable, . . . ) Fail unless an exception of class exception_class is thrown

by callable when invoked with arguments args and keyword
arguments kwargs.

assert_raises_regex(exception_class, . . . ) Fail unless an exception of class exception_class and
with message that matches expected_regexp is thrown by
callable when invoked with arguments args and keyword
arguments kwargs.

assert_warns(warning_class, *args, **kwargs) Fail unless the given callable throws the specified warning.
assert_string_equal(actual, desired) Test if two strings are equal.

numpy.testing.assert_almost_equal(actual, desired, decimal=7, err_msg=”, verbose=True)
Raises an AssertionError if two items are not equal up to desired precision.

Note: It is recommended to use one of assert_allclose, assert_array_almost_equal_nulp or
assert_array_max_ulp instead of this function for more consistent floating point comparisons.

The test verifies that the elements of actual and desired satisfy.

abs(desired-actual) < 1.5 * 10**(-decimal)

That is a looser test than originally documented, but agrees with what the actual implementation in
assert_array_almost_equal did up to rounding vagaries. An exception is raised at conflicting val-
ues. For ndarrays this delegates to assert_array_almost_equal

Parameters

actual [array_like] The object to check.

1158 Chapter 4. Routines



NumPy Reference, Release 1.15.1

desired [array_like] The expected object.

decimal [int, optional] Desired precision, default is 7.

err_msg [str, optional] The error message to be printed in case of failure.

verbose [bool, optional] If True, the conflicting values are appended to the error message.

Raises

AssertionError If actual and desired are not equal up to specified precision.

See also:

assert_allclose Compare two array_like objects for equality with desired relative and/or absolute preci-
sion.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

Examples

>>> import numpy.testing as npt
>>> npt.assert_almost_equal(2.3333333333333, 2.33333334)
>>> npt.assert_almost_equal(2.3333333333333, 2.33333334, decimal=10)
...
<type 'exceptions.AssertionError'>:
Items are not equal:
ACTUAL: 2.3333333333333002
DESIRED: 2.3333333399999998

>>> npt.assert_almost_equal(np.array([1.0,2.3333333333333]),
... np.array([1.0,2.33333334]), decimal=9)
...
<type 'exceptions.AssertionError'>:
Arrays are not almost equal

(mismatch 50.0%)
x: array([ 1. , 2.33333333])
y: array([ 1. , 2.33333334])

numpy.testing.assert_approx_equal(actual, desired, significant=7, err_msg=”, verbose=True)
Raises an AssertionError if two items are not equal up to significant digits.

Note: It is recommended to use one of assert_allclose, assert_array_almost_equal_nulp or
assert_array_max_ulp instead of this function for more consistent floating point comparisons.

Given two numbers, check that they are approximately equal. Approximately equal is defined as the number of
significant digits that agree.

Parameters

actual [scalar] The object to check.

desired [scalar] The expected object.

significant [int, optional] Desired precision, default is 7.

err_msg [str, optional] The error message to be printed in case of failure.

4.28. Test Support (numpy.testing) 1159



NumPy Reference, Release 1.15.1

verbose [bool, optional] If True, the conflicting values are appended to the error message.

Raises

AssertionError If actual and desired are not equal up to specified precision.

See also:

assert_allclose Compare two array_like objects for equality with desired relative and/or absolute preci-
sion.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

Examples

>>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20)
>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20,

significant=8)
>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20,

significant=8)
...
<type 'exceptions.AssertionError'>:
Items are not equal to 8 significant digits:
ACTUAL: 1.234567e-021
DESIRED: 1.2345672000000001e-021

the evaluated condition that raises the exception is

>>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1)
True

numpy.testing.assert_array_almost_equal(x, y, decimal=6, err_msg=”, verbose=True)
Raises an AssertionError if two objects are not equal up to desired precision.

Note: It is recommended to use one of assert_allclose, assert_array_almost_equal_nulp or
assert_array_max_ulp instead of this function for more consistent floating point comparisons.

The test verifies identical shapes and that the elements of actual and desired satisfy.

abs(desired-actual) < 1.5 * 10**(-decimal)

That is a looser test than originally documented, but agrees with what the actual implementation did up to
rounding vagaries. An exception is raised at shape mismatch or conflicting values. In contrast to the standard
usage in numpy, NaNs are compared like numbers, no assertion is raised if both objects have NaNs in the same
positions.

Parameters

x [array_like] The actual object to check.

y [array_like] The desired, expected object.

decimal [int, optional] Desired precision, default is 6.

err_msg [str, optional] The error message to be printed in case of failure.

verbose [bool, optional] If True, the conflicting values are appended to the error message.

Raises

1160 Chapter 4. Routines



NumPy Reference, Release 1.15.1

AssertionError If actual and desired are not equal up to specified precision.

See also:

assert_allclose Compare two array_like objects for equality with desired relative and/or absolute preci-
sion.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

Examples

the first assert does not raise an exception

>>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan],
[1.0,2.333,np.nan])

>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
... [1.0,2.33339,np.nan], decimal=5)
...
<type 'exceptions.AssertionError'>:
AssertionError:
Arrays are not almost equal

(mismatch 50.0%)
x: array([ 1. , 2.33333, NaN])
y: array([ 1. , 2.33339, NaN])

>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
... [1.0,2.33333, 5], decimal=5)
<type 'exceptions.ValueError'>:
ValueError:
Arrays are not almost equal
x: array([ 1. , 2.33333, NaN])
y: array([ 1. , 2.33333, 5. ])

numpy.testing.assert_allclose(actual, desired, rtol=1e-07, atol=0, equal_nan=True, err_msg=”,
verbose=True)

Raises an AssertionError if two objects are not equal up to desired tolerance.

The test is equivalent to allclose(actual, desired, rtol, atol). It compares the difference
between actual and desired to atol + rtol * abs(desired).

New in version 1.5.0.

Parameters

actual [array_like] Array obtained.

desired [array_like] Array desired.

rtol [float, optional] Relative tolerance.

atol [float, optional] Absolute tolerance.

equal_nan [bool, optional.] If True, NaNs will compare equal.

err_msg [str, optional] The error message to be printed in case of failure.

verbose [bool, optional] If True, the conflicting values are appended to the error message.

4.28. Test Support (numpy.testing) 1161



NumPy Reference, Release 1.15.1

Raises

AssertionError If actual and desired are not equal up to specified precision.

See also:

assert_array_almost_equal_nulp, assert_array_max_ulp

Examples

>>> x = [1e-5, 1e-3, 1e-1]
>>> y = np.arccos(np.cos(x))
>>> assert_allclose(x, y, rtol=1e-5, atol=0)

numpy.testing.assert_array_almost_equal_nulp(x, y, nulp=1)
Compare two arrays relatively to their spacing.

This is a relatively robust method to compare two arrays whose amplitude is variable.

Parameters

x, y [array_like] Input arrays.

nulp [int, optional] The maximum number of unit in the last place for tolerance (see Notes).
Default is 1.

Returns

None

Raises

AssertionError If the spacing between x and y for one or more elements is larger than nulp.

See also:

assert_array_max_ulp Check that all items of arrays differ in at most N Units in the Last Place.

spacing Return the distance between x and the nearest adjacent number.

Notes

An assertion is raised if the following condition is not met:

abs(x - y) <= nulps * spacing(maximum(abs(x), abs(y)))

Examples

>>> x = np.array([1., 1e-10, 1e-20])
>>> eps = np.finfo(x.dtype).eps
>>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x)

>>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x)
Traceback (most recent call last):
...

AssertionError: X and Y are not equal to 1 ULP (max is 2)

1162 Chapter 4. Routines



NumPy Reference, Release 1.15.1

numpy.testing.assert_array_max_ulp(a, b, maxulp=1, dtype=None)
Check that all items of arrays differ in at most N Units in the Last Place.

Parameters

a, b [array_like] Input arrays to be compared.

maxulp [int, optional] The maximum number of units in the last place that elements of a and b
can differ. Default is 1.

dtype [dtype, optional] Data-type to convert a and b to if given. Default is None.

Returns

ret [ndarray] Array containing number of representable floating point numbers between items
in a and b.

Raises

AssertionError If one or more elements differ by more than maxulp.

See also:

assert_array_almost_equal_nulp Compare two arrays relatively to their spacing.

Examples

>>> a = np.linspace(0., 1., 100)
>>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a)))

numpy.testing.assert_array_equal(x, y, err_msg=”, verbose=True)
Raises an AssertionError if two array_like objects are not equal.

Given two array_like objects, check that the shape is equal and all elements of these objects are equal. An
exception is raised at shape mismatch or conflicting values. In contrast to the standard usage in numpy, NaNs
are compared like numbers, no assertion is raised if both objects have NaNs in the same positions.

The usual caution for verifying equality with floating point numbers is advised.

Parameters

x [array_like] The actual object to check.

y [array_like] The desired, expected object.

err_msg [str, optional] The error message to be printed in case of failure.

verbose [bool, optional] If True, the conflicting values are appended to the error message.

Raises

AssertionError If actual and desired objects are not equal.

See also:

assert_allclose Compare two array_like objects for equality with desired relative and/or absolute preci-
sion.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

4.28. Test Support (numpy.testing) 1163



NumPy Reference, Release 1.15.1

Examples

The first assert does not raise an exception:

>>> np.testing.assert_array_equal([1.0,2.33333,np.nan],
... [np.exp(0),2.33333, np.nan])

Assert fails with numerical inprecision with floats:

>>> np.testing.assert_array_equal([1.0,np.pi,np.nan],
... [1, np.sqrt(np.pi)**2, np.nan])
...
<type 'exceptions.ValueError'>:
AssertionError:
Arrays are not equal

(mismatch 50.0%)
x: array([ 1. , 3.14159265, NaN])
y: array([ 1. , 3.14159265, NaN])

Use assert_allclose or one of the nulp (number of floating point values) functions for these cases instead:

>>> np.testing.assert_allclose([1.0,np.pi,np.nan],
... [1, np.sqrt(np.pi)**2, np.nan],
... rtol=1e-10, atol=0)

numpy.testing.assert_array_less(x, y, err_msg=”, verbose=True)
Raises an AssertionError if two array_like objects are not ordered by less than.

Given two array_like objects, check that the shape is equal and all elements of the first object are strictly smaller
than those of the second object. An exception is raised at shape mismatch or incorrectly ordered values. Shape
mismatch does not raise if an object has zero dimension. In contrast to the standard usage in numpy, NaNs are
compared, no assertion is raised if both objects have NaNs in the same positions.

Parameters

x [array_like] The smaller object to check.

y [array_like] The larger object to compare.

err_msg [string] The error message to be printed in case of failure.

verbose [bool] If True, the conflicting values are appended to the error message.

Raises

AssertionError If actual and desired objects are not equal.

See also:

assert_array_equal tests objects for equality

assert_array_almost_equal test objects for equality up to precision

Examples

>>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan])
>>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan])
...

(continues on next page)

1164 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

<type 'exceptions.ValueError'>:
Arrays are not less-ordered
(mismatch 50.0%)
x: array([ 1., 1., NaN])
y: array([ 1., 2., NaN])

>>> np.testing.assert_array_less([1.0, 4.0], 3)
...
<type 'exceptions.ValueError'>:
Arrays are not less-ordered
(mismatch 50.0%)
x: array([ 1., 4.])
y: array(3)

>>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4])
...
<type 'exceptions.ValueError'>:
Arrays are not less-ordered
(shapes (3,), (1,) mismatch)
x: array([ 1., 2., 3.])
y: array([4])

numpy.testing.assert_equal(actual, desired, err_msg=”, verbose=True)
Raises an AssertionError if two objects are not equal.

Given two objects (scalars, lists, tuples, dictionaries or numpy arrays), check that all elements of these objects
are equal. An exception is raised at the first conflicting values.

Parameters

actual [array_like] The object to check.

desired [array_like] The expected object.

err_msg [str, optional] The error message to be printed in case of failure.

verbose [bool, optional] If True, the conflicting values are appended to the error message.

Raises

AssertionError If actual and desired are not equal.

Examples

>>> np.testing.assert_equal([4,5], [4,6])
...
<type 'exceptions.AssertionError'>:
Items are not equal:
item=1
ACTUAL: 5
DESIRED: 6

numpy.testing.assert_raises(exception_class, callable, *args, **kwargs) as-
sert_raises(exception_class)

Fail unless an exception of class exception_class is thrown by callable when invoked with arguments args and
keyword arguments kwargs. If a different type of exception is thrown, it will not be caught, and the test case
will be deemed to have suffered an error, exactly as for an unexpected exception.

4.28. Test Support (numpy.testing) 1165



NumPy Reference, Release 1.15.1

Alternatively, assert_raises can be used as a context manager:

>>> from numpy.testing import assert_raises
>>> with assert_raises(ZeroDivisionError):
... 1 / 0

is equivalent to

>>> def div(x, y):
... return x / y
>>> assert_raises(ZeroDivisionError, div, 1, 0)

numpy.testing.assert_raises_regex(exception_class, expected_regexp, callable, *args,
**kwargs) assert_raises_regex(exception_class, ex-
pected_regexp)

Fail unless an exception of class exception_class and with message that matches expected_regexp is thrown by
callable when invoked with arguments args and keyword arguments kwargs.

Alternatively, can be used as a context manager like assert_raises.

Name of this function adheres to Python 3.2+ reference, but should work in all versions down to 2.6.

Notes

New in version 1.9.0.

numpy.testing.assert_warns(warning_class, *args, **kwargs)
Fail unless the given callable throws the specified warning.

A warning of class warning_class should be thrown by the callable when invoked with arguments args and
keyword arguments kwargs. If a different type of warning is thrown, it will not be caught.

If called with all arguments other than the warning class omitted, may be used as a context manager:

with assert_warns(SomeWarning): do_something()

The ability to be used as a context manager is new in NumPy v1.11.0.

New in version 1.4.0.

Parameters

warning_class [class] The class defining the warning that func is expected to throw.

func [callable] The callable to test.

*args [Arguments] Arguments passed to func.

**kwargs [Kwargs] Keyword arguments passed to func.

Returns

The value returned by ‘func‘.

numpy.testing.assert_string_equal(actual, desired)
Test if two strings are equal.

If the given strings are equal, assert_string_equal does nothing. If they are not equal, an AssertionError
is raised, and the diff between the strings is shown.

Parameters

actual [str] The string to test for equality against the expected string.

1166 Chapter 4. Routines



NumPy Reference, Release 1.15.1

desired [str] The expected string.

Examples

>>> np.testing.assert_string_equal('abc', 'abc')
>>> np.testing.assert_string_equal('abc', 'abcd')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

...
AssertionError: Differences in strings:
- abc+ abcd? +

4.28.2 Decorators

decorators.deprecated([conditional]) Filter deprecation warnings while running the test suite.
decorators.knownfailureif(fail_condition[,
msg])

Make function raise KnownFailureException exception if
given condition is true.

decorators.setastest([tf]) Signals to nose that this function is or is not a test.
decorators.skipif(skip_condition[, msg]) Make function raise SkipTest exception if a given condition

is true.
decorators.slow(t) Label a test as ‘slow’.
decorate_methods(cls, decorator[, testmatch]) Apply a decorator to all methods in a class matching a reg-

ular expression.

numpy.testing.decorators.deprecated(conditional=True)
Filter deprecation warnings while running the test suite.

This decorator can be used to filter DeprecationWarning’s, to avoid printing them during the test suite run, while
checking that the test actually raises a DeprecationWarning.

Parameters

conditional [bool or callable, optional] Flag to determine whether to mark test as deprecated
or not. If the condition is a callable, it is used at runtime to dynamically make the decision.
Default is True.

Returns

decorator [function] The deprecated decorator itself.

Notes

New in version 1.4.0.

numpy.testing.decorators.knownfailureif(fail_condition, msg=None)
Make function raise KnownFailureException exception if given condition is true.

If the condition is a callable, it is used at runtime to dynamically make the decision. This is useful for tests that
may require costly imports, to delay the cost until the test suite is actually executed.

Parameters

fail_condition [bool or callable] Flag to determine whether to mark the decorated test as a
known failure (if True) or not (if False).

4.28. Test Support (numpy.testing) 1167



NumPy Reference, Release 1.15.1

msg [str, optional] Message to give on raising a KnownFailureException exception. Default is
None.

Returns

decorator [function] Decorator, which, when applied to a function, causes KnownFailureEx-
ception to be raised when fail_condition is True, and the function to be called normally
otherwise.

Notes

The decorator itself is decorated with the nose.tools.make_decorator function in order to transmit
function name, and various other metadata.

numpy.testing.decorators.setastest(tf=True)
Signals to nose that this function is or is not a test.

Parameters

tf [bool] If True, specifies that the decorated callable is a test. If False, specifies that the deco-
rated callable is not a test. Default is True.

Notes

This decorator can’t use the nose namespace, because it can be called from a non-test module. See also istest
and nottest in nose.tools.

Examples

setastest can be used in the following way:

from numpy.testing import dec

@dec.setastest(False)
def func_with_test_in_name(arg1, arg2):

pass

numpy.testing.decorators.skipif(skip_condition, msg=None)
Make function raise SkipTest exception if a given condition is true.

If the condition is a callable, it is used at runtime to dynamically make the decision. This is useful for tests that
may require costly imports, to delay the cost until the test suite is actually executed.

Parameters

skip_condition [bool or callable] Flag to determine whether to skip the decorated test.

msg [str, optional] Message to give on raising a SkipTest exception. Default is None.

Returns

decorator [function] Decorator which, when applied to a function, causes SkipTest to be raised
when skip_condition is True, and the function to be called normally otherwise.

1168 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

The decorator itself is decorated with the nose.tools.make_decorator function in order to transmit
function name, and various other metadata.

numpy.testing.decorators.slow(t)
Label a test as ‘slow’.

The exact definition of a slow test is obviously both subjective and hardware-dependent, but in general any
individual test that requires more than a second or two should be labeled as slow (the whole suite consists of
thousands of tests, so even a second is significant).

Parameters

t [callable] The test to label as slow.

Returns

t [callable] The decorated test t.

Examples

The numpy.testing module includes import decorators as dec. A test can be decorated as slow
like this:

from numpy.testing import *

@dec.slow
def test_big(self):

print('Big, slow test')

numpy.testing.decorate_methods(cls, decorator, testmatch=None)
Apply a decorator to all methods in a class matching a regular expression.

The given decorator is applied to all public methods of cls that are matched by the regular expression testmatch
(testmatch.search(methodname)). Methods that are private, i.e. start with an underscore, are ignored.

Parameters

cls [class] Class whose methods to decorate.

decorator [function] Decorator to apply to methods

testmatch [compiled regexp or str, optional] The regular expression. Default value is None,
in which case the nose default (re.compile(r'(?:^|[\b_\.%s-])[Tt]est' %
os.sep)) is used. If testmatch is a string, it is compiled to a regular expression first.

4.28.3 Test Running

Tester alias of numpy.testing._private.nosetester.
NoseTester

run_module_suite([file_to_run, argv]) Run a test module.
rundocs([filename, raise_on_error]) Run doctests found in the given file.
suppress_warnings([forwarding_rule]) Context manager and decorator doing much the same as

warnings.catch_warnings.

4.28. Test Support (numpy.testing) 1169



NumPy Reference, Release 1.15.1

numpy.testing.Tester
alias of numpy.testing._private.nosetester.NoseTester

numpy.testing.run_module_suite(file_to_run=None, argv=None)
Run a test module.

Equivalent to calling $ nosetests <argv> <file_to_run> from the command line

Parameters

file_to_run [str, optional] Path to test module, or None. By default, run the module from which
this function is called.

argv [list of strings] Arguments to be passed to the nose test runner. argv[0] is ignored.
All command line arguments accepted by nosetests will work. If it is the default value
None, sys.argv is used.

New in version 1.9.0.

Examples

Adding the following:

if __name__ == "__main__" :
run_module_suite(argv=sys.argv)

at the end of a test module will run the tests when that module is called in the python interpreter.

Alternatively, calling:

>>> run_module_suite(file_to_run="numpy/tests/test_matlib.py")

from an interpreter will run all the test routine in ‘test_matlib.py’.

numpy.testing.rundocs(filename=None, raise_on_error=True)
Run doctests found in the given file.

By default rundocs raises an AssertionError on failure.

Parameters

filename [str] The path to the file for which the doctests are run.

raise_on_error [bool] Whether to raise an AssertionError when a doctest fails. Default is True.

Notes

The doctests can be run by the user/developer by adding the doctests argument to the test() call. For
example, to run all tests (including doctests) for numpy.lib:

>>> np.lib.test(doctests=True)

class numpy.testing.suppress_warnings(forwarding_rule=’always’)
Context manager and decorator doing much the same as warnings.catch_warnings.

However, it also provides a filter mechanism to work around http://bugs.python.org/issue4180.

This bug causes Python before 3.4 to not reliably show warnings again after they have been ignored once (even
within catch_warnings). It means that no “ignore” filter can be used easily, since following tests might need to
see the warning. Additionally it allows easier specificity for testing warnings and can be nested.

1170 Chapter 4. Routines

http://bugs.python.org/issue4180


NumPy Reference, Release 1.15.1

Parameters

forwarding_rule [str, optional] One of “always”, “once”, “module”, or “location”. Analogous
to the usual warnings module filter mode, it is useful to reduce noise mostly on the outmost
level. Unsuppressed and unrecorded warnings will be forwarded based on this rule. Defaults
to “always”. “location” is equivalent to the warnings “default”, match by exact location the
warning warning originated from.

Notes

Filters added inside the context manager will be discarded again when leaving it. Upon entering all filters
defined outside a context will be applied automatically.

When a recording filter is added, matching warnings are stored in the log attribute as well as in the list returned
by record.

If filters are added and the module keyword is given, the warning registry of this module will additionally be
cleared when applying it, entering the context, or exiting it. This could cause warnings to appear a second time
after leaving the context if they were configured to be printed once (default) and were already printed before the
context was entered.

Nesting this context manager will work as expected when the forwarding rule is “always” (default). Unfiltered
and unrecorded warnings will be passed out and be matched by the outer level. On the outmost level they will
be printed (or caught by another warnings context). The forwarding rule argument can modify this behaviour.

Like catch_warnings this context manager is not threadsafe.

Examples

>>> with suppress_warnings() as sup:
... sup.filter(DeprecationWarning, "Some text")
... sup.filter(module=np.ma.core)
... log = sup.record(FutureWarning, "Does this occur?")
... command_giving_warnings()
... # The FutureWarning was given once, the filtered warnings were
... # ignored. All other warnings abide outside settings (may be
... # printed/error)
... assert_(len(log) == 1)
... assert_(len(sup.log) == 1) # also stored in log attribute

Or as a decorator:

>>> sup = suppress_warnings()
>>> sup.filter(module=np.ma.core) # module must match exact
>>> @sup
>>> def some_function():
... # do something which causes a warning in np.ma.core
... pass

Methods

4.28. Test Support (numpy.testing) 1171



NumPy Reference, Release 1.15.1

__call__(func) Function decorator to apply certain suppressions to a
whole function.

filter([category, message, module]) Add a new suppressing filter or apply it if the state is
entered.

record([category, message, module]) Append a new recording filter or apply it if the state is
entered.

suppress_warnings.__call__(func)
Function decorator to apply certain suppressions to a whole function.

suppress_warnings.filter(category=<class ’Warning’>, message=”, module=None)
Add a new suppressing filter or apply it if the state is entered.

Parameters

category [class, optional] Warning class to filter

message [string, optional] Regular expression matching the warning message.

module [module, optional] Module to filter for. Note that the module (and its file) must
match exactly and cannot be a submodule. This may make it unreliable for external mod-
ules.

Notes

When added within a context, filters are only added inside the context and will be forgotten when the
context is exited.

suppress_warnings.record(category=<class ’Warning’>, message=”, module=None)
Append a new recording filter or apply it if the state is entered.

All warnings matching will be appended to the log attribute.

Parameters

category [class, optional] Warning class to filter

message [string, optional] Regular expression matching the warning message.

module [module, optional] Module to filter for. Note that the module (and its file) must
match exactly and cannot be a submodule. This may make it unreliable for external mod-
ules.

Returns

log [list] A list which will be filled with all matched warnings.

Notes

When added within a context, filters are only added inside the context and will be forgotten when the
context is exited.

4.28.4 Guidelines

Testing Guidelines

1172 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Introduction

Until the 1.15 release, NumPy used the nose testing framework, it now uses the pytest framework. The older framework
is still maintained in order to support downstream projects that use the old numpy framework, but all tests for NumPy
should use pytest.

Our goal is that every module and package in SciPy and NumPy should have a thorough set of unit tests. These tests
should exercise the full functionality of a given routine as well as its robustness to erroneous or unexpected input
arguments. Long experience has shown that by far the best time to write the tests is before you write or change the
code - this is test-driven development. The arguments for this can sound rather abstract, but we can assure you that
you will find that writing the tests first leads to more robust and better designed code. Well-designed tests with good
coverage make an enormous difference to the ease of refactoring. Whenever a new bug is found in a routine, you
should write a new test for that specific case and add it to the test suite to prevent that bug from creeping back in
unnoticed.

To run SciPy’s full test suite, use the following:

>>> import scipy
>>> scipy.test()

or from the command line:

$ python runtests.py

SciPy uses the testing framework from NumPy (specifically Test Support (numpy.testing)), so all the SciPy examples
shown here are also applicable to NumPy. NumPy’s full test suite can be run as follows:

>>> import numpy
>>> numpy.test()

The test method may take two or more arguments; the first, label is a string specifying what should be tested and the
second, verbose is an integer giving the level of output verbosity. See the docstring for numpy.test for details. The
default value for label is ‘fast’ - which will run the standard tests. The string ‘full’ will run the full battery of tests,
including those identified as being slow to run. If verbose is 1 or less, the tests will just show information messages
about the tests that are run; but if it is greater than 1, then the tests will also provide warnings on missing tests. So if
you want to run every test and get messages about which modules don’t have tests:

>>> scipy.test(label='full', verbose=2) # or scipy.test('full', 2)

Finally, if you are only interested in testing a subset of SciPy, for example, the integratemodule, use the following:

>>> scipy.integrate.test()

or from the command line:

$python runtests.py -t scipy/integrate/tests

The rest of this page will give you a basic idea of how to add unit tests to modules in SciPy. It is extremely important
for us to have extensive unit testing since this code is going to be used by scientists and researchers and is being
developed by a large number of people spread across the world. So, if you are writing a package that you’d like to
become part of SciPy, please write the tests as you develop the package. Also since much of SciPy is legacy code that
was originally written without unit tests, there are still several modules that don’t have tests yet. Please feel free to
choose one of these modules and develop tests for it as you read through this introduction.

4.28. Test Support (numpy.testing) 1173

https://nose.readthedocs.io/en/latest/
https://pytest.readthedocs.io
https://en.wikipedia.org/wiki/Test-driven_development


NumPy Reference, Release 1.15.1

Writing your own tests

Every Python module, extension module, or subpackage in the SciPy package directory should have a corresponding
test_<name>.py file. Pytest examines these files for test methods (named test*) and test classes (named Test*).

Suppose you have a SciPy module scipy/xxx/yyy.py containing a function zzz(). To test this function you
would create a test module called test_yyy.py. If you only need to test one aspect of zzz, you can simply add a
test function:

def test_zzz():
assert_(zzz() == 'Hello from zzz')

More often, we need to group a number of tests together, so we create a test class:

from numpy.testing import assert_, assert_raises

# import xxx symbols
from scipy.xxx.yyy import zzz

class TestZzz:
def test_simple(self):

assert_(zzz() == 'Hello from zzz')

def test_invalid_parameter(self):
assert_raises(...)

Within these test methods, assert_() and related functions are used to test whether a certain assumption is valid. If
the assertion fails, the test fails. Note that the Python builtin assert should not be used, because it is stripped during
compilation with -O.

Note that test_ functions or methods should not have a docstring, because that makes it hard to identify the test
from the output of running the test suite with verbose=2 (or similar verbosity setting). Use plain comments (#) if
necessary.

Sometimes it is convenient to run test_yyy.py by itself, so we add

if __name__ == "__main__":
run_module_suite()

at the bottom.

Labeling tests

As an alternative to pytest.mark.<label>, there are a number of labels you can use.

Unlabeled tests like the ones above are run in the default scipy.test() run. If you want to label your test as slow
- and therefore reserved for a full scipy.test(label='full') run, you can label it with a decorator:

# numpy.testing module includes 'import decorators as dec'
from numpy.testing import dec, assert_

@dec.slow
def test_big(self):

print 'Big, slow test'

Similarly for methods:

1174 Chapter 4. Routines



NumPy Reference, Release 1.15.1

class test_zzz:
@dec.slow
def test_simple(self):

assert_(zzz() == 'Hello from zzz')

Available labels are:

• slow: marks a test as taking a long time

• setastest(tf): work-around for test discovery when the test name is non conformant

• skipif(condition, msg=None): skips the test when eval(condition) is True

• knownfailureif(fail_cond, msg=None): will avoid running the test if eval(fail_cond) is
True, useful for tests that conditionally segfault

• deprecated(conditional=True): filters deprecation warnings emitted in the test

• paramaterize(var, input): an alternative to pytest.mark.paramaterized

Easier setup and teardown functions / methods

Testing looks for module-level or class-level setup and teardown functions by name; thus:

def setup():
"""Module-level setup"""
print 'doing setup'

def teardown():
"""Module-level teardown"""
print 'doing teardown'

class TestMe(object):
def setup():

"""Class-level setup"""
print 'doing setup'

def teardown():
"""Class-level teardown"""
print 'doing teardown'

Setup and teardown functions to functions and methods are known as “fixtures”, and their use is not encouraged.

Parametric tests

One very nice feature of testing is allowing easy testing across a range of parameters - a nasty problem for standard
unit tests. Use the dec.paramaterize decorator.

Doctests

Doctests are a convenient way of documenting the behavior of a function and allowing that behavior to be tested at
the same time. The output of an interactive Python session can be included in the docstring of a function, and the test
framework can run the example and compare the actual output to the expected output.

4.28. Test Support (numpy.testing) 1175

https://docs.pytest.org/en/latest/parametrize.html


NumPy Reference, Release 1.15.1

The doctests can be run by adding the doctests argument to the test() call; for example, to run all tests (including
doctests) for numpy.lib:

>>> import numpy as np
>>> np.lib.test(doctests=True)

The doctests are run as if they are in a fresh Python instance which has executed import numpy as np. Tests
that are part of a SciPy subpackage will have that subpackage already imported. E.g. for a test in scipy/linalg/
tests/, the namespace will be created such that from scipy import linalg has already executed.

tests/

Rather than keeping the code and the tests in the same directory, we put all the tests for a given subpackage in a
tests/ subdirectory. For our example, if it doesn’t already exist you will need to create a tests/ directory in
scipy/xxx/. So the path for test_yyy.py is scipy/xxx/tests/test_yyy.py.

Once the scipy/xxx/tests/test_yyy.py is written, its possible to run the tests by going to the tests/
directory and typing:

python test_yyy.py

Or if you add scipy/xxx/tests/ to the Python path, you could run the tests interactively in the interpreter like
this:

>>> import test_yyy
>>> test_yyy.test()

__init__.py and setup.py

Usually, however, adding the tests/ directory to the python path isn’t desirable. Instead it would better to invoke
the test straight from the module xxx. To this end, simply place the following lines at the end of your package’s
__init__.py file:

...
def test(level=1, verbosity=1):

from numpy.testing import Tester
return Tester().test(level, verbosity)

You will also need to add the tests directory in the configuration section of your setup.py:

...
def configuration(parent_package='', top_path=None):

...
config.add_data_dir('tests')
return config

...

Now you can do the following to test your module:

>>> import scipy
>>> scipy.xxx.test()

Also, when invoking the entire SciPy test suite, your tests will be found and run:

1176 Chapter 4. Routines



NumPy Reference, Release 1.15.1

>>> import scipy
>>> scipy.test()
# your tests are included and run automatically!

Tips & Tricks

Creating many similar tests

If you have a collection of tests that must be run multiple times with minor variations, it can be helpful to create a base
class containing all the common tests, and then create a subclass for each variation. Several examples of this technique
exist in NumPy; below are excerpts from one in numpy/linalg/tests/test_linalg.py:

class LinalgTestCase:
def test_single(self):

a = array([[1.,2.], [3.,4.]], dtype=single)
b = array([2., 1.], dtype=single)
self.do(a, b)

def test_double(self):
a = array([[1.,2.], [3.,4.]], dtype=double)
b = array([2., 1.], dtype=double)
self.do(a, b)

...

class TestSolve(LinalgTestCase):
def do(self, a, b):

x = linalg.solve(a, b)
assert_almost_equal(b, dot(a, x))
assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))

class TestInv(LinalgTestCase):
def do(self, a, b):

a_inv = linalg.inv(a)
assert_almost_equal(dot(a, a_inv), identity(asarray(a).shape[0]))
assert_(imply(isinstance(a, matrix), isinstance(a_inv, matrix)))

In this case, we wanted to test solving a linear algebra problem using matrices of several data types, using linalg.
solve and linalg.inv. The common test cases (for single-precision, double-precision, etc. matrices) are col-
lected in LinalgTestCase.

Known failures & skipping tests

Sometimes you might want to skip a test or mark it as a known failure, such as when the test suite is being written before
the code it’s meant to test, or if a test only fails on a particular architecture. The decorators from numpy.testing.dec
can be used to do this.

To skip a test, simply use skipif:

from numpy.testing import dec

@dec.skipif(SkipMyTest, "Skipping this test because...")
def test_something(foo):

...

4.28. Test Support (numpy.testing) 1177

https://github.com/numpy/numpy/blob/master/numpy/linalg/tests/test_linalg.py


NumPy Reference, Release 1.15.1

The test is marked as skipped if SkipMyTest evaluates to nonzero, and the message in verbose test output is the
second argument given to skipif. Similarly, a test can be marked as a known failure by using knownfailureif:

from numpy.testing import dec

@dec.knownfailureif(MyTestFails, "This test is known to fail because...")
def test_something_else(foo):

...

Of course, a test can be unconditionally skipped or marked as a known failure by passing True as the first argument
to skipif or knownfailureif, respectively.

A total of the number of skipped and known failing tests is displayed at the end of the test run. Skipped tests are
marked as 'S' in the test results (or 'SKIPPED' for verbose > 1), and known failing tests are marked as 'K'
(or 'KNOWN' if verbose > 1).

Tests on random data

Tests on random data are good, but since test failures are meant to expose new bugs or regressions, a test that passes
most of the time but fails occasionally with no code changes is not helpful. Make the random data deterministic
by setting the random number seed before generating it. Use either Python’s random.seed(some_number) or
NumPy’s numpy.random.seed(some_number), depending on the source of random numbers.

4.29 Window functions

4.29.1 Various windows

bartlett(M) Return the Bartlett window.
blackman(M) Return the Blackman window.
hamming(M) Return the Hamming window.
hanning(M) Return the Hanning window.
kaiser(M, beta) Return the Kaiser window.

numpy.bartlett(M)
Return the Bartlett window.

The Bartlett window is very similar to a triangular window, except that the end points are at zero. It is often
used in signal processing for tapering a signal, without generating too much ripple in the frequency domain.

Parameters

M [int] Number of points in the output window. If zero or less, an empty array is returned.

Returns

out [array] The triangular window, with the maximum value normalized to one (the value one
appears only if the number of samples is odd), with the first and last samples equal to zero.

See also:

blackman, hamming, hanning, kaiser

1178 Chapter 4. Routines



NumPy Reference, Release 1.15.1

Notes

The Bartlett window is defined as

𝑤(𝑛) =
2

𝑀 − 1

(︂
𝑀 − 1

2
−
⃒⃒⃒⃒
𝑛− 𝑀 − 1

2

⃒⃒⃒⃒)︂
Most references to the Bartlett window come from the signal processing literature, where it is used as one of
many windowing functions for smoothing values. Note that convolution with this window produces linear in-
terpolation. It is also known as an apodization (which means”removing the foot”, i.e. smoothing discontinuities
at the beginning and end of the sampled signal) or tapering function. The fourier transform of the Bartlett is the
product of two sinc functions. Note the excellent discussion in Kanasewich.

References

[1], [2], [3], [4], [5]

Examples

>>> np.bartlett(12)
array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273,

0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636,
0.18181818, 0. ])

Plot the window and its frequency response (requires SciPy and matplotlib):

>>> from numpy.fft import fft, fftshift
>>> window = np.bartlett(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Bartlett window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Bartlett window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')

(continues on next page)

4.29. Window functions 1179



NumPy Reference, Release 1.15.1

(continued from previous page)

(-0.5, 0.5, -100.0, ...)
>>> plt.show()

numpy.blackman(M)
Return the Blackman window.

The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed
to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window.

Parameters

M [int] Number of points in the output window. If zero or less, an empty array is returned.

Returns

out [ndarray] The window, with the maximum value normalized to one (the value one appears
only if the number of samples is odd).

See also:

bartlett, hamming, hanning, kaiser

Notes

The Blackman window is defined as

𝑤(𝑛) = 0.42 − 0.5 cos(2𝜋𝑛/𝑀) + 0.08 cos(4𝜋𝑛/𝑀)

Most references to the Blackman window come from the signal processing literature, where it is used as one of
many windowing functions for smoothing values. It is also known as an apodization (which means “removing
the foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. It
is known as a “near optimal” tapering function, almost as good (by some measures) as the kaiser window.

References

Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.

Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall,
1999, pp. 468-471.

Examples

>>> np.blackman(12)
array([ -1.38777878e-17, 3.26064346e-02, 1.59903635e-01,

4.14397981e-01, 7.36045180e-01, 9.67046769e-01,
9.67046769e-01, 7.36045180e-01, 4.14397981e-01,
1.59903635e-01, 3.26064346e-02, -1.38777878e-17])

Plot the window and the frequency response:

>>> from numpy.fft import fft, fftshift
>>> window = np.blackman(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]

(continues on next page)

1180 Chapter 4. Routines



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> plt.title("Blackman window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Blackman window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()

numpy.hamming(M)
Return the Hamming window.

The Hamming window is a taper formed by using a weighted cosine.

Parameters

M [int] Number of points in the output window. If zero or less, an empty array is returned.

Returns

out [ndarray] The window, with the maximum value normalized to one (the value one appears
only if the number of samples is odd).

See also:

bartlett, blackman, hanning, kaiser

Notes

The Hamming window is defined as

𝑤(𝑛) = 0.54 − 0.46𝑐𝑜𝑠

(︂
2𝜋𝑛

𝑀 − 1

)︂
0 ≤ 𝑛 ≤ 𝑀 − 1

The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and
Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most
references to the Hamming window come from the signal processing literature, where it is used as one of many
windowing functions for smoothing values. It is also known as an apodization (which means “removing the
foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.

4.29. Window functions 1181



NumPy Reference, Release 1.15.1

References

[1], [2], [3], [4]

Examples

>>> np.hamming(12)
array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594,

0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909,
0.15302337, 0.08 ])

Plot the window and the frequency response:

>>> from numpy.fft import fft, fftshift
>>> window = np.hamming(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Hamming window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Hamming window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()

numpy.hanning(M)
Return the Hanning window.

The Hanning window is a taper formed by using a weighted cosine.

Parameters

M [int] Number of points in the output window. If zero or less, an empty array is returned.

Returns

out [ndarray, shape(M,)] The window, with the maximum value normalized to one (the value
one appears only if M is odd).

1182 Chapter 4. Routines



NumPy Reference, Release 1.15.1

See also:

bartlett, blackman, hamming, kaiser

Notes

The Hanning window is defined as

𝑤(𝑛) = 0.5 − 0.5𝑐𝑜𝑠

(︂
2𝜋𝑛

𝑀 − 1

)︂
0 ≤ 𝑛 ≤ 𝑀 − 1

The Hanning was named for Julius von Hann, an Austrian meteorologist. It is also known as the Cosine Bell.
Some authors prefer that it be called a Hann window, to help avoid confusion with the very similar Hamming
window.

Most references to the Hanning window come from the signal processing literature, where it is used as one of
many windowing functions for smoothing values. It is also known as an apodization (which means “removing
the foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.

References

[1], [2], [3], [4]

Examples

>>> np.hanning(12)
array([ 0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037,

0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249,
0.07937323, 0. ])

Plot the window and its frequency response:

>>> from numpy.fft import fft, fftshift
>>> window = np.hanning(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Hann window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]

(continues on next page)

4.29. Window functions 1183



NumPy Reference, Release 1.15.1

(continued from previous page)

>>> plt.title("Frequency response of the Hann window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()

numpy.kaiser(M, beta)
Return the Kaiser window.

The Kaiser window is a taper formed by using a Bessel function.

Parameters

M [int] Number of points in the output window. If zero or less, an empty array is returned.

beta [float] Shape parameter for window.

Returns

out [array] The window, with the maximum value normalized to one (the value one appears
only if the number of samples is odd).

See also:

bartlett, blackman, hamming, hanning

Notes

The Kaiser window is defined as

𝑤(𝑛) = 𝐼0

(︃
𝛽

√︃
1 − 4𝑛2

(𝑀 − 1)2

)︃
/𝐼0(𝛽)

with

−𝑀 − 1

2
≤ 𝑛 ≤ 𝑀 − 1

2
,

where 𝐼0 is the modified zeroth-order Bessel function.

The Kaiser was named for Jim Kaiser, who discovered a simple approximation to the DPSS window based on
Bessel functions. The Kaiser window is a very good approximation to the Digital Prolate Spheroidal Sequence,
or Slepian window, which is the transform which maximizes the energy in the main lobe of the window relative
to total energy.

The Kaiser can approximate many other windows by varying the beta parameter.

beta Window shape
0 Rectangular
5 Similar to a Hamming
6 Similar to a Hanning
8.6 Similar to a Blackman

1184 Chapter 4. Routines



NumPy Reference, Release 1.15.1

A beta value of 14 is probably a good starting point. Note that as beta gets large, the window narrows, and so
the number of samples needs to be large enough to sample the increasingly narrow spike, otherwise NaNs will
get returned.

Most references to the Kaiser window come from the signal processing literature, where it is used as one of
many windowing functions for smoothing values. It is also known as an apodization (which means “removing
the foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.

References

[1], [2], [3]

Examples

>>> np.kaiser(12, 14)
array([ 7.72686684e-06, 3.46009194e-03, 4.65200189e-02,

2.29737120e-01, 5.99885316e-01, 9.45674898e-01,
9.45674898e-01, 5.99885316e-01, 2.29737120e-01,
4.65200189e-02, 3.46009194e-03, 7.72686684e-06])

Plot the window and the frequency response:

>>> from numpy.fft import fft, fftshift
>>> window = np.kaiser(51, 14)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Kaiser window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Kaiser window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()

4.29. Window functions 1185



NumPy Reference, Release 1.15.1

1186 Chapter 4. Routines



CHAPTER

FIVE

PACKAGING (NUMPY.DISTUTILS)

NumPy provides enhanced distutils functionality to make it easier to build and install sub-packages, auto-generate
code, and extension modules that use Fortran-compiled libraries. To use features of NumPy distutils, use the
setup command from numpy.distutils.core. A useful Configuration class is also provided in numpy.
distutils.misc_util that can make it easier to construct keyword arguments to pass to the setup function (by
passing the dictionary obtained from the todict() method of the class). More information is available in the NumPy
Distutils Users Guide in <site-packages>/numpy/doc/DISTUTILS.txt.

5.1 Modules in numpy.distutils

5.1.1 misc_util

get_numpy_include_dirs()
dict_append(d, **kws)
appendpath(prefix, path)
allpath(name) Convert a /-separated pathname to one using the OS’s path

separator.
dot_join(*args)
generate_config_py(target) Generate config.py file containing system_info information

used during building the package.
get_cmd(cmdname[, _cache])
terminal_has_colors()
red_text(s)
green_text(s)
yellow_text(s)
blue_text(s)
cyan_text(s)
cyg2win32(path)
all_strings(lst) Return True if all items in lst are string objects.
has_f_sources(sources) Return True if sources contains Fortran files
has_cxx_sources(sources) Return True if sources contains C++ files
filter_sources(sources) Return four lists of filenames containing C, C++, Fortran,

and Fortran 90 module sources, respectively.
get_dependencies(sources)
is_local_src_dir(directory) Return true if directory is local directory.
get_ext_source_files(ext)
get_script_files(scripts)

1187



NumPy Reference, Release 1.15.1

numpy.distutils.misc_util.get_numpy_include_dirs()

numpy.distutils.misc_util.dict_append(d, **kws)

numpy.distutils.misc_util.appendpath(prefix, path)

numpy.distutils.misc_util.allpath(name)
Convert a /-separated pathname to one using the OS’s path separator.

numpy.distutils.misc_util.dot_join(*args)

numpy.distutils.misc_util.generate_config_py(target)
Generate config.py file containing system_info information used during building the package.

Usage: config[‘py_modules’].append((packagename, ‘__config__’,generate_config_py))

numpy.distutils.misc_util.get_cmd(cmdname, _cache={})

numpy.distutils.misc_util.terminal_has_colors()

numpy.distutils.misc_util.red_text(s)

numpy.distutils.misc_util.green_text(s)

numpy.distutils.misc_util.yellow_text(s)

numpy.distutils.misc_util.blue_text(s)

numpy.distutils.misc_util.cyan_text(s)

numpy.distutils.misc_util.cyg2win32(path)

numpy.distutils.misc_util.all_strings(lst)
Return True if all items in lst are string objects.

numpy.distutils.misc_util.has_f_sources(sources)
Return True if sources contains Fortran files

numpy.distutils.misc_util.has_cxx_sources(sources)
Return True if sources contains C++ files

numpy.distutils.misc_util.filter_sources(sources)
Return four lists of filenames containing C, C++, Fortran, and Fortran 90 module sources, respectively.

numpy.distutils.misc_util.get_dependencies(sources)

numpy.distutils.misc_util.is_local_src_dir(directory)
Return true if directory is local directory.

numpy.distutils.misc_util.get_ext_source_files(ext)

numpy.distutils.misc_util.get_script_files(scripts)

class numpy.distutils.misc_util.Configuration(package_name=None, par-
ent_name=None, top_path=None,
package_path=None, **attrs)

Construct a configuration instance for the given package name. If parent_name is not None, then construct the
package as a sub-package of the parent_name package. If top_path and package_path are None then they are
assumed equal to the path of the file this instance was created in. The setup.py files in the numpy distribution
are good examples of how to use the Configuration instance.

todict()
Return a dictionary compatible with the keyword arguments of distutils setup function.

1188 Chapter 5. Packaging (numpy.distutils)



NumPy Reference, Release 1.15.1

Examples

>>> setup(**config.todict())

get_distribution()
Return the distutils distribution object for self.

get_subpackage(subpackage_name, subpackage_path=None, parent_name=None, caller_level=1)
Return list of subpackage configurations.

Parameters

subpackage_name [str or None] Name of the subpackage to get the configuration. ‘*’ in
subpackage_name is handled as a wildcard.

subpackage_path [str] If None, then the path is assumed to be the local path plus the sub-
package_name. If a setup.py file is not found in the subpackage_path, then a default
configuration is used.

parent_name [str] Parent name.

add_subpackage(subpackage_name, subpackage_path=None, standalone=False)
Add a sub-package to the current Configuration instance.

This is useful in a setup.py script for adding sub-packages to a package.

Parameters

subpackage_name [str] name of the subpackage

subpackage_path [str] if given, the subpackage path such as the subpackage is in subpack-
age_path / subpackage_name. If None,the subpackage is assumed to be located in the
local path / subpackage_name.

standalone [bool]

add_data_files(*files)
Add data files to configuration data_files.

Parameters

files [sequence] Argument(s) can be either

• 2-sequence (<datadir prefix>,<path to data file(s)>)

• paths to data files where python datadir prefix defaults to package dir.

Notes

The form of each element of the files sequence is very flexible allowing many combinations of where to
get the files from the package and where they should ultimately be installed on the system. The most basic
usage is for an element of the files argument sequence to be a simple filename. This will cause that file
from the local path to be installed to the installation path of the self.name package (package path). The file
argument can also be a relative path in which case the entire relative path will be installed into the package
directory. Finally, the file can be an absolute path name in which case the file will be found at the absolute
path name but installed to the package path.

This basic behavior can be augmented by passing a 2-tuple in as the file argument. The first element of the
tuple should specify the relative path (under the package install directory) where the remaining sequence
of files should be installed to (it has nothing to do with the file-names in the source distribution). The
second element of the tuple is the sequence of files that should be installed. The files in this sequence can

5.1. Modules in numpy.distutils 1189



NumPy Reference, Release 1.15.1

be filenames, relative paths, or absolute paths. For absolute paths the file will be installed in the top-level
package installation directory (regardless of the first argument). Filenames and relative path names will be
installed in the package install directory under the path name given as the first element of the tuple.

Rules for installation paths:

1. file.txt -> (., file.txt)-> parent/file.txt

2. foo/file.txt -> (foo, foo/file.txt) -> parent/foo/file.txt

3. /foo/bar/file.txt -> (., /foo/bar/file.txt) -> parent/file.txt

4. *.txt -> parent/a.txt, parent/b.txt

5. foo/*.txt‘‘ -> parent/foo/a.txt, parent/foo/b.txt

6. */*.txt -> (*, */*.txt) -> parent/c/a.txt, parent/d/b.txt

7. (sun, file.txt) -> parent/sun/file.txt

8. (sun, bar/file.txt) -> parent/sun/file.txt

9. (sun, /foo/bar/file.txt) -> parent/sun/file.txt

10. (sun, *.txt) -> parent/sun/a.txt, parent/sun/b.txt

11. (sun, bar/*.txt) -> parent/sun/a.txt, parent/sun/b.txt

12. (sun/*, */*.txt) -> parent/sun/c/a.txt, parent/d/b.txt

An additional feature is that the path to a data-file can actually be a function that takes no arguments and
returns the actual path(s) to the data-files. This is useful when the data files are generated while building
the package.

Examples

Add files to the list of data_files to be included with the package.

>>> self.add_data_files('foo.dat',
... ('fun', ['gun.dat', 'nun/pun.dat', '/tmp/sun.dat']),
... 'bar/cat.dat',
... '/full/path/to/can.dat')

will install these data files to:

<package install directory>/
foo.dat
fun/
gun.dat
nun/
pun.dat

sun.dat
bar/
car.dat

can.dat

where <package install directory> is the package (or sub-package) directory such as
‘/usr/lib/python2.4/site-packages/mypackage’ (‘C: Python2.4 Lib site-packages mypackage’) or
‘/usr/lib/python2.4/site- packages/mypackage/mysubpackage’ (‘C: Python2.4 Lib site-packages my-
package mysubpackage’).

1190 Chapter 5. Packaging (numpy.distutils)



NumPy Reference, Release 1.15.1

add_data_dir(data_path)
Recursively add files under data_path to data_files list.

Recursively add files under data_path to the list of data_files to be installed (and distributed). The data_path
can be either a relative path-name, or an absolute path-name, or a 2-tuple where the first argument shows
where in the install directory the data directory should be installed to.

Parameters

data_path [seq or str] Argument can be either

• 2-sequence (<datadir suffix>, <path to data directory>)

• path to data directory where python datadir suffix defaults to package dir.

Notes

Rules for installation paths:

foo/bar -> (foo/bar, foo/bar) -> parent/foo/bar
(gun, foo/bar) -> parent/gun
foo/* -> (foo/a, foo/a), (foo/b, foo/b) -> parent/foo/a, parent/foo/b
(gun, foo/*) -> (gun, foo/a), (gun, foo/b) -> gun
(gun/*, foo/*) -> parent/gun/a, parent/gun/b
/foo/bar -> (bar, /foo/bar) -> parent/bar
(gun, /foo/bar) -> parent/gun
(fun/*/gun/*, sun/foo/bar) -> parent/fun/foo/gun/bar

Examples

For example suppose the source directory contains fun/foo.dat and fun/bar/car.dat:

>>> self.add_data_dir('fun')
>>> self.add_data_dir(('sun', 'fun'))
>>> self.add_data_dir(('gun', '/full/path/to/fun'))

Will install data-files to the locations:

<package install directory>/
fun/
foo.dat
bar/
car.dat

sun/
foo.dat
bar/
car.dat

gun/
foo.dat
car.dat

add_include_dirs(*paths)
Add paths to configuration include directories.

Add the given sequence of paths to the beginning of the include_dirs list. This list will be visible to all
extension modules of the current package.

5.1. Modules in numpy.distutils 1191



NumPy Reference, Release 1.15.1

add_headers(*files)
Add installable headers to configuration.

Add the given sequence of files to the beginning of the headers list. By default, headers will be installed
under <python- include>/<self.name.replace(‘.’,’/’)>/ directory. If an item of files is a tuple, then its first
argument specifies the actual installation location relative to the <python-include> path.

Parameters

files [str or seq] Argument(s) can be either:

• 2-sequence (<includedir suffix>,<path to header file(s)>)

• path(s) to header file(s) where python includedir suffix will default to package name.

add_extension(name, sources, **kw)
Add extension to configuration.

Create and add an Extension instance to the ext_modules list. This method also takes the following optional
keyword arguments that are passed on to the Extension constructor.

Parameters

name [str] name of the extension

sources [seq] list of the sources. The list of sources may contain functions (called source
generators) which must take an extension instance and a build directory as inputs and
return a source file or list of source files or None. If None is returned then no sources are
generated. If the Extension instance has no sources after processing all source generators,
then no extension module is built.

include_dirs :

define_macros :

undef_macros :

library_dirs :

libraries :

runtime_library_dirs :

extra_objects :

extra_compile_args :

extra_link_args :

extra_f77_compile_args :

extra_f90_compile_args :

export_symbols :

swig_opts :

depends : The depends list contains paths to files or directories that the sources of the exten-
sion module depend on. If any path in the depends list is newer than the extension module,
then the module will be rebuilt.

language :

f2py_options :

module_dirs :

extra_info [dict or list] dict or list of dict of keywords to be appended to keywords.

1192 Chapter 5. Packaging (numpy.distutils)



NumPy Reference, Release 1.15.1

Notes

The self.paths(. . . ) method is applied to all lists that may contain paths.

add_library(name, sources, **build_info)
Add library to configuration.

Parameters

name [str] Name of the extension.

sources [sequence] List of the sources. The list of sources may contain functions (called
source generators) which must take an extension instance and a build directory as inputs
and return a source file or list of source files or None. If None is returned then no sources
are generated. If the Extension instance has no sources after processing all source genera-
tors, then no extension module is built.

build_info [dict, optional] The following keys are allowed:

• depends

• macros

• include_dirs

• extra_compiler_args

• extra_f77_compile_args

• extra_f90_compile_args

• f2py_options

• language

add_scripts(*files)
Add scripts to configuration.

Add the sequence of files to the beginning of the scripts list. Scripts will be installed under the <prefix>/bin/
directory.

add_installed_library(name, sources, install_dir, build_info=None)
Similar to add_library, but the specified library is installed.

Most C libraries used with distutils are only used to build python extensions, but libraries built
through this method will be installed so that they can be reused by third-party packages.

Parameters

name [str] Name of the installed library.

sources [sequence] List of the library’s source files. See add_library for details.

install_dir [str] Path to install the library, relative to the current sub-package.

build_info [dict, optional] The following keys are allowed:

• depends

• macros

• include_dirs

• extra_compiler_args

• extra_f77_compile_args

• extra_f90_compile_args

5.1. Modules in numpy.distutils 1193

https://docs.python.org/dev/library/distutils.html#module-distutils


NumPy Reference, Release 1.15.1

• f2py_options

• language

Returns

None

See also:

add_library , add_npy_pkg_config, get_info

Notes

The best way to encode the options required to link against the specified C libraries is to use a “libname.ini”
file, and use get_info to retrieve the required options (see add_npy_pkg_config for more infor-
mation).

add_npy_pkg_config(template, install_dir, subst_dict=None)
Generate and install a npy-pkg config file from a template.

The config file generated from template is installed in the given install directory, using subst_dict for
variable substitution.

Parameters

template [str] The path of the template, relatively to the current package path.

install_dir [str] Where to install the npy-pkg config file, relatively to the current package
path.

subst_dict [dict, optional] If given, any string of the form @key@ will be replaced by
subst_dict[key] in the template file when installed. The install prefix is always
available through the variable @prefix@, since the install prefix is not easy to get reli-
ably from setup.py.

See also:

add_installed_library , get_info

Notes

This works for both standard installs and in-place builds, i.e. the @prefix@ refer to the source directory
for in-place builds.

Examples

config.add_npy_pkg_config('foo.ini.in', 'lib', {'foo': bar})

Assuming the foo.ini.in file has the following content:

[meta]
Name=@foo@
Version=1.0
Description=dummy description

[default]

(continues on next page)

1194 Chapter 5. Packaging (numpy.distutils)



NumPy Reference, Release 1.15.1

(continued from previous page)

Cflags=-I@prefix@/include
Libs=

The generated file will have the following content:

[meta]
Name=bar
Version=1.0
Description=dummy description

[default]
Cflags=-Iprefix_dir/include
Libs=

and will be installed as foo.ini in the ‘lib’ subpath.

paths(*paths, **kws)
Apply glob to paths and prepend local_path if needed.

Applies glob.glob(. . . ) to each path in the sequence (if needed) and pre-pends the local_path if needed.
Because this is called on all source lists, this allows wildcard characters to be specified in lists of sources
for extension modules and libraries and scripts and allows path-names be relative to the source directory.

get_config_cmd()
Returns the numpy.distutils config command instance.

get_build_temp_dir()
Return a path to a temporary directory where temporary files should be placed.

have_f77c()
Check for availability of Fortran 77 compiler.

Use it inside source generating function to ensure that setup distribution instance has been initialized.

Notes

True if a Fortran 77 compiler is available (because a simple Fortran 77 code was able to be compiled
successfully).

have_f90c()
Check for availability of Fortran 90 compiler.

Use it inside source generating function to ensure that setup distribution instance has been initialized.

Notes

True if a Fortran 90 compiler is available (because a simple Fortran 90 code was able to be compiled
successfully)

get_version(version_file=None, version_variable=None)
Try to get version string of a package.

Return a version string of the current package or None if the version information could not be detected.

5.1. Modules in numpy.distutils 1195



NumPy Reference, Release 1.15.1

Notes

This method scans files named __version__.py, <packagename>_version.py, version.py, and
__svn_version__.py for string variables version, __version__, and <packagename>_version, until a ver-
sion number is found.

make_svn_version_py(delete=True)
Appends a data function to the data_files list that will generate __svn_version__.py file to the current
package directory.

Generate package __svn_version__.py file from SVN revision number, it will be removed after python
exits but will be available when sdist, etc commands are executed.

Notes

If __svn_version__.py existed before, nothing is done.

This is intended for working with source directories that are in an SVN repository.

make_config_py(name=’__config__’)
Generate package __config__.py file containing system_info information used during building the pack-
age.

This file is installed to the package installation directory.

get_info(*names)
Get resources information.

Return information (from system_info.get_info) for all of the names in the argument list in a single dictio-
nary.

5.1.2 Other modules

system_info.get_info(name[, notfound_action]) notfound_action: 0 - do nothing 1 - display warning mes-
sage 2 - raise error

system_info.get_standard_file(fname) Returns a list of files named ‘fname’ from 1) System-
wide directory (directory-location of this module) 2) Users
HOME directory (os.environ[‘HOME’]) 3) Local directory

cpuinfo.cpu
log.set_verbosity(v[, force])
exec_command exec_command

numpy.distutils.system_info.get_info(name, notfound_action=0)

notfound_action: 0 - do nothing 1 - display warning message 2 - raise error

numpy.distutils.system_info.get_standard_file(fname)
Returns a list of files named ‘fname’ from 1) System-wide directory (directory-location of this module) 2) Users
HOME directory (os.environ[‘HOME’]) 3) Local directory

numpy.distutils.cpuinfo.cpu = <numpy.distutils.cpuinfo.LinuxCPUInfo object>

numpy.distutils.log.set_verbosity(v, force=False)

exec_command

Implements exec_command function that is (almost) equivalent to commands.getstatusoutput function but on NT,

1196 Chapter 5. Packaging (numpy.distutils)



NumPy Reference, Release 1.15.1

DOS systems the returned status is actually correct (though, the returned status values may be different by a factor).
In addition, exec_command takes keyword arguments for (re-)defining environment variables.

Provides functions:

exec_command — execute command in a specified directory and in the modified environment.

find_executable — locate a command using info from environment variable PATH. Equivalent to
posix which command.

Author: Pearu Peterson <pearu@cens.ioc.ee> Created: 11 January 2003

Requires: Python 2.x

Successfully tested on:

os.namesys.platformcomments
posix linux2 Debian (sid) Linux, Python 2.1.3+, 2.2.3+, 2.3.3 PyCrust 0.9.3, Idle 1.0.2
posix linux2 Red Hat 9 Linux, Python 2.1.3, 2.2.2, 2.3.2
posix sunos5 SunOS 5.9, Python 2.2, 2.3.2
posix dar-

win
Darwin 7.2.0, Python 2.3

nt win32 Windows Me Python 2.3(EE), Idle 1.0, PyCrust 0.7.2 Python 2.1.1 Idle 0.8
nt win32 Windows 98, Python 2.1.1. Idle 0.8
nt win32 Cygwin 98-4.10, Python 2.1.1(MSC) - echo tests fail i.e. redefining environment variables may not

work. FIXED: don’t use cygwin echo! Comment: also cmd /c echo will not work but redefining
environment variables do work.

posix cyg-
win

Cygwin 98-4.10, Python 2.3.3(cygming special)

nt win32 Windows XP, Python 2.3.3

Known bugs:

• Tests, that send messages to stderr, fail when executed from MSYS prompt because the messages are lost at
some point.

Functions

exec_command(command[, execute_in, . . . ]) Return (status,output) of executed command.
find_executable(exe[, path, _cache]) Return full path of a executable or None.
get_pythonexe()
temp_file_name()

5.2 Building Installable C libraries

Conventional C libraries (installed through add_library) are not installed, and are just used during the build (they
are statically linked). An installable C library is a pure C library, which does not depend on the python C runtime,
and is installed such that it may be used by third-party packages. To build and install the C library, you just use
the method add_installed_library instead of add_library, which takes the same arguments except for an additional
install_dir argument:

>>> config.add_installed_library('foo', sources=['foo.c'], install_dir='lib')

5.2. Building Installable C libraries 1197

mailto:pearu@cens.ioc.ee


NumPy Reference, Release 1.15.1

5.2.1 npy-pkg-config files

To make the necessary build options available to third parties, you could use the npy-pkg-config mechanism imple-
mented in numpy.distutils. This mechanism is based on a .ini file which contains all the options. A .ini file is
very similar to .pc files as used by the pkg-config unix utility:

[meta]
Name: foo
Version: 1.0
Description: foo library

[variables]
prefix = /home/user/local
libdir = ${prefix}/lib
includedir = ${prefix}/include

[default]
cflags = -I${includedir}
libs = -L${libdir} -lfoo

Generally, the file needs to be generated during the build, since it needs some information known at build time only
(e.g. prefix). This is mostly automatic if one uses the Configuration method add_npy_pkg_config. Assuming we have
a template file foo.ini.in as follows:

[meta]
Name: foo
Version: @version@
Description: foo library

[variables]
prefix = @prefix@
libdir = ${prefix}/lib
includedir = ${prefix}/include

[default]
cflags = -I${includedir}
libs = -L${libdir} -lfoo

and the following code in setup.py:

>>> config.add_installed_library('foo', sources=['foo.c'], install_dir='lib')
>>> subst = {'version': '1.0'}
>>> config.add_npy_pkg_config('foo.ini.in', 'lib', subst_dict=subst)

This will install the file foo.ini into the directory package_dir/lib, and the foo.ini file will be generated from foo.ini.in,
where each @version@ will be replaced by subst_dict['version']. The dictionary has an additional prefix
substitution rule automatically added, which contains the install prefix (since this is not easy to get from setup.py).
npy-pkg-config files can also be installed at the same location as used for numpy, using the path returned from
get_npy_pkg_dir function.

5.2.2 Reusing a C library from another package

Info are easily retrieved from the get_info function in numpy.distutils.misc_util:

>>> info = get_info('npymath')
>>> config.add_extension('foo', sources=['foo.c'], extra_info=**info)

1198 Chapter 5. Packaging (numpy.distutils)



NumPy Reference, Release 1.15.1

An additional list of paths to look for .ini files can be given to get_info.

5.3 Conversion of .src files

NumPy distutils supports automatic conversion of source files named <somefile>.src. This facility can be used to
maintain very similar code blocks requiring only simple changes between blocks. During the build phase of setup, if
a template file named <somefile>.src is encountered, a new file named <somefile> is constructed from the template
and placed in the build directory to be used instead. Two forms of template conversion are supported. The first form
occurs for files named <file>.ext.src where ext is a recognized Fortran extension (f, f90, f95, f77, for, ftn, pyf). The
second form is used for all other cases.

5.3.1 Fortran files

This template converter will replicate all function and subroutine blocks in the file with names that contain ‘<. . . >’
according to the rules in ‘<. . . >’. The number of comma-separated words in ‘<. . . >’ determines the number of times
the block is repeated. What these words are indicates what that repeat rule, ‘<. . . >’, should be replaced with in each
block. All of the repeat rules in a block must contain the same number of comma-separated words indicating the
number of times that block should be repeated. If the word in the repeat rule needs a comma, leftarrow, or rightarrow,
then prepend it with a backslash ‘ ‘. If a word in the repeat rule matches ‘ \<index>’ then it will be replaced with the
<index>-th word in the same repeat specification. There are two forms for the repeat rule: named and short.

Named repeat rule

A named repeat rule is useful when the same set of repeats must be used several times in a block. It is specified using
<rule1=item1, item2, item3,. . . , itemN>, where N is the number of times the block should be repeated. On each repeat
of the block, the entire expression, ‘<. . . >’ will be replaced first with item1, and then with item2, and so forth until N
repeats are accomplished. Once a named repeat specification has been introduced, the same repeat rule may be used
in the current block by referring only to the name (i.e. <rule1>.

Short repeat rule

A short repeat rule looks like <item1, item2, item3, . . . , itemN>. The rule specifies that the entire expression, ‘<. . . >’
should be replaced first with item1, and then with item2, and so forth until N repeats are accomplished.

Pre-defined names

The following predefined named repeat rules are available:

• <prefix=s,d,c,z>

• <_c=s,d,c,z>

• <_t=real, double precision, complex, double complex>

• <ftype=real, double precision, complex, double complex>

• <ctype=float, double, complex_float, complex_double>

• <ftypereal=float, double precision, \0, \1>

• <ctypereal=float, double, \0, \1>

5.3. Conversion of .src files 1199



NumPy Reference, Release 1.15.1

5.3.2 Other files

Non-Fortran files use a separate syntax for defining template blocks that should be repeated using a variable expansion
similar to the named repeat rules of the Fortran-specific repeats. The template rules for these files are:

1. “/**begin repeat “on a line by itself marks the beginning of a segment that should be repeated.

2. Named variable expansions are defined using #name=item1, item2, item3, . . . , itemN# and placed on successive
lines. These variables are replaced in each repeat block with corresponding word. All named variables in the
same repeat block must define the same number of words.

3. In specifying the repeat rule for a named variable, item*N is short- hand for item, item, . . . , item repeated N
times. In addition, parenthesis in combination with *N can be used for grouping several items that should be
repeated. Thus, #name=(item1, item2)*4# is equivalent to #name=item1, item2, item1, item2, item1, item2,
item1, item2#

4. “*/ “on a line by itself marks the end of the variable expansion naming. The next line is the first line that will be
repeated using the named rules.

5. Inside the block to be repeated, the variables that should be expanded are specified as @name@.

6. “/**end repeat**/ “on a line by itself marks the previous line as the last line of the block to be repeated.

1200 Chapter 5. Packaging (numpy.distutils)



CHAPTER

SIX

NUMPY C-API

Beware of the man who won’t be bothered with details.
— William Feather, Sr.

The truth is out there.
— Chris Carter, The X Files

NumPy provides a C-API to enable users to extend the system and get access to the array object for use in other
routines. The best way to truly understand the C-API is to read the source code. If you are unfamiliar with (C) source
code, however, this can be a daunting experience at first. Be assured that the task becomes easier with practice, and
you may be surprised at how simple the C-code can be to understand. Even if you don’t think you can write C-code
from scratch, it is much easier to understand and modify already-written source code then create it de novo.

Python extensions are especially straightforward to understand because they all have a very similar structure. Admit-
tedly, NumPy is not a trivial extension to Python, and may take a little more snooping to grasp. This is especially true
because of the code-generation techniques, which simplify maintenance of very similar code, but can make the code a
little less readable to beginners. Still, with a little persistence, the code can be opened to your understanding. It is my
hope, that this guide to the C-API can assist in the process of becoming familiar with the compiled-level work that can
be done with NumPy in order to squeeze that last bit of necessary speed out of your code.

6.1 Python Types and C-Structures

Several new types are defined in the C-code. Most of these are accessible from Python, but a few are not exposed due
to their limited use. Every new Python type has an associated PyObject * with an internal structure that includes
a pointer to a “method table” that defines how the new object behaves in Python. When you receive a Python object
into C code, you always get a pointer to a PyObject structure. Because a PyObject structure is very generic and
defines only PyObject_HEAD, by itself it is not very interesting. However, different objects contain more details
after the PyObject_HEAD (but you have to cast to the correct type to access them — or use accessor functions or
macros).

6.1.1 New Python Types Defined

Python types are the functional equivalent in C of classes in Python. By constructing a new Python type you make
available a new object for Python. The ndarray object is an example of a new type defined in C. New types are defined
in C by two basic steps:

1. creating a C-structure (usually named Py{Name}Object) that is binary- compatible with the PyObject
structure itself but holds the additional information needed for that particular object;

1201

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject_HEAD
https://docs.python.org/dev/c-api/structures.html#c.PyObject_HEAD
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

2. populating the PyTypeObject table (pointed to by the ob_type member of the PyObject structure) with
pointers to functions that implement the desired behavior for the type.

Instead of special method names which define behavior for Python classes, there are “function tables” which point to
functions that implement the desired results. Since Python 2.2, the PyTypeObject itself has become dynamic which
allows C types that can be “sub-typed “from other C-types in C, and sub-classed in Python. The children types inherit
the attributes and methods from their parent(s).

There are two major new types: the ndarray ( PyArray_Type ) and the ufunc ( PyUFunc_Type ). Ad-
ditional types play a supportive role: the PyArrayIter_Type, the PyArrayMultiIter_Type, and the
PyArrayDescr_Type . The PyArrayIter_Type is the type for a flat iterator for an ndarray (the object that
is returned when getting the flat attribute). The PyArrayMultiIter_Type is the type of the object returned
when calling broadcast (). It handles iteration and broadcasting over a collection of nested sequences. Also, the
PyArrayDescr_Type is the data-type-descriptor type whose instances describe the data. Finally, there are 21 new
scalar-array types which are new Python scalars corresponding to each of the fundamental data types available for
arrays. An additional 10 other types are place holders that allow the array scalars to fit into a hierarchy of actual
Python types.

PyArray_Type

PyArray_Type
The Python type of the ndarray is PyArray_Type. In C, every ndarray is a pointer to a PyArrayObject
structure. The ob_type member of this structure contains a pointer to the PyArray_Type typeobject.

PyArrayObject
The PyArrayObject C-structure contains all of the required information for an array. All instances of an
ndarray (and its subclasses) will have this structure. For future compatibility, these structure members should
normally be accessed using the provided macros. If you need a shorter name, then you can make use of NPY_AO
which is defined to be equivalent to PyArrayObject.

typedef struct PyArrayObject {
PyObject_HEAD
char *data;
int nd;
npy_intp *dimensions;
npy_intp *strides;
PyObject *base;
PyArray_Descr *descr;
int flags;
PyObject *weakreflist;

} PyArrayObject;

char *PyArrayObject.data
A pointer to the first element of the array. This pointer can (and normally should) be recast to the data type of
the array.

int PyArrayObject.nd
An integer providing the number of dimensions for this array. When nd is 0, the array is sometimes called a
rank-0 array. Such arrays have undefined dimensions and strides and cannot be accessed. NPY_MAXDIMS is
the largest number of dimensions for any array.

npy_intp PyArrayObject.dimensions
An array of integers providing the shape in each dimension as long as nd ≥ 1. The integer is always large
enough to hold a pointer on the platform, so the dimension size is only limited by memory.

npy_intp *PyArrayObject.strides
An array of integers providing for each dimension the number of bytes that must be skipped to get to the next

1202 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/type.html#c.PyTypeObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

element in that dimension.

PyObject *PyArrayObject.base
This member is used to hold a pointer to another Python object that is related to this array. There are two
use cases: 1) If this array does not own its own memory, then base points to the Python object that owns
it (perhaps another array object), 2) If this array has the (deprecated) NPY_ARRAY_UPDATEIFCOPY or
:c:data:NPY_ARRAY_WRITEBACKIFCOPY‘: flag set, then this array is a working copy of a “misbehaved”
array. When PyArray_ResolveWritebackIfCopy is called, the array pointed to by base will be updated
with the contents of this array.

PyArray_Descr *PyArrayObject.descr
A pointer to a data-type descriptor object (see below). The data-type descriptor object is an instance of a new
built-in type which allows a generic description of memory. There is a descriptor structure for each data type
supported. This descriptor structure contains useful information about the type as well as a pointer to a table of
function pointers to implement specific functionality.

int PyArrayObject.flags
Flags indicating how the memory pointed to by data is to be interpreted. Possible flags
are NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_F_CONTIGUOUS, NPY_ARRAY_OWNDATA,
NPY_ARRAY_ALIGNED, NPY_ARRAY_WRITEABLE, NPY_ARRAY_WRITEBACKIFCOPY , and
NPY_ARRAY_UPDATEIFCOPY .

PyObject *PyArrayObject.weakreflist
This member allows array objects to have weak references (using the weakref module).

PyArrayDescr_Type

PyArrayDescr_Type
The PyArrayDescr_Type is the built-in type of the data-type-descriptor objects used to describe how
the bytes comprising the array are to be interpreted. There are 21 statically-defined PyArray_Descr ob-
jects for the built-in data-types. While these participate in reference counting, their reference count should
never reach zero. There is also a dynamic table of user-defined PyArray_Descr objects that is also main-
tained. Once a data-type-descriptor object is “registered” it should never be deallocated either. The function
PyArray_DescrFromType (. . . ) can be used to retrieve a PyArray_Descr object from an enumerated
type-number (either built-in or user- defined).

PyArray_Descr
The format of the PyArray_Descr structure that lies at the heart of the PyArrayDescr_Type is

typedef struct {
PyObject_HEAD
PyTypeObject *typeobj;
char kind;
char type;
char byteorder;
char unused;
int flags;
int type_num;
int elsize;
int alignment;
PyArray_ArrayDescr *subarray;
PyObject *fields;
PyArray_ArrFuncs *f;

} PyArray_Descr;

PyTypeObject *PyArray_Descr.typeobj
Pointer to a typeobject that is the corresponding Python type for the elements of this array. For the builtin

6.1. Python Types and C-Structures 1203

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/type.html#c.PyTypeObject


NumPy Reference, Release 1.15.1

types, this points to the corresponding array scalar. For user-defined types, this should point to a user-defined
typeobject. This typeobject can either inherit from array scalars or not. If it does not inherit from array scalars,
then the NPY_USE_GETITEM and NPY_USE_SETITEM flags should be set in the flags member.

char PyArray_Descr.kind
A character code indicating the kind of array (using the array interface typestring notation). A ‘b’ represents
Boolean, a ‘i’ represents signed integer, a ‘u’ represents unsigned integer, ‘f’ represents floating point, ‘c’
represents complex floating point, ‘S’ represents 8-bit zero-terminated bytes, ‘U’ represents 32-bit/character
unicode string, and ‘V’ represents arbitrary.

char PyArray_Descr.type
A traditional character code indicating the data type.

char PyArray_Descr.byteorder
A character indicating the byte-order: ‘>’ (big-endian), ‘<’ (little- endian), ‘=’ (native), ‘|’ (irrelevant, ignore).
All builtin data- types have byteorder ‘=’.

int PyArray_Descr.flags
A data-type bit-flag that determines if the data-type exhibits object- array like behavior. Each bit in this member
is a flag which are named as:

NPY_ITEM_REFCOUNT

NPY_ITEM_HASOBJECT
Indicates that items of this data-type must be reference counted (using Py_INCREF and Py_DECREF ).

NPY_LIST_PICKLE
Indicates arrays of this data-type must be converted to a list before pickling.

NPY_ITEM_IS_POINTER
Indicates the item is a pointer to some other data-type

NPY_NEEDS_INIT
Indicates memory for this data-type must be initialized (set to 0) on creation.

NPY_NEEDS_PYAPI
Indicates this data-type requires the Python C-API during access (so don’t give up the GIL if array access
is going to be needed).

NPY_USE_GETITEM
On array access use the f->getitem function pointer instead of the standard conversion to an array
scalar. Must use if you don’t define an array scalar to go along with the data-type.

NPY_USE_SETITEM
When creating a 0-d array from an array scalar use f->setitem instead of the standard copy from an
array scalar. Must use if you don’t define an array scalar to go along with the data-type.

NPY_FROM_FIELDS
The bits that are inherited for the parent data-type if these bits are set in any field of the data-type. Currently
( NPY_NEEDS_INIT | NPY_LIST_PICKLE | NPY_ITEM_REFCOUNT | NPY_NEEDS_PYAPI ).

NPY_OBJECT_DTYPE_FLAGS
Bits set for the object data-type: ( NPY_LIST_PICKLE | NPY_USE_GETITEM |
NPY_ITEM_IS_POINTER | NPY_REFCOUNT | NPY_NEEDS_INIT | NPY_NEEDS_PYAPI).

PyDataType_FLAGCHK(PyArray_Descr *dtype, int flags)
Return true if all the given flags are set for the data-type object.

PyDataType_REFCHK(PyArray_Descr *dtype)
Equivalent to PyDataType_FLAGCHK (dtype, NPY_ITEM_REFCOUNT).

1204 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/refcounting.html#c.Py_INCREF
https://docs.python.org/dev/c-api/refcounting.html#c.Py_DECREF


NumPy Reference, Release 1.15.1

int PyArray_Descr.type_num
A number that uniquely identifies the data type. For new data-types, this number is assigned when the data-type
is registered.

int PyArray_Descr.elsize
For data types that are always the same size (such as long), this holds the size of the data type. For flexible data
types where different arrays can have a different elementsize, this should be 0.

int PyArray_Descr.alignment
A number providing alignment information for this data type. Specifically, it shows how far from the
start of a 2-element structure (whose first element is a char ), the compiler places an item of this type:
offsetof(struct {char c; type v;}, v)

PyArray_ArrayDescr *PyArray_Descr.subarray
If this is non- NULL, then this data-type descriptor is a C-style contiguous array of another data-type descriptor.
In other-words, each element that this descriptor describes is actually an array of some other base descriptor.
This is most useful as the data-type descriptor for a field in another data-type descriptor. The fields member
should be NULL if this is non- NULL (the fields member of the base descriptor can be non- NULL however). The
PyArray_ArrayDescr structure is defined using

typedef struct {
PyArray_Descr *base;
PyObject *shape;

} PyArray_ArrayDescr;

The elements of this structure are:

PyArray_Descr *PyArray_ArrayDescr.base
The data-type-descriptor object of the base-type.

PyObject *PyArray_ArrayDescr.shape
The shape (always C-style contiguous) of the sub-array as a Python tuple.

PyObject *PyArray_Descr.fields
If this is non-NULL, then this data-type-descriptor has fields described by a Python dictionary whose keys
are names (and also titles if given) and whose values are tuples that describe the fields. Recall that a data-
type-descriptor always describes a fixed-length set of bytes. A field is a named sub-region of that total, fixed-
length collection. A field is described by a tuple composed of another data- type-descriptor and a byte offset.
Optionally, the tuple may contain a title which is normally a Python string. These tuples are placed in this
dictionary keyed by name (and also title if given).

PyArray_ArrFuncs *PyArray_Descr.f
A pointer to a structure containing functions that the type needs to implement internal features. These functions
are not the same thing as the universal functions (ufuncs) described later. Their signatures can vary arbitrarily.

PyArray_ArrFuncs
Functions implementing internal features. Not all of these function pointers must be defined for a given type.
The required members are nonzero, copyswap, copyswapn, setitem, getitem, and cast. These are
assumed to be non- NULL and NULL entries will cause a program crash. The other functions may be NULL
which will just mean reduced functionality for that data-type. (Also, the nonzero function will be filled in with
a default function if it is NULL when you register a user-defined data-type).

typedef struct {
PyArray_VectorUnaryFunc *cast[NPY_NTYPES];
PyArray_GetItemFunc *getitem;
PyArray_SetItemFunc *setitem;
PyArray_CopySwapNFunc *copyswapn;
PyArray_CopySwapFunc *copyswap;

(continues on next page)

6.1. Python Types and C-Structures 1205

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

(continued from previous page)

PyArray_CompareFunc *compare;
PyArray_ArgFunc *argmax;
PyArray_DotFunc *dotfunc;
PyArray_ScanFunc *scanfunc;
PyArray_FromStrFunc *fromstr;
PyArray_NonzeroFunc *nonzero;
PyArray_FillFunc *fill;
PyArray_FillWithScalarFunc *fillwithscalar;
PyArray_SortFunc *sort[NPY_NSORTS];
PyArray_ArgSortFunc *argsort[NPY_NSORTS];
PyObject *castdict;
PyArray_ScalarKindFunc *scalarkind;
int **cancastscalarkindto;
int *cancastto;
PyArray_FastClipFunc *fastclip;
PyArray_FastPutmaskFunc *fastputmask;
PyArray_FastTakeFunc *fasttake;
PyArray_ArgFunc *argmin;

} PyArray_ArrFuncs;

The concept of a behaved segment is used in the description of the function pointers. A behaved segment is one
that is aligned and in native machine byte-order for the data-type. The nonzero, copyswap, copyswapn,
getitem, and setitem functions can (and must) deal with mis-behaved arrays. The other functions require
behaved memory segments.

void cast(void *from, void *to, npy_intp n, void *fromarr, void *toarr)
An array of function pointers to cast from the current type to all of the other builtin types. Each func-
tion casts a contiguous, aligned, and notswapped buffer pointed at by from to a contiguous, aligned, and
notswapped buffer pointed at by to The number of items to cast is given by n, and the arguments fromarr
and toarr are interpreted as PyArrayObjects for flexible arrays to get itemsize information.

PyObject *getitem(void *data, void *arr)
A pointer to a function that returns a standard Python object from a single element of the array object arr
pointed to by data. This function must be able to deal with “misbehaved “(misaligned and/or swapped)
arrays correctly.

int setitem(PyObject *item, void *data, void *arr)
A pointer to a function that sets the Python object item into the array, arr, at the position pointed to by data
. This function deals with “misbehaved” arrays. If successful, a zero is returned, otherwise, a negative one
is returned (and a Python error set).

void copyswapn(void *dest, npy_intp dstride, void *src, npy_intp sstride, npy_intp n, int swap,
void *arr)

void copyswap(void *dest, void *src, int swap, void *arr)
These members are both pointers to functions to copy data from src to dest and swap if indicated. The
value of arr is only used for flexible ( NPY_STRING, NPY_UNICODE, and NPY_VOID ) arrays (and
is obtained from arr->descr->elsize ). The second function copies a single value, while the first
loops over n values with the provided strides. These functions can deal with misbehaved src data. If src
is NULL then no copy is performed. If swap is 0, then no byteswapping occurs. It is assumed that dest
and src do not overlap. If they overlap, then use memmove (. . . ) first followed by copyswap(n) with
NULL valued src.

int compare(const void* d1, const void* d2, void* arr)
A pointer to a function that compares two elements of the array, arr, pointed to by d1 and d2. This
function requires behaved (aligned and not swapped) arrays. The return value is 1 if * d1 > * d2, 0 if *
d1 == * d2, and -1 if * d1 < * d2. The array object arr is used to retrieve itemsize and field information

1206 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

for flexible arrays.

int argmax(void* data, npy_intp n, npy_intp* max_ind, void* arr)
A pointer to a function that retrieves the index of the largest of n elements in arr beginning at the element
pointed to by data. This function requires that the memory segment be contiguous and behaved. The
return value is always 0. The index of the largest element is returned in max_ind.

void dotfunc(void* ip1, npy_intp is1, void* ip2, npy_intp is2, void* op, npy_intp n, void* arr)
A pointer to a function that multiplies two n -length sequences together, adds them, and places the result
in element pointed to by op of arr. The start of the two sequences are pointed to by ip1 and ip2. To get
to the next element in each sequence requires a jump of is1 and is2 bytes, respectively. This function
requires behaved (though not necessarily contiguous) memory.

int scanfunc(FILE* fd, void* ip, void* sep, void* arr)
A pointer to a function that scans (scanf style) one element of the corresponding type from the file descrip-
tor fd into the array memory pointed to by ip. The array is assumed to be behaved. If sep is not NULL,
then a separator string is also scanned from the file before returning. The last argument arr is the array
to be scanned into. A 0 is returned if the scan is successful. A negative number indicates something went
wrong: -1 means the end of file was reached before the separator string could be scanned, -4 means that
the end of file was reached before the element could be scanned, and -3 means that the element could not
be interpreted from the format string. Requires a behaved array.

int fromstr(char* str, void* ip, char** endptr, void* arr)
A pointer to a function that converts the string pointed to by str to one element of the corresponding type
and places it in the memory location pointed to by ip. After the conversion is completed, *endptr points
to the rest of the string. The last argument arr is the array into which ip points (needed for variable-size
data- types). Returns 0 on success or -1 on failure. Requires a behaved array.

Bool nonzero(void* data, void* arr)
A pointer to a function that returns TRUE if the item of arr pointed to by data is nonzero. This function
can deal with misbehaved arrays.

void fill(void* data, npy_intp length, void* arr)
A pointer to a function that fills a contiguous array of given length with data. The first two elements of
the array must already be filled- in. From these two values, a delta will be computed and the values from
item 3 to the end will be computed by repeatedly adding this computed delta. The data buffer must be
well-behaved.

void fillwithscalar(void* buffer, npy_intp length, void* value, void* arr)
A pointer to a function that fills a contiguous buffer of the given length with a single scalar value
whose address is given. The final argument is the array which is needed to get the itemsize for variable-
length arrays.

int sort(void* start, npy_intp length, void* arr)
An array of function pointers to a particular sorting algorithms. A particular sorting algorithm is obtained
using a key (so far NPY_QUICKSORT, NPY_HEAPSORT, and NPY_MERGESORT are defined). These
sorts are done in-place assuming contiguous and aligned data.

int argsort(void* start, npy_intp* result, npy_intp length, void *arr)
An array of function pointers to sorting algorithms for this data type. The same sorting algorithms as for
sort are available. The indices producing the sort are returned in result (which must be initialized with
indices 0 to length-1 inclusive).

PyObject *castdict
Either NULL or a dictionary containing low-level casting functions for user- defined data-types. Each
function is wrapped in a PyCObject * and keyed by the data-type number.

NPY_SCALARKIND scalarkind(PyArrayObject* arr)
A function to determine how scalars of this type should be interpreted. The argument is NULL or a 0-

6.1. Python Types and C-Structures 1207

https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

dimensional array containing the data (if that is needed to determine the kind of scalar). The return value
must be of type NPY_SCALARKIND.

int **cancastscalarkindto
Either NULL or an array of NPY_NSCALARKINDS pointers. These pointers should each be either NULL
or a pointer to an array of integers (terminated by NPY_NOTYPE) indicating data-types that a scalar of this
data-type of the specified kind can be cast to safely (this usually means without losing precision).

int *cancastto
Either NULL or an array of integers (terminated by NPY_NOTYPE ) indicated data-types that this data-type
can be cast to safely (this usually means without losing precision).

void fastclip(void *in, npy_intp n_in, void *min, void *max, void *out)
A function that reads n_in items from in, and writes to out the read value if it is within the limits pointed
to by min and max, or the corresponding limit if outside. The memory segments must be contiguous and
behaved, and either min or max may be NULL, but not both.

void fastputmask(void *in, void *mask, npy_intp n_in, void *values, npy_intp nv)
A function that takes a pointer in to an array of n_in items, a pointer mask to an array of n_in boolean
values, and a pointer vals to an array of nv items. Items from vals are copied into in wherever the
value in mask is non-zero, tiling vals as needed if nv < n_in. All arrays must be contiguous and
behaved.

void fasttake(void *dest, void *src, npy_intp *indarray, npy_intp nindarray, npy_intp n_outer,
npy_intp m_middle, npy_intp nelem, NPY_CLIPMODE clipmode)

A function that takes a pointer src to a C contiguous, behaved segment, interpreted as a 3-dimensional ar-
ray of shape (n_outer, nindarray, nelem), a pointer indarray to a contiguous, behaved seg-
ment of m_middle integer indices, and a pointer dest to a C contiguous, behaved segment, interpreted
as a 3-dimensional array of shape (n_outer, m_middle, nelem). The indices in indarray are
used to index src along the second dimension, and copy the corresponding chunks of nelem items into
dest. clipmode (which can take on the values NPY_RAISE, NPY_WRAP or NPY_CLIP) determines
how will indices smaller than 0 or larger than nindarray will be handled.

int argmin(void* data, npy_intp n, npy_intp* min_ind, void* arr)
A pointer to a function that retrieves the index of the smallest of n elements in arr beginning at the
element pointed to by data. This function requires that the memory segment be contiguous and behaved.
The return value is always 0. The index of the smallest element is returned in min_ind.

The PyArray_Type typeobject implements many of the features of Python objects including the tp_as_number,
tp_as_sequence, tp_as_mapping, and tp_as_buffer interfaces. The rich comparison (tp_richcompare) is also used
along with new-style attribute lookup for methods (tp_methods) and properties (tp_getset). The PyArray_Type can
also be sub-typed.

Tip: The tp_as_number methods use a generic approach to call whatever function has been registered for handling
the operation. The function PyNumeric_SetOps(..) can be used to register functions to handle particular mathematical
operations (for all arrays). When the umath module is imported, it sets the numeric operations for all arrays to the
corresponding ufuncs. The tp_str and tp_repr methods can also be altered using PyString_SetStringFunction(. . . ).

PyUFunc_Type

PyUFunc_Type
The ufunc object is implemented by creation of the PyUFunc_Type. It is a very simple type that implements
only basic getattribute behavior, printing behavior, and has call behavior which allows these objects to act like
functions. The basic idea behind the ufunc is to hold a reference to fast 1-dimensional (vector) loops for each
data type that supports the operation. These one-dimensional loops all have the same signature and are the

1208 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

key to creating a new ufunc. They are called by the generic looping code as appropriate to implement the N-
dimensional function. There are also some generic 1-d loops defined for floating and complexfloating arrays
that allow you to define a ufunc using a single scalar function (e.g. atanh).

PyUFuncObject
The core of the ufunc is the PyUFuncObject which contains all the information needed to call the underlying
C-code loops that perform the actual work. It has the following structure:

typedef struct {
PyObject_HEAD
int nin;
int nout;
int nargs;
int identity;
PyUFuncGenericFunction *functions;
void **data;
int ntypes;
int reserved1;
const char *name;
char *types;
const char *doc;
void *ptr;
PyObject *obj;
PyObject *userloops;
npy_uint32 *op_flags;
npy_uint32 *iter_flags;

} PyUFuncObject;

int PyUFuncObject.nin
The number of input arguments.

int PyUFuncObject.nout
The number of output arguments.

int PyUFuncObject.nargs
The total number of arguments (nin + nout). This must be less than NPY_MAXARGS.

int PyUFuncObject.identity
Either PyUFunc_One, PyUFunc_Zero, PyUFunc_None or PyUFunc_AllOnes to indicate the
identity for this operation. It is only used for a reduce-like call on an empty array.

void PyUFuncObject.functions(char** args, npy_intp* dims,
npy_intp* steps, void* extradata)

An array of function pointers — one for each data type supported by the ufunc. This is the vector
loop that is called to implement the underlying function dims [0] times. The first argument, args,
is an array of nargs pointers to behaved memory. Pointers to the data for the input arguments
are first, followed by the pointers to the data for the output arguments. How many bytes must be
skipped to get to the next element in the sequence is specified by the corresponding entry in the
steps array. The last argument allows the loop to receive extra information. This is commonly
used so that a single, generic vector loop can be used for multiple functions. In this case, the
actual scalar function to call is passed in as extradata. The size of this function pointer array is
ntypes.

void **PyUFuncObject.data
Extra data to be passed to the 1-d vector loops or NULL if no extra-data is needed. This C-array must be
the same size ( i.e. ntypes) as the functions array. NULL is used if extra_data is not needed. Several C-API
calls for UFuncs are just 1-d vector loops that make use of this extra data to receive a pointer to the actual
function to call.

6.1. Python Types and C-Structures 1209



NumPy Reference, Release 1.15.1

int PyUFuncObject.ntypes
The number of supported data types for the ufunc. This number specifies how many different 1-d loops (of
the builtin data types) are available.

char *PyUFuncObject.name
A string name for the ufunc. This is used dynamically to build the __doc__ attribute of ufuncs.

char *PyUFuncObject.types
An array of 𝑛𝑎𝑟𝑔𝑠 × 𝑛𝑡𝑦𝑝𝑒𝑠 8-bit type_numbers which contains the type signature for the function for
each of the supported (builtin) data types. For each of the ntypes functions, the corresponding set of type
numbers in this array shows how the args argument should be interpreted in the 1-d vector loop. These
type numbers do not have to be the same type and mixed-type ufuncs are supported.

char *PyUFuncObject.doc
Documentation for the ufunc. Should not contain the function signature as this is generated dynamically
when __doc__ is retrieved.

void *PyUFuncObject.ptr
Any dynamically allocated memory. Currently, this is used for dynamic ufuncs created from a python
function to store room for the types, data, and name members.

PyObject *PyUFuncObject.obj
For ufuncs dynamically created from python functions, this member holds a reference to the underlying
Python function.

PyObject *PyUFuncObject.userloops
A dictionary of user-defined 1-d vector loops (stored as CObject ptrs) for user-defined types. A loop may
be registered by the user for any user-defined type. It is retrieved by type number. User defined type
numbers are always larger than NPY_USERDEF.

npy_uint32 PyUFuncObject.op_flags
Override the default operand flags for each ufunc operand.

npy_uint32 PyUFuncObject.iter_flags
Override the default nditer flags for the ufunc.

PyArrayIter_Type

PyArrayIter_Type
This is an iterator object that makes it easy to loop over an N-dimensional array. It is the object returned from
the flat attribute of an ndarray. It is also used extensively throughout the implementation internals to loop over
an N-dimensional array. The tp_as_mapping interface is implemented so that the iterator object can be indexed
(using 1-d indexing), and a few methods are implemented through the tp_methods table. This object implements
the next method and can be used anywhere an iterator can be used in Python.

PyArrayIterObject
The C-structure corresponding to an object of PyArrayIter_Type is the PyArrayIterObject. The
PyArrayIterObject is used to keep track of a pointer into an N-dimensional array. It contains associated
information used to quickly march through the array. The pointer can be adjusted in three basic ways: 1) advance
to the “next” position in the array in a C-style contiguous fashion, 2) advance to an arbitrary N-dimensional
coordinate in the array, and 3) advance to an arbitrary one-dimensional index into the array. The members of
the PyArrayIterObject structure are used in these calculations. Iterator objects keep their own dimension
and strides information about an array. This can be adjusted as needed for “broadcasting,” or to loop over only
specific dimensions.

typedef struct {
PyObject_HEAD

(continues on next page)

1210 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

(continued from previous page)

int nd_m1;
npy_intp index;
npy_intp size;
npy_intp coordinates[NPY_MAXDIMS];
npy_intp dims_m1[NPY_MAXDIMS];
npy_intp strides[NPY_MAXDIMS];
npy_intp backstrides[NPY_MAXDIMS];
npy_intp factors[NPY_MAXDIMS];
PyArrayObject *ao;
char *dataptr;
Bool contiguous;

} PyArrayIterObject;

int PyArrayIterObject.nd_m1
𝑁 − 1 where 𝑁 is the number of dimensions in the underlying array.

npy_intp PyArrayIterObject.index
The current 1-d index into the array.

npy_intp PyArrayIterObject.size
The total size of the underlying array.

npy_intp *PyArrayIterObject.coordinates
An 𝑁 -dimensional index into the array.

npy_intp *PyArrayIterObject.dims_m1
The size of the array minus 1 in each dimension.

npy_intp *PyArrayIterObject.strides
The strides of the array. How many bytes needed to jump to the next element in each dimension.

npy_intp *PyArrayIterObject.backstrides
How many bytes needed to jump from the end of a dimension back to its beginning. Note that
backstrides[k] == strides[k] * dims_m1[k], but it is stored here as an optimization.

npy_intp *PyArrayIterObject.factors
This array is used in computing an N-d index from a 1-d index. It contains needed products of the dimen-
sions.

PyArrayObject *PyArrayIterObject.ao
A pointer to the underlying ndarray this iterator was created to represent.

char *PyArrayIterObject.dataptr
This member points to an element in the ndarray indicated by the index.

Bool PyArrayIterObject.contiguous
This flag is true if the underlying array is NPY_ARRAY_C_CONTIGUOUS. It is used to simplify calcula-
tions when possible.

How to use an array iterator on a C-level is explained more fully in later sections. Typically, you do not need to
concern yourself with the internal structure of the iterator object, and merely interact with it through the use of the
macros PyArray_ITER_NEXT (it), PyArray_ITER_GOTO (it, dest), or PyArray_ITER_GOTO1D (it, index).
All of these macros require the argument it to be a PyArrayIterObject *.

PyArrayMultiIter_Type

PyArrayMultiIter_Type
This type provides an iterator that encapsulates the concept of broadcasting. It allows 𝑁 arrays to be broadcast

6.1. Python Types and C-Structures 1211



NumPy Reference, Release 1.15.1

together so that the loop progresses in C-style contiguous fashion over the broadcasted array. The corresponding
C-structure is the PyArrayMultiIterObject whose memory layout must begin any object, obj, passed in
to the PyArray_Broadcast (obj) function. Broadcasting is performed by adjusting array iterators so that
each iterator represents the broadcasted shape and size, but has its strides adjusted so that the correct element
from the array is used at each iteration.

PyArrayMultiIterObject

typedef struct {
PyObject_HEAD
int numiter;
npy_intp size;
npy_intp index;
int nd;
npy_intp dimensions[NPY_MAXDIMS];
PyArrayIterObject *iters[NPY_MAXDIMS];

} PyArrayMultiIterObject;

int PyArrayMultiIterObject.numiter
The number of arrays that need to be broadcast to the same shape.

npy_intp PyArrayMultiIterObject.size
The total broadcasted size.

npy_intp PyArrayMultiIterObject.index
The current (1-d) index into the broadcasted result.

int PyArrayMultiIterObject.nd
The number of dimensions in the broadcasted result.

npy_intp *PyArrayMultiIterObject.dimensions
The shape of the broadcasted result (only nd slots are used).

PyArrayIterObject **PyArrayMultiIterObject.iters
An array of iterator objects that holds the iterators for the arrays to be broadcast together. On return, the
iterators are adjusted for broadcasting.

PyArrayNeighborhoodIter_Type

PyArrayNeighborhoodIter_Type
This is an iterator object that makes it easy to loop over an N-dimensional neighborhood.

PyArrayNeighborhoodIterObject
The C-structure corresponding to an object of PyArrayNeighborhoodIter_Type is the
PyArrayNeighborhoodIterObject.

PyArrayFlags_Type

PyArrayFlags_Type
When the flags attribute is retrieved from Python, a special builtin object of this type is constructed. This special
type makes it easier to work with the different flags by accessing them as attributes or by accessing them as if
the object were a dictionary with the flag names as entries.

1212 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

ScalarArrayTypes

There is a Python type for each of the different built-in data types that can be present in the array Most of these are sim-
ple wrappers around the corresponding data type in C. The C-names for these types are Py{TYPE}ArrType_Type
where {TYPE} can be

Bool, Byte, Short, Int, Long, LongLong, UByte, UShort, UInt, ULong, ULongLong, Half, Float,
Double, LongDouble, CFloat, CDouble, CLongDouble, String, Unicode, Void, and Object.

These type names are part of the C-API and can therefore be created in extension C-code. There is also a
PyIntpArrType_Type and a PyUIntpArrType_Type that are simple substitutes for one of the integer types
that can hold a pointer on the platform. The structure of these scalar objects is not exposed to C-code. The function
PyArray_ScalarAsCtype (..) can be used to extract the C-type value from the array scalar and the function
PyArray_Scalar (. . . ) can be used to construct an array scalar from a C-value.

6.1.2 Other C-Structures

A few new C-structures were found to be useful in the development of NumPy. These C-structures are used in at least
one C-API call and are therefore documented here. The main reason these structures were defined is to make it easy
to use the Python ParseTuple C-API to convert from Python objects to a useful C-Object.

PyArray_Dims

PyArray_Dims
This structure is very useful when shape and/or strides information is supposed to be interpreted. The structure
is:

typedef struct {
npy_intp *ptr;
int len;

} PyArray_Dims;

The members of this structure are

npy_intp *PyArray_Dims.ptr
A pointer to a list of (npy_intp) integers which usually represent array shape or array strides.

int PyArray_Dims.len
The length of the list of integers. It is assumed safe to access ptr [0] to ptr [len-1].

PyArray_Chunk

PyArray_Chunk
This is equivalent to the buffer object structure in Python up to the ptr member. On 32-bit platforms (i.e. if
NPY_SIZEOF_INT == NPY_SIZEOF_INTP), the len member also matches an equivalent member of the
buffer object. It is useful to represent a generic single-segment chunk of memory.

typedef struct {
PyObject_HEAD
PyObject *base;
void *ptr;
npy_intp len;
int flags;

} PyArray_Chunk;

6.1. Python Types and C-Structures 1213



NumPy Reference, Release 1.15.1

The members are

PyObject *PyArray_Chunk.base
The Python object this chunk of memory comes from. Needed so that memory can be accounted for
properly.

void *PyArray_Chunk.ptr
A pointer to the start of the single-segment chunk of memory.

npy_intp PyArray_Chunk.len
The length of the segment in bytes.

int PyArray_Chunk.flags
Any data flags (e.g. NPY_ARRAY_WRITEABLE ) that should be used to interpret the memory.

PyArrayInterface

See also:

The Array Interface

PyArrayInterface
The PyArrayInterface structure is defined so that NumPy and other extension modules can use the rapid
array interface protocol. The __array_struct__ method of an object that supports the rapid array interface
protocol should return a PyCObject that contains a pointer to a PyArrayInterface structure with the
relevant details of the array. After the new array is created, the attribute should be DECREF’d which will
free the PyArrayInterface structure. Remember to INCREF the object (whose __array_struct__
attribute was retrieved) and point the base member of the new PyArrayObject to this same object. In this
way the memory for the array will be managed correctly.

typedef struct {
int two;
int nd;
char typekind;
int itemsize;
int flags;
npy_intp *shape;
npy_intp *strides;
void *data;
PyObject *descr;

} PyArrayInterface;

int PyArrayInterface.two
the integer 2 as a sanity check.

int PyArrayInterface.nd
the number of dimensions in the array.

char PyArrayInterface.typekind
A character indicating what kind of array is present according to the typestring convention with ‘t’ ->
bitfield, ‘b’ -> Boolean, ‘i’ -> signed integer, ‘u’ -> unsigned integer, ‘f’ -> floating point, ‘c’ -> complex
floating point, ‘O’ -> object, ‘S’ -> (byte-)string, ‘U’ -> unicode, ‘V’ -> void.

int PyArrayInterface.itemsize
The number of bytes each item in the array requires.

int PyArrayInterface.flags
Any of the bits NPY_ARRAY_C_CONTIGUOUS (1), NPY_ARRAY_F_CONTIGUOUS
(2), NPY_ARRAY_ALIGNED (0x100), NPY_ARRAY_NOTSWAPPED (0x200), or

1214 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

NPY_ARRAY_WRITEABLE (0x400) to indicate something about the data. The NPY_ARRAY_ALIGNED,
NPY_ARRAY_C_CONTIGUOUS, and NPY_ARRAY_F_CONTIGUOUS flags can actually be determined
from the other parameters. The flag NPY_ARR_HAS_DESCR (0x800) can also be set to indicate to
objects consuming the version 3 array interface that the descr member of the structure is present (it will
be ignored by objects consuming version 2 of the array interface).

npy_intp *PyArrayInterface.shape
An array containing the size of the array in each dimension.

npy_intp *PyArrayInterface.strides
An array containing the number of bytes to jump to get to the next element in each dimension.

void *PyArrayInterface.data
A pointer to the first element of the array.

PyObject *PyArrayInterface.descr
A Python object describing the data-type in more detail (same as the descr key in
__array_interface__). This can be NULL if typekind and itemsize provide enough informa-
tion. This field is also ignored unless ARR_HAS_DESCR flag is on in flags.

Internally used structures

Internally, the code uses some additional Python objects primarily for memory management. These types are not
accessible directly from Python, and are not exposed to the C-API. They are included here only for completeness and
assistance in understanding the code.

PyUFuncLoopObject
A loose wrapper for a C-structure that contains the information needed for looping. This is useful if you are
trying to understand the ufunc looping code. The PyUFuncLoopObject is the associated C-structure. It is
defined in the ufuncobject.h header.

PyUFuncReduceObject
A loose wrapper for the C-structure that contains the information needed for reduce-like methods of
ufuncs. This is useful if you are trying to understand the reduce, accumulate, and reduce-at code. The
PyUFuncReduceObject is the associated C-structure. It is defined in the ufuncobject.h header.

PyUFunc_Loop1d
A simple linked-list of C-structures containing the information needed to define a 1-d loop for a ufunc for every
defined signature of a user-defined data-type.

PyArrayMapIter_Type
Advanced indexing is handled with this Python type. It is simply a loose wrapper around the C-
structure containing the variables needed for advanced array indexing. The associated C-structure,
PyArrayMapIterObject, is useful if you are trying to understand the advanced-index mapping code. It
is defined in the arrayobject.h header. This type is not exposed to Python and could be replaced with a
C-structure. As a Python type it takes advantage of reference- counted memory management.

6.2 System configuration

When NumPy is built, information about system configuration is recorded, and is made available for extension modules
using NumPy’s C API. These are mostly defined in numpyconfig.h (included in ndarrayobject.h). The
public symbols are prefixed by NPY_*. NumPy also offers some functions for querying information about the platform
in use.

For private use, NumPy also constructs a config.h in the NumPy include directory, which is not exported by NumPy
(that is a python extension which use the numpy C API will not see those symbols), to avoid namespace pollution.

6.2. System configuration 1215

https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

6.2.1 Data type sizes

The NPY_SIZEOF_{CTYPE} constants are defined so that sizeof information is available to the pre-processor.

NPY_SIZEOF_SHORT
sizeof(short)

NPY_SIZEOF_INT
sizeof(int)

NPY_SIZEOF_LONG
sizeof(long)

NPY_SIZEOF_LONGLONG
sizeof(longlong) where longlong is defined appropriately on the platform.

NPY_SIZEOF_PY_LONG_LONG

NPY_SIZEOF_FLOAT
sizeof(float)

NPY_SIZEOF_DOUBLE
sizeof(double)

NPY_SIZEOF_LONG_DOUBLE
sizeof(longdouble) (A macro defines NPY_SIZEOF_LONGDOUBLE as well.)

NPY_SIZEOF_PY_INTPTR_T
Size of a pointer on this platform (sizeof(void *)) (A macro defines NPY_SIZEOF_INTP as well.)

6.2.2 Platform information

NPY_CPU_X86

NPY_CPU_AMD64

NPY_CPU_IA64

NPY_CPU_PPC

NPY_CPU_PPC64

NPY_CPU_SPARC

NPY_CPU_SPARC64

NPY_CPU_S390

NPY_CPU_PARISC
New in version 1.3.0.

CPU architecture of the platform; only one of the above is defined.

Defined in numpy/npy_cpu.h

NPY_LITTLE_ENDIAN

NPY_BIG_ENDIAN

NPY_BYTE_ORDER
New in version 1.3.0.

Portable alternatives to the endian.h macros of GNU Libc. If big endian, NPY_BYTE_ORDER ==
NPY_BIG_ENDIAN , and similarly for little endian architectures.

1216 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

Defined in numpy/npy_endian.h.

PyArray_GetEndianness()
New in version 1.3.0.

Returns the endianness of the current platform. One of NPY_CPU_BIG, NPY_CPU_LITTLE, or
NPY_CPU_UNKNOWN_ENDIAN.

6.3 Data Type API

The standard array can have 24 different data types (and has some support for adding your own types). These data
types all have an enumerated type, an enumerated type-character, and a corresponding array scalar Python type object
(placed in a hierarchy). There are also standard C typedefs to make it easier to manipulate elements of the given data
type. For the numeric types, there are also bit-width equivalent C typedefs and named typenumbers that make it easier
to select the precision desired.

Warning: The names for the types in c code follows c naming conventions more closely. The Python names for
these types follow Python conventions. Thus, NPY_FLOAT picks up a 32-bit float in C, but numpy.float_ in
Python corresponds to a 64-bit double. The bit-width names can be used in both Python and C for clarity.

6.3.1 Enumerated Types

There is a list of enumerated types defined providing the basic 24 data types plus some useful generic names. Whenever
the code requires a type number, one of these enumerated types is requested. The types are all called NPY_{NAME}:

NPY_BOOL
The enumeration value for the boolean type, stored as one byte. It may only be set to the values 0 and 1.

NPY_BYTE

NPY_INT8
The enumeration value for an 8-bit/1-byte signed integer.

NPY_SHORT

NPY_INT16
The enumeration value for a 16-bit/2-byte signed integer.

NPY_INT

NPY_INT32
The enumeration value for a 32-bit/4-byte signed integer.

NPY_LONG
Equivalent to either NPY_INT or NPY_LONGLONG, depending on the platform.

NPY_LONGLONG

NPY_INT64
The enumeration value for a 64-bit/8-byte signed integer.

NPY_UBYTE

NPY_UINT8
The enumeration value for an 8-bit/1-byte unsigned integer.

NPY_USHORT

6.3. Data Type API 1217



NumPy Reference, Release 1.15.1

NPY_UINT16
The enumeration value for a 16-bit/2-byte unsigned integer.

NPY_UINT

NPY_UINT32
The enumeration value for a 32-bit/4-byte unsigned integer.

NPY_ULONG
Equivalent to either NPY_UINT or NPY_ULONGLONG, depending on the platform.

NPY_ULONGLONG

NPY_UINT64
The enumeration value for a 64-bit/8-byte unsigned integer.

NPY_HALF

NPY_FLOAT16
The enumeration value for a 16-bit/2-byte IEEE 754-2008 compatible floating point type.

NPY_FLOAT

NPY_FLOAT32
The enumeration value for a 32-bit/4-byte IEEE 754 compatible floating point type.

NPY_DOUBLE

NPY_FLOAT64
The enumeration value for a 64-bit/8-byte IEEE 754 compatible floating point type.

NPY_LONGDOUBLE
The enumeration value for a platform-specific floating point type which is at least as large as NPY_DOUBLE,
but larger on many platforms.

NPY_CFLOAT

NPY_COMPLEX64
The enumeration value for a 64-bit/8-byte complex type made up of two NPY_FLOAT values.

NPY_CDOUBLE

NPY_COMPLEX128
The enumeration value for a 128-bit/16-byte complex type made up of two NPY_DOUBLE values.

NPY_CLONGDOUBLE
The enumeration value for a platform-specific complex floating point type which is made up of two
NPY_LONGDOUBLE values.

NPY_DATETIME
The enumeration value for a data type which holds dates or datetimes with a precision based on selectable date
or time units.

NPY_TIMEDELTA
The enumeration value for a data type which holds lengths of times in integers of selectable date or time units.

NPY_STRING
The enumeration value for ASCII strings of a selectable size. The strings have a fixed maximum size within a
given array.

NPY_UNICODE
The enumeration value for UCS4 strings of a selectable size. The strings have a fixed maximum size within a
given array.

1218 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

NPY_OBJECT
The enumeration value for references to arbitrary Python objects.

NPY_VOID
Primarily used to hold struct dtypes, but can contain arbitrary binary data.

Some useful aliases of the above types are

NPY_INTP
The enumeration value for a signed integer type which is the same size as a (void *) pointer. This is the type
used by all arrays of indices.

NPY_UINTP
The enumeration value for an unsigned integer type which is the same size as a (void *) pointer.

NPY_MASK
The enumeration value of the type used for masks, such as with the NPY_ITER_ARRAYMASK iterator flag.
This is equivalent to NPY_UINT8.

NPY_DEFAULT_TYPE
The default type to use when no dtype is explicitly specified, for example when calling np.zero(shape). This is
equivalent to NPY_DOUBLE.

Other useful related constants are

NPY_NTYPES
The total number of built-in NumPy types. The enumeration covers the range from 0 to NPY_NTYPES-1.

NPY_NOTYPE
A signal value guaranteed not to be a valid type enumeration number.

NPY_USERDEF
The start of type numbers used for Custom Data types.

The various character codes indicating certain types are also part of an enumerated list. References to type characters
(should they be needed at all) should always use these enumerations. The form of them is NPY_{NAME}LTR where
{NAME} can be

BOOL, BYTE, UBYTE, SHORT, USHORT, INT, UINT, LONG, ULONG, LONGLONG, ULON-
GLONG, HALF, FLOAT, DOUBLE, LONGDOUBLE, CFLOAT, CDOUBLE, CLONGDOUBLE,
DATETIME, TIMEDELTA, OBJECT, STRING, VOID

INTP, UINTP

GENBOOL, SIGNED, UNSIGNED, FLOATING, COMPLEX

The latter group of {NAME}s corresponds to letters used in the array interface typestring specification.

6.3.2 Defines

Max and min values for integers

NPY_MAX_INT{bits}

NPY_MAX_UINT{bits}

NPY_MIN_INT{bits}
These are defined for {bits} = 8, 16, 32, 64, 128, and 256 and provide the maximum (minimum) value of the
corresponding (unsigned) integer type. Note: the actual integer type may not be available on all platforms (i.e.
128-bit and 256-bit integers are rare).

6.3. Data Type API 1219



NumPy Reference, Release 1.15.1

NPY_MIN_{type}
This is defined for {type} = BYTE, SHORT, INT, LONG, LONGLONG, INTP

NPY_MAX_{type}
This is defined for all defined for {type} = BYTE, UBYTE, SHORT, USHORT, INT, UINT, LONG,
ULONG, LONGLONG, ULONGLONG, INTP, UINTP

Number of bits in data types

All NPY_SIZEOF_{CTYPE} constants have corresponding NPY_BITSOF_{CTYPE} constants defined. The
NPY_BITSOF_{CTYPE} constants provide the number of bits in the data type. Specifically, the available
{CTYPE}s are

BOOL, CHAR, SHORT, INT, LONG, LONGLONG, FLOAT, DOUBLE, LONGDOUBLE

Bit-width references to enumerated typenums

All of the numeric data types (integer, floating point, and complex) have constants that are defined to be a specific
enumerated type number. Exactly which enumerated type a bit-width type refers to is platform dependent. In partic-
ular, the constants available are PyArray_{NAME}{BITS} where {NAME} is INT, UINT, FLOAT, COMPLEX
and {BITS} can be 8, 16, 32, 64, 80, 96, 128, 160, 192, 256, and 512. Obviously not all bit-widths are available on
all platforms for all the kinds of numeric types. Commonly 8-, 16-, 32-, 64-bit integers; 32-, 64-bit floats; and 64-,
128-bit complex types are available.

Integer that can hold a pointer

The constants NPY_INTP and NPY_UINTP refer to an enumerated integer type that is large enough to hold a pointer
on the platform. Index arrays should always be converted to NPY_INTP , because the dimension of the array is of
type npy_intp.

6.3.3 C-type names

There are standard variable types for each of the numeric data types and the bool data type. Some of these are already
available in the C-specification. You can create variables in extension code with these types.

Boolean

npy_bool
unsigned char; The constants NPY_FALSE and NPY_TRUE are also defined.

(Un)Signed Integer

Unsigned versions of the integers can be defined by pre-pending a ‘u’ to the front of the integer name.

npy_(u)byte
(unsigned) char

npy_(u)short
(unsigned) short

npy_(u)int
(unsigned) int

1220 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

npy_(u)long
(unsigned) long int

npy_(u)longlong
(unsigned long long int)

npy_(u)intp
(unsigned) Py_intptr_t (an integer that is the size of a pointer on the platform).

(Complex) Floating point

npy_(c)float
float

npy_(c)double
double

npy_(c)longdouble
long double

complex types are structures with .real and .imag members (in that order).

Bit-width names

There are also typedefs for signed integers, unsigned integers, floating point, and complex floating point types of
specific bit- widths. The available type names are

npy_int{bits}, npy_uint{bits}, npy_float{bits}, and npy_complex{bits}

where {bits} is the number of bits in the type and can be 8, 16, 32, 64, 128, and 256 for integer types; 16, 32 , 64,
80, 96, 128, and 256 for floating-point types; and 32, 64, 128, 160, 192, and 512 for complex-valued types. Which
bit-widths are available is platform dependent. The bolded bit-widths are usually available on all platforms.

6.3.4 Printf Formatting

For help in printing, the following strings are defined as the correct format specifier in printf and related commands.

NPY_LONGLONG_FMT, NPY_ULONGLONG_FMT, NPY_INTP_FMT, NPY_UINTP_FMT,
NPY_LONGDOUBLE_FMT

6.4 Array API

The test of a first-rate intelligence is the ability to hold two
opposed ideas in the mind at the same time, and still retain the
ability to function.
— F. Scott Fitzgerald

For a successful technology, reality must take precedence over public
relations, for Nature cannot be fooled.
— Richard P. Feynman

6.4. Array API 1221



NumPy Reference, Release 1.15.1

6.4.1 Array structure and data access

These macros all access the PyArrayObject structure members. The input argument, arr, can be any PyObject
* that is directly interpretable as a PyArrayObject * (any instance of the PyArray_Type and its sub-types).

int PyArray_NDIM(PyArrayObject *arr)
The number of dimensions in the array.

npy_intp *PyArray_DIMS(PyArrayObject *arr)
Returns a pointer to the dimensions/shape of the array. The number of elements matches the number of dimen-
sions of the array.

npy_intp *PyArray_SHAPE(PyArrayObject *arr)
New in version 1.7.

A synonym for PyArray_DIMS, named to be consistent with the ‘shape’ usage within Python.

void *PyArray_DATA(PyArrayObject *arr)

char *PyArray_BYTES(PyArrayObject *arr)
These two macros are similar and obtain the pointer to the data-buffer for the array. The first macro can (and
should be) assigned to a particular pointer where the second is for generic processing. If you have not guaranteed
a contiguous and/or aligned array then be sure you understand how to access the data in the array to avoid
memory and/or alignment problems.

npy_intp *PyArray_STRIDES(PyArrayObject* arr)
Returns a pointer to the strides of the array. The number of elements matches the number of dimensions of the
array.

npy_intp PyArray_DIM(PyArrayObject* arr, int n)
Return the shape in the n th dimension.

npy_intp PyArray_STRIDE(PyArrayObject* arr, int n)
Return the stride in the n th dimension.

PyObject *PyArray_BASE(PyArrayObject* arr)
This returns the base object of the array. In most cases, this means the object which owns the memory the array
is pointing at.

If you are constructing an array using the C API, and specifying your own memory, you should use the function
PyArray_SetBaseObject to set the base to an object which owns the memory.

If the (deprecated) NPY_ARRAY_UPDATEIFCOPY or the NPY_ARRAY_WRITEBACKIFCOPY flags are set,
it has a different meaning, namely base is the array into which the current array will be copied upon copy
resolution. This overloading of the base property for two functions is likely to change in a future version of
NumPy.

PyArray_Descr *PyArray_DESCR(PyArrayObject* arr)
Returns a borrowed reference to the dtype property of the array.

PyArray_Descr *PyArray_DTYPE(PyArrayObject* arr)
New in version 1.7.

A synonym for PyArray_DESCR, named to be consistent with the ‘dtype’ usage within Python.

void PyArray_ENABLEFLAGS(PyArrayObject* arr, int flags)
New in version 1.7.

Enables the specified array flags. This function does no validation, and assumes that you know what you’re
doing.

void PyArray_CLEARFLAGS(PyArrayObject* arr, int flags)
New in version 1.7.

1222 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

Clears the specified array flags. This function does no validation, and assumes that you know what you’re doing.

int PyArray_FLAGS(PyArrayObject* arr)

npy_intp PyArray_ITEMSIZE(PyArrayObject* arr)
Return the itemsize for the elements of this array.

Note that, in the old API that was deprecated in version 1.7, this function had the return type int.

int PyArray_TYPE(PyArrayObject* arr)
Return the (builtin) typenumber for the elements of this array.

PyObject *PyArray_GETITEM(PyArrayObject* arr, void* itemptr)
Get a Python object from the ndarray, arr, at the location pointed to by itemptr. Return NULL on failure.

int PyArray_SETITEM(PyArrayObject* arr, void* itemptr, PyObject* obj)
Convert obj and place it in the ndarray, arr, at the place pointed to by itemptr. Return -1 if an error occurs or 0
on success.

npy_intp PyArray_SIZE(PyArrayObject* arr)
Returns the total size (in number of elements) of the array.

npy_intp PyArray_Size(PyArrayObject* obj)
Returns 0 if obj is not a sub-class of ndarray. Otherwise, returns the total number of elements in the array. Safer
version of PyArray_SIZE (obj).

npy_intp PyArray_NBYTES(PyArrayObject* arr)
Returns the total number of bytes consumed by the array.

Data access

These functions and macros provide easy access to elements of the ndarray from C. These work for all arrays. You
may need to take care when accessing the data in the array, however, if it is not in machine byte-order, misaligned, or
not writeable. In other words, be sure to respect the state of the flags unless you know what you are doing, or have
previously guaranteed an array that is writeable, aligned, and in machine byte-order using PyArray_FromAny . If
you wish to handle all types of arrays, the copyswap function for each type is useful for handling misbehaved arrays.
Some platforms (e.g. Solaris) do not like misaligned data and will crash if you de-reference a misaligned pointer.
Other platforms (e.g. x86 Linux) will just work more slowly with misaligned data.

void* PyArray_GetPtr(PyArrayObject* aobj, npy_intp* ind)
Return a pointer to the data of the ndarray, aobj, at the N-dimensional index given by the c-array, ind, (which
must be at least aobj ->nd in size). You may want to typecast the returned pointer to the data type of the ndarray.

void* PyArray_GETPTR1(PyArrayObject* obj, npy_intp i)

void* PyArray_GETPTR2(PyArrayObject* obj, npy_intp i, npy_intp j)

void* PyArray_GETPTR3(PyArrayObject* obj, npy_intp i, npy_intp j, npy_intp k)

void* PyArray_GETPTR4(PyArrayObject* obj, npy_intp i, npy_intp j, npy_intp k, npy_intp l)
Quick, inline access to the element at the given coordinates in the ndarray, obj, which must have respectively 1,
2, 3, or 4 dimensions (this is not checked). The corresponding i, j, k, and l coordinates can be any integer but
will be interpreted as npy_intp. You may want to typecast the returned pointer to the data type of the ndarray.

6.4.2 Creating arrays

6.4. Array API 1223

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

From scratch

PyObject* PyArray_NewFromDescr(PyTypeObject* subtype, PyArray_Descr* descr, int nd,
npy_intp* dims, npy_intp* strides, void* data, int flags, Py-
Object* obj)

This function steals a reference to descr.

This is the main array creation function. Most new arrays are created with this flexible function.

The returned object is an object of Python-type subtype, which must be a subtype of PyArray_Type. The
array has nd dimensions, described by dims. The data-type descriptor of the new array is descr.

If subtype is of an array subclass instead of the base &PyArray_Type, then obj is the object to pass to the
__array_finalize__ method of the subclass.

If data is NULL, then new memory will be allocated and flags can be non-zero to indicate a Fortran-style
contiguous array. If data is not NULL, then it is assumed to point to the memory to be used for the ar-
ray and the flags argument is used as the new flags for the array (except the state of NPY_OWNDATA,
NPY_ARRAY_WRITEBACKIFCOPY and NPY_ARRAY_UPDATEIFCOPY flags of the new array will be re-
set).

In addition, if data is non-NULL, then strides can also be provided. If strides is NULL, then the array strides are
computed as C-style contiguous (default) or Fortran-style contiguous (flags is nonzero for data = NULL or flags
& NPY_ARRAY_F_CONTIGUOUS is nonzero non-NULL data). Any provided dims and strides are copied into
newly allocated dimension and strides arrays for the new array object.

PyObject* PyArray_NewLikeArray(PyArrayObject* prototype, NPY_ORDER order,
PyArray_Descr* descr, int subok)

New in version 1.6.

This function steals a reference to descr if it is not NULL.

This array creation routine allows for the convenient creation of a new array matching an existing array’s shapes
and memory layout, possibly changing the layout and/or data type.

When order is NPY_ANYORDER, the result order is NPY_FORTRANORDER if prototype is a fortran array,
NPY_CORDER otherwise. When order is NPY_KEEPORDER, the result order matches that of prototype, even
when the axes of prototype aren’t in C or Fortran order.

If descr is NULL, the data type of prototype is used.

If subok is 1, the newly created array will use the sub-type of prototype to create the new array, otherwise it will
create a base-class array.

PyObject* PyArray_New(PyTypeObject* subtype, int nd, npy_intp* dims, int type_num, npy_intp* strides,
void* data, int itemsize, int flags, PyObject* obj)

This is similar to PyArray_NewFromDescr (. . . ) except you specify the data-type descriptor with type_num
and itemsize, where type_num corresponds to a builtin (or user-defined) type. If the type always has the same
number of bytes, then itemsize is ignored. Otherwise, itemsize specifies the particular size of this array.

Warning: If data is passed to PyArray_NewFromDescr or PyArray_New , this memory must not be deallo-
cated until the new array is deleted. If this data came from another Python object, this can be accomplished using
Py_INCREF on that object and setting the base member of the new array to point to that object. If strides are
passed in they must be consistent with the dimensions, the itemsize, and the data of the array.

PyObject* PyArray_SimpleNew(int nd, npy_intp* dims, int typenum)
Create a new uninitialized array of type, typenum, whose size in each of nd dimensions is given by the integer
array, dims. This function cannot be used to create a flexible-type array (no itemsize given).

1224 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/type.html#c.PyTypeObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/type.html#c.PyTypeObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/refcounting.html#c.Py_INCREF
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

PyObject* PyArray_SimpleNewFromData(int nd, npy_intp* dims, int typenum, void* data)
Create an array wrapper around data pointed to by the given pointer. The array flags will have a default that the
data area is well-behaved and C-style contiguous. The shape of the array is given by the dims c-array of length
nd. The data-type of the array is indicated by typenum.

PyObject* PyArray_SimpleNewFromDescr(int nd, npy_intp* dims, PyArray_Descr* descr)
This function steals a reference to descr if it is not NULL.

Create a new array with the provided data-type descriptor, descr , of the shape determined by nd and dims.

PyArray_FILLWBYTE(PyObject* obj, int val)
Fill the array pointed to by obj —which must be a (subclass of) ndarray—with the contents of val (evaluated as
a byte). This macro calls memset, so obj must be contiguous.

PyObject* PyArray_Zeros(int nd, npy_intp* dims, PyArray_Descr* dtype, int fortran)
Construct a new nd -dimensional array with shape given by dims and data type given by dtype. If fortran is
non-zero, then a Fortran-order array is created, otherwise a C-order array is created. Fill the memory with zeros
(or the 0 object if dtype corresponds to NPY_OBJECT ).

PyObject* PyArray_ZEROS(int nd, npy_intp* dims, int type_num, int fortran)
Macro form of PyArray_Zeros which takes a type-number instead of a data-type object.

PyObject* PyArray_Empty(int nd, npy_intp* dims, PyArray_Descr* dtype, int fortran)
Construct a new nd -dimensional array with shape given by dims and data type given by dtype. If fortran is
non-zero, then a Fortran-order array is created, otherwise a C-order array is created. The array is uninitialized
unless the data type corresponds to NPY_OBJECT in which case the array is filled with Py_None.

PyObject* PyArray_EMPTY(int nd, npy_intp* dims, int typenum, int fortran)
Macro form of PyArray_Empty which takes a type-number, typenum, instead of a data-type object.

PyObject* PyArray_Arange(double start, double stop, double step, int typenum)
Construct a new 1-dimensional array of data-type, typenum, that ranges from start to stop (exclusive) in incre-
ments of step . Equivalent to arange (start, stop, step, dtype).

PyObject* PyArray_ArangeObj(PyObject* start, PyObject* stop, PyObject* step, PyArray_Descr* de-
scr)

Construct a new 1-dimensional array of data-type determined by descr, that ranges from start to stop
(exclusive) in increments of step. Equivalent to arange( start, stop, step, typenum ).

int PyArray_SetBaseObject(PyArrayObject* arr, PyObject* obj)
New in version 1.7.

This function steals a reference to obj and sets it as the base property of arr.

If you construct an array by passing in your own memory buffer as a parameter, you need to set the array’s base
property to ensure the lifetime of the memory buffer is appropriate.

The return value is 0 on success, -1 on failure.

If the object provided is an array, this function traverses the chain of base pointers so that each array points to
the owner of the memory directly. Once the base is set, it may not be changed to another value.

From other objects

PyObject* PyArray_FromAny(PyObject* op, PyArray_Descr* dtype, int min_depth, int max_depth, int re-
quirements, PyObject* context)

This is the main function used to obtain an array from any nested sequence, or object that exposes the array
interface, op. The parameters allow specification of the required dtype, the minimum (min_depth) and maximum
(max_depth) number of dimensions acceptable, and other requirements for the array. This function steals a
reference to the dtype argument, which needs to be a PyArray_Descr structure indicating the desired data-
type (including required byteorder). The dtype argument may be NULL, indicating that any data-type (and

6.4. Array API 1225

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/none.html#c.Py_None
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

byteorder) is acceptable. Unless NPY_ARRAY_FORCECAST is present in flags, this call will generate an
error if the data type cannot be safely obtained from the object. If you want to use NULL for the dtype and
ensure the array is notswapped then use PyArray_CheckFromAny . A value of 0 for either of the depth
parameters causes the parameter to be ignored. Any of the following array flags can be added (e.g. using |)
to get the requirements argument. If your code can handle general (e.g. strided, byte-swapped, or unaligned
arrays) then requirements may be 0. Also, if op is not already an array (or does not expose the array interface),
then a new array will be created (and filled from op using the sequence protocol). The new array will have
NPY_ARRAY_DEFAULT as its flags member. The context argument is passed to the __array__ method of
op and is only used if the array is constructed that way. Almost always this parameter is NULL.

In versions 1.6 and earlier of NumPy, the following flags did not have the _ARRAY_ macro namespace in them.
That form of the constant names is deprecated in 1.7.

NPY_ARRAY_C_CONTIGUOUS
Make sure the returned array is C-style contiguous

NPY_ARRAY_F_CONTIGUOUS
Make sure the returned array is Fortran-style contiguous.

NPY_ARRAY_ALIGNED
Make sure the returned array is aligned on proper boundaries for its data type. An aligned array has the
data pointer and every strides factor as a multiple of the alignment factor for the data-type- descriptor.

NPY_ARRAY_WRITEABLE
Make sure the returned array can be written to.

NPY_ARRAY_ENSURECOPY
Make sure a copy is made of op. If this flag is not present, data is not copied if it can be avoided.

NPY_ARRAY_ENSUREARRAY
Make sure the result is a base-class ndarray. By default, if op is an instance of a subclass of ndarray, an
instance of that same subclass is returned. If this flag is set, an ndarray object will be returned instead.

NPY_ARRAY_FORCECAST
Force a cast to the output type even if it cannot be done safely. Without this flag, a data cast will occur
only if it can be done safely, otherwise an error is raised.

NPY_ARRAY_WRITEBACKIFCOPY
If op is already an array, but does not satisfy the requirements, then a copy is made (which will satisfy the
requirements). If this flag is present and a copy (of an object that is already an array) must be made, then
the corresponding NPY_ARRAY_WRITEBACKIFCOPY flag is set in the returned copy and op is made to
be read-only. You must be sure to call PyArray_ResolveWritebackIfCopy to copy the contents
back into op and the op array will be made writeable again. If op is not writeable to begin with, or if it is
not already an array, then an error is raised.

NPY_ARRAY_UPDATEIFCOPY
Deprecated. Use NPY_ARRAY_WRITEBACKIFCOPY , which is similar. This flag “automatically” copies
the data back when the returned array is deallocated, which is not supported in all python implementations.

NPY_ARRAY_BEHAVED
NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE

NPY_ARRAY_CARRAY
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_BEHAVED

NPY_ARRAY_CARRAY_RO
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_ALIGNED

NPY_ARRAY_FARRAY
NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_BEHAVED

1226 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

NPY_ARRAY_FARRAY_RO
NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_ALIGNED

NPY_ARRAY_DEFAULT
NPY_ARRAY_CARRAY

NPY_ARRAY_IN_ARRAY
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_ALIGNED

NPY_ARRAY_IN_FARRAY
NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_ALIGNED

NPY_OUT_ARRAY
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_WRITEABLE | NPY_ARRAY_ALIGNED

NPY_ARRAY_OUT_FARRAY
NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_WRITEABLE | NPY_ARRAY_ALIGNED

NPY_ARRAY_INOUT_ARRAY
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_WRITEABLE | NPY_ARRAY_ALIGNED |
NPY_ARRAY_WRITEBACKIFCOPY | NPY_ARRAY_UPDATEIFCOPY

NPY_ARRAY_INOUT_FARRAY
NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_WRITEABLE | NPY_ARRAY_ALIGNED |
NPY_ARRAY_WRITEBACKIFCOPY | NPY_ARRAY_UPDATEIFCOPY

int PyArray_GetArrayParamsFromObject(PyObject* op, PyArray_Descr* requested_dtype,
npy_bool writeable, PyArray_Descr** out_dtype,
int* out_ndim, npy_intp* out_dims, PyArrayOb-
ject** out_arr, PyObject* context)

New in version 1.6.

Retrieves the array parameters for viewing/converting an arbitrary PyObject* to a NumPy array. This allows
the “innate type and shape” of Python list-of-lists to be discovered without actually converting to an array.
PyArray_FromAny calls this function to analyze its input.

In some cases, such as structured arrays and the __array__ interface, a data type needs to be used to make
sense of the object. When this is needed, provide a Descr for ‘requested_dtype’, otherwise provide NULL. This
reference is not stolen. Also, if the requested dtype doesn’t modify the interpretation of the input, out_dtype
will still get the “innate” dtype of the object, not the dtype passed in ‘requested_dtype’.

If writing to the value in ‘op’ is desired, set the boolean ‘writeable’ to 1. This raises an error when ‘op’ is
a scalar, list of lists, or other non-writeable ‘op’. This differs from passing NPY_ARRAY_WRITEABLE to
PyArray_FromAny, where the writeable array may be a copy of the input.

When success (0 return value) is returned, either out_arr is filled with a non-NULL PyArrayObject and the rest
of the parameters are untouched, or out_arr is filled with NULL, and the rest of the parameters are filled.

Typical usage:

PyArrayObject *arr = NULL;
PyArray_Descr *dtype = NULL;
int ndim = 0;
npy_intp dims[NPY_MAXDIMS];

if (PyArray_GetArrayParamsFromObject(op, NULL, 1, &dtype,
&ndim, &dims, &arr, NULL) < 0) {

return NULL;
}
if (arr == NULL) {

... validate/change dtype, validate flags, ndim, etc ...

(continues on next page)

6.4. Array API 1227

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

(continued from previous page)

// Could make custom strides here too
arr = PyArray_NewFromDescr(&PyArray_Type, dtype, ndim,

dims, NULL,
fortran ? NPY_ARRAY_F_CONTIGUOUS : 0,
NULL);

if (arr == NULL) {
return NULL;

}
if (PyArray_CopyObject(arr, op) < 0) {

Py_DECREF(arr);
return NULL;

}
}
else {

... in this case the other parameters weren't filled, just
validate and possibly copy arr itself ...

}
... use arr ...

PyObject* PyArray_CheckFromAny(PyObject* op, PyArray_Descr* dtype, int min_depth, int max_depth,
int requirements, PyObject* context)

Nearly identical to PyArray_FromAny (. . . ) except requirements can contain NPY_ARRAY_NOTSWAPPED
(over-riding the specification in dtype) and NPY_ARRAY_ELEMENTSTRIDES which indicates that the array
should be aligned in the sense that the strides are multiples of the element size.

In versions 1.6 and earlier of NumPy, the following flags did not have the _ARRAY_ macro namespace in them.
That form of the constant names is deprecated in 1.7.

NPY_ARRAY_NOTSWAPPED
Make sure the returned array has a data-type descriptor that is in machine byte-order, over-riding any specifi-
cation in the dtype argument. Normally, the byte-order requirement is determined by the dtype argument. If
this flag is set and the dtype argument does not indicate a machine byte-order descriptor (or is NULL and the
object is already an array with a data-type descriptor that is not in machine byte- order), then a new data-type
descriptor is created and used with its byte-order field set to native.

NPY_ARRAY_BEHAVED_NS
NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE | NPY_ARRAY_NOTSWAPPED

NPY_ARRAY_ELEMENTSTRIDES
Make sure the returned array has strides that are multiples of the element size.

PyObject* PyArray_FromArray(PyArrayObject* op, PyArray_Descr* newtype, int requirements)
Special case of PyArray_FromAny for when op is already an array but it needs to be of a specific newtype
(including byte-order) or has certain requirements.

PyObject* PyArray_FromStructInterface(PyObject* op)
Returns an ndarray object from a Python object that exposes the __array_struct__ attribute and fol-
lows the array interface protocol. If the object does not contain this attribute then a borrowed reference to
Py_NotImplemented is returned.

PyObject* PyArray_FromInterface(PyObject* op)
Returns an ndarray object from a Python object that exposes the __array_interface__ attribute fol-
lowing the array interface protocol. If the object does not contain this attribute then a borrowed reference to
Py_NotImplemented is returned.

PyObject* PyArray_FromArrayAttr(PyObject* op, PyArray_Descr* dtype, PyObject* context)
Return an ndarray object from a Python object that exposes the __array__method. The __array__method
can take 0, 1, or 2 arguments ([dtype, context]) where context is used to pass information about where the

1228 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/object.html#c.Py_NotImplemented
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/object.html#c.Py_NotImplemented
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

__array__ method is being called from (currently only used in ufuncs).

PyObject* PyArray_ContiguousFromAny(PyObject* op, int typenum, int min_depth, int max_depth)
This function returns a (C-style) contiguous and behaved function array from any nested sequence or array
interface exporting object, op, of (non-flexible) type given by the enumerated typenum, of minimum depth
min_depth, and of maximum depth max_depth. Equivalent to a call to PyArray_FromAny with requirements
set to NPY_ARRAY_DEFAULT and the type_num member of the type argument set to typenum.

PyObject *PyArray_FromObject(PyObject *op, int typenum, int min_depth, int max_depth)
Return an aligned and in native-byteorder array from any nested sequence or array-interface exporting object,
op, of a type given by the enumerated typenum. The minimum number of dimensions the array can have is
given by min_depth while the maximum is max_depth. This is equivalent to a call to PyArray_FromAny
with requirements set to BEHAVED.

PyObject* PyArray_EnsureArray(PyObject* op)
This function steals a reference to op and makes sure that op is a base-class ndarray. It special cases array
scalars, but otherwise calls PyArray_FromAny ( op, NULL, 0, 0, NPY_ARRAY_ENSUREARRAY, NULL).

PyObject* PyArray_FromString(char* string, npy_intp slen, PyArray_Descr* dtype, npy_intp num,
char* sep)

Construct a one-dimensional ndarray of a single type from a binary or (ASCII) text string of length slen.
The data-type of the array to-be-created is given by dtype. If num is -1, then copy the entire string and return
an appropriately sized array, otherwise, num is the number of items to copy from the string. If sep is NULL
(or “”), then interpret the string as bytes of binary data, otherwise convert the sub-strings separated by sep to
items of data-type dtype. Some data-types may not be readable in text mode and an error will be raised if that
occurs. All errors return NULL.

PyObject* PyArray_FromFile(FILE* fp, PyArray_Descr* dtype, npy_intp num, char* sep)
Construct a one-dimensional ndarray of a single type from a binary or text file. The open file pointer is fp, the
data-type of the array to be created is given by dtype. This must match the data in the file. If num is -1, then
read until the end of the file and return an appropriately sized array, otherwise, num is the number of items to
read. If sep is NULL (or “”), then read from the file in binary mode, otherwise read from the file in text mode
with sep providing the item separator. Some array types cannot be read in text mode in which case an error is
raised.

PyObject* PyArray_FromBuffer(PyObject* buf, PyArray_Descr* dtype, npy_intp count, npy_intp off-
set)

Construct a one-dimensional ndarray of a single type from an object, buf, that exports the (single-segment)
buffer protocol (or has an attribute __buffer__ that returns an object that exports the buffer protocol). A writeable
buffer will be tried first followed by a read- only buffer. The NPY_ARRAY_WRITEABLE flag of the returned
array will reflect which one was successful. The data is assumed to start at offset bytes from the start of the
memory location for the object. The type of the data in the buffer will be interpreted depending on the data-
type descriptor, dtype. If count is negative then it will be determined from the size of the buffer and the
requested itemsize, otherwise, count represents how many elements should be converted from the buffer.

int PyArray_CopyInto(PyArrayObject* dest, PyArrayObject* src)
Copy from the source array, src, into the destination array, dest, performing a data-type conversion if neces-
sary. If an error occurs return -1 (otherwise 0). The shape of src must be broadcastable to the shape of dest.
The data areas of dest and src must not overlap.

int PyArray_MoveInto(PyArrayObject* dest, PyArrayObject* src)
Move data from the source array, src, into the destination array, dest, performing a data-type conversion if
necessary. If an error occurs return -1 (otherwise 0). The shape of src must be broadcastable to the shape of
dest. The data areas of dest and src may overlap.

PyArrayObject* PyArray_GETCONTIGUOUS(PyObject* op)
If op is already (C-style) contiguous and well-behaved then just return a reference, otherwise return a (contigu-
ous and well-behaved) copy of the array. The parameter op must be a (sub-class of an) ndarray and no checking
for that is done.

6.4. Array API 1229

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

PyObject* PyArray_FROM_O(PyObject* obj)
Convert obj to an ndarray. The argument can be any nested sequence or object that exports the array interface.
This is a macro form of PyArray_FromAny using NULL, 0, 0, 0 for the other arguments. Your code must be
able to handle any data-type descriptor and any combination of data-flags to use this macro.

PyObject* PyArray_FROM_OF(PyObject* obj, int requirements)
Similar to PyArray_FROM_O except it can take an argument of requirements indicating properties the result-
ing array must have. Available requirements that can be enforced are NPY_ARRAY_C_CONTIGUOUS,
NPY_ARRAY_F_CONTIGUOUS, NPY_ARRAY_ALIGNED, NPY_ARRAY_WRITEABLE,
NPY_ARRAY_NOTSWAPPED, NPY_ARRAY_ENSURECOPY, NPY_ARRAY_WRITEBACKIFCOPY ,
NPY_ARRAY_UPDATEIFCOPY , NPY_ARRAY_FORCECAST, and NPY_ARRAY_ENSUREARRAY. Stan-
dard combinations of flags can also be used:

PyObject* PyArray_FROM_OT(PyObject* obj, int typenum)
Similar to PyArray_FROM_O except it can take an argument of typenum specifying the type-number the
returned array.

PyObject* PyArray_FROM_OTF(PyObject* obj, int typenum, int requirements)
Combination of PyArray_FROM_OF and PyArray_FROM_OT allowing both a typenum and a flags argu-
ment to be provided..

PyObject* PyArray_FROMANY(PyObject* obj, int typenum, int min, int max, int requirements)
Similar to PyArray_FromAny except the data-type is specified using a typenumber.
PyArray_DescrFromType (typenum) is passed directly to PyArray_FromAny . This macro also
adds NPY_ARRAY_DEFAULT to requirements if NPY_ARRAY_ENSURECOPY is passed in as requirements.

PyObject *PyArray_CheckAxis(PyObject* obj, int* axis, int requirements)
Encapsulate the functionality of functions and methods that take the axis= keyword and work properly with
None as the axis argument. The input array is obj, while *axis is a converted integer (so that >=MAXDIMS
is the None value), and requirements gives the needed properties of obj. The output is a converted version
of the input so that requirements are met and if needed a flattening has occurred. On output negative values of
*axis are converted and the new value is checked to ensure consistency with the shape of obj.

6.4.3 Dealing with types

General check of Python Type

PyArray_Check(op)
Evaluates true if op is a Python object whose type is a sub-type of PyArray_Type.

PyArray_CheckExact(op)
Evaluates true if op is a Python object with type PyArray_Type.

PyArray_HasArrayInterface(op, out)
If op implements any part of the array interface, then out will contain a new reference to the newly created
ndarray using the interface or out will contain NULL if an error during conversion occurs. Otherwise, out will
contain a borrowed reference to Py_NotImplemented and no error condition is set.

PyArray_HasArrayInterfaceType(op, type, context, out)
If op implements any part of the array interface, then out will contain a new reference to the newly created
ndarray using the interface or out will contain NULL if an error during conversion occurs. Otherwise, out will
contain a borrowed reference to Py_NotImplemented and no error condition is set. This version allows setting
of the type and context in the part of the array interface that looks for the __array__ attribute.

PyArray_IsZeroDim(op)
Evaluates true if op is an instance of (a subclass of) PyArray_Type and has 0 dimensions.

1230 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/object.html#c.Py_NotImplemented


NumPy Reference, Release 1.15.1

PyArray_IsScalar(op, cls)
Evaluates true if op is an instance of Py{cls}ArrType_Type.

PyArray_CheckScalar(op)
Evaluates true if op is either an array scalar (an instance of a sub-type of PyGenericArr_Type ), or an
instance of (a sub-class of) PyArray_Type whose dimensionality is 0.

PyArray_IsPythonNumber(op)
Evaluates true if op is an instance of a builtin numeric type (int, float, complex, long, bool)

PyArray_IsPythonScalar(op)
Evaluates true if op is a builtin Python scalar object (int, float, complex, str, unicode, long, bool).

PyArray_IsAnyScalar(op)
Evaluates true if op is either a Python scalar object (see PyArray_IsPythonScalar) or an array scalar (an
instance of a sub- type of PyGenericArr_Type ).

PyArray_CheckAnyScalar(op)
Evaluates true if op is a Python scalar object (see PyArray_IsPythonScalar), an array scalar (an instance
of a sub-type of PyGenericArr_Type) or an instance of a sub-type of PyArray_Type whose dimension-
ality is 0.

Data-type checking

For the typenum macros, the argument is an integer representing an enumerated array data type. For the array type
checking macros the argument must be a PyObject * that can be directly interpreted as a PyArrayObject *.

PyTypeNum_ISUNSIGNED(num)

PyDataType_ISUNSIGNED(descr)

PyArray_ISUNSIGNED(obj)
Type represents an unsigned integer.

PyTypeNum_ISSIGNED(num)

PyDataType_ISSIGNED(descr)

PyArray_ISSIGNED(obj)
Type represents a signed integer.

PyTypeNum_ISINTEGER(num)

PyDataType_ISINTEGER(descr)

PyArray_ISINTEGER(obj)
Type represents any integer.

PyTypeNum_ISFLOAT(num)

PyDataType_ISFLOAT(descr)

PyArray_ISFLOAT(obj)
Type represents any floating point number.

PyTypeNum_ISCOMPLEX(num)

PyDataType_ISCOMPLEX(descr)

PyArray_ISCOMPLEX(obj)
Type represents any complex floating point number.

PyTypeNum_ISNUMBER(num)

6.4. Array API 1231

https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

PyDataType_ISNUMBER(descr)

PyArray_ISNUMBER(obj)
Type represents any integer, floating point, or complex floating point number.

PyTypeNum_ISSTRING(num)

PyDataType_ISSTRING(descr)

PyArray_ISSTRING(obj)
Type represents a string data type.

PyTypeNum_ISPYTHON(num)

PyDataType_ISPYTHON(descr)

PyArray_ISPYTHON(obj)
Type represents an enumerated type corresponding to one of the standard Python scalar (bool, int, float, or
complex).

PyTypeNum_ISFLEXIBLE(num)

PyDataType_ISFLEXIBLE(descr)

PyArray_ISFLEXIBLE(obj)
Type represents one of the flexible array types ( NPY_STRING, NPY_UNICODE, or NPY_VOID ).

PyDataType_ISUNSIZED(descr):
Type has no size information attached, and can be resized. Should only be called on flexible dtypes. Types that
are attached to an array will always be sized, hence the array form of this macro not existing.

PyTypeNum_ISUSERDEF(num)

PyDataType_ISUSERDEF(descr)

PyArray_ISUSERDEF(obj)
Type represents a user-defined type.

PyTypeNum_ISEXTENDED(num)

PyDataType_ISEXTENDED(descr)

PyArray_ISEXTENDED(obj)
Type is either flexible or user-defined.

PyTypeNum_ISOBJECT(num)

PyDataType_ISOBJECT(descr)

PyArray_ISOBJECT(obj)
Type represents object data type.

PyTypeNum_ISBOOL(num)

PyDataType_ISBOOL(descr)

PyArray_ISBOOL(obj)
Type represents Boolean data type.

PyDataType_HASFIELDS(descr)

PyArray_HASFIELDS(obj)
Type has fields associated with it.

PyArray_ISNOTSWAPPED(m)
Evaluates true if the data area of the ndarray m is in machine byte-order according to the array’s data-type
descriptor.

1232 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

PyArray_ISBYTESWAPPED(m)
Evaluates true if the data area of the ndarray m is not in machine byte-order according to the array’s data-type
descriptor.

Bool PyArray_EquivTypes(PyArray_Descr* type1, PyArray_Descr* type2)
Return NPY_TRUE if type1 and type2 actually represent equivalent types for this platform (the fortran mem-
ber of each type is ignored). For example, on 32-bit platforms, NPY_LONG and NPY_INT are equivalent.
Otherwise return NPY_FALSE.

Bool PyArray_EquivArrTypes(PyArrayObject* a1, PyArrayObject * a2)
Return NPY_TRUE if a1 and a2 are arrays with equivalent types for this platform.

Bool PyArray_EquivTypenums(int typenum1, int typenum2)
Special case of PyArray_EquivTypes (. . . ) that does not accept flexible data types but may be easier to
call.

int PyArray_EquivByteorders({byteorder} b1, {byteorder} b2)
True if byteorder characters ( NPY_LITTLE, NPY_BIG, NPY_NATIVE, NPY_IGNORE ) are either equal or
equivalent as to their specification of a native byte order. Thus, on a little-endian machine NPY_LITTLE and
NPY_NATIVE are equivalent where they are not equivalent on a big-endian machine.

Converting data types

PyObject* PyArray_Cast(PyArrayObject* arr, int typenum)
Mainly for backwards compatibility to the Numeric C-API and for simple casts to non-flexible types. Return a
new array object with the elements of arr cast to the data-type typenum which must be one of the enumerated
types and not a flexible type.

PyObject* PyArray_CastToType(PyArrayObject* arr, PyArray_Descr* type, int fortran)
Return a new array of the type specified, casting the elements of arr as appropriate. The fortran argument
specifies the ordering of the output array.

int PyArray_CastTo(PyArrayObject* out, PyArrayObject* in)
As of 1.6, this function simply calls PyArray_CopyInto, which handles the casting.

Cast the elements of the array in into the array out. The output array should be writeable, have an integer-
multiple of the number of elements in the input array (more than one copy can be placed in out), and have a data
type that is one of the builtin types. Returns 0 on success and -1 if an error occurs.

PyArray_VectorUnaryFunc* PyArray_GetCastFunc(PyArray_Descr* from, int totype)
Return the low-level casting function to cast from the given descriptor to the builtin type number. If no casting
function exists return NULL and set an error. Using this function instead of direct access to from ->f->cast will
allow support of any user-defined casting functions added to a descriptors casting dictionary.

int PyArray_CanCastSafely(int fromtype, int totype)
Returns non-zero if an array of data type fromtype can be cast to an array of data type totype without losing
information. An exception is that 64-bit integers are allowed to be cast to 64-bit floating point values even
though this can lose precision on large integers so as not to proliferate the use of long doubles without explicit
requests. Flexible array types are not checked according to their lengths with this function.

int PyArray_CanCastTo(PyArray_Descr* fromtype, PyArray_Descr* totype)
PyArray_CanCastTypeTo supersedes this function in NumPy 1.6 and later.

Equivalent to PyArray_CanCastTypeTo(fromtype, totype, NPY_SAFE_CASTING).

int PyArray_CanCastTypeTo(PyArray_Descr* fromtype, PyArray_Descr* totype, NPY_CASTING cast-
ing)

New in version 1.6.

6.4. Array API 1233

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

Returns non-zero if an array of data type fromtype (which can include flexible types) can be cast safely to an
array of data type totype (which can include flexible types) according to the casting rule casting. For simple
types with NPY_SAFE_CASTING, this is basically a wrapper around PyArray_CanCastSafely , but for
flexible types such as strings or unicode, it produces results taking into account their sizes. Integer and float
types can only be cast to a string or unicode type using NPY_SAFE_CASTING if the string or unicode type is
big enough to hold the max value of the integer/float type being cast from.

int PyArray_CanCastArrayTo(PyArrayObject* arr, PyArray_Descr* totype, NPY_CASTING casting)
New in version 1.6.

Returns non-zero if arr can be cast to totype according to the casting rule given in casting. If arr is an array
scalar, its value is taken into account, and non-zero is also returned when the value will not overflow or be
truncated to an integer when converting to a smaller type.

This is almost the same as the result of PyArray_CanCastTypeTo(PyArray_MinScalarType(arr), totype, casting),
but it also handles a special case arising because the set of uint values is not a subset of the int values for types
with the same number of bits.

PyArray_Descr* PyArray_MinScalarType(PyArrayObject* arr)
New in version 1.6.

If arr is an array, returns its data type descriptor, but if arr is an array scalar (has 0 dimensions), it finds the data
type of smallest size to which the value may be converted without overflow or truncation to an integer.

This function will not demote complex to float or anything to boolean, but will demote a signed integer to an
unsigned integer when the scalar value is positive.

PyArray_Descr* PyArray_PromoteTypes(PyArray_Descr* type1, PyArray_Descr* type2)
New in version 1.6.

Finds the data type of smallest size and kind to which type1 and type2 may be safely converted. This function
is symmetric and associative. A string or unicode result will be the proper size for storing the max value of the
input types converted to a string or unicode.

PyArray_Descr* PyArray_ResultType(npy_intp narrs, PyArrayObject**arrs, npy_intp ndtypes,
PyArray_Descr**dtypes)

New in version 1.6.

This applies type promotion to all the inputs, using the NumPy rules for combining scalars and arrays, to
determine the output type of a set of operands. This is the same result type that ufuncs produce. The specific
algorithm used is as follows.

Categories are determined by first checking which of boolean, integer (int/uint), or floating point (float/complex)
the maximum kind of all the arrays and the scalars are.

If there are only scalars or the maximum category of the scalars is higher than the maximum category of the
arrays, the data types are combined with PyArray_PromoteTypes to produce the return value.

Otherwise, PyArray_MinScalarType is called on each array, and the resulting data types are all combined with
PyArray_PromoteTypes to produce the return value.

The set of int values is not a subset of the uint values for types with the same number of bits, something not
reflected in PyArray_MinScalarType, but handled as a special case in PyArray_ResultType.

int PyArray_ObjectType(PyObject* op, int mintype)
This function is superceded by PyArray_MinScalarType and/or PyArray_ResultType.

This function is useful for determining a common type that two or more arrays can be converted to. It only
works for non-flexible array types as no itemsize information is passed. The mintype argument represents the
minimum type acceptable, and op represents the object that will be converted to an array. The return value is
the enumerated typenumber that represents the data-type that op should have.

1234 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

void PyArray_ArrayType(PyObject* op, PyArray_Descr* mintype, PyArray_Descr* outtype)
This function is superceded by PyArray_ResultType.

This function works similarly to PyArray_ObjectType (. . . ) except it handles flexible arrays. The mintype
argument can have an itemsize member and the outtype argument will have an itemsize member at least as big
but perhaps bigger depending on the object op.

PyArrayObject** PyArray_ConvertToCommonType(PyObject* op, int* n)
The functionality this provides is largely superceded by iterator NpyIter introduced in 1.6, with flag
NPY_ITER_COMMON_DTYPE or with the same dtype parameter for all operands.

Convert a sequence of Python objects contained in op to an array of ndarrays each having the same data type.
The type is selected based on the typenumber (larger type number is chosen over a smaller one) ignoring objects
that are only scalars. The length of the sequence is returned in n, and an n -length array of PyArrayObject
pointers is the return value (or NULL if an error occurs). The returned array must be freed by the caller of this
routine (using PyDataMem_FREE ) and all the array objects in it DECREF ‘d or a memory-leak will occur.
The example template-code below shows a typically usage:

mps = PyArray_ConvertToCommonType(obj, &n);
if (mps==NULL) return NULL;
{code}
<before return>
for (i=0; i<n; i++) Py_DECREF(mps[i]);
PyDataMem_FREE(mps);
{return}

char* PyArray_Zero(PyArrayObject* arr)
A pointer to newly created memory of size arr ->itemsize that holds the representation of 0 for that type. The
returned pointer, ret, must be freed using PyDataMem_FREE (ret) when it is not needed anymore.

char* PyArray_One(PyArrayObject* arr)
A pointer to newly created memory of size arr ->itemsize that holds the representation of 1 for that type. The
returned pointer, ret, must be freed using PyDataMem_FREE (ret) when it is not needed anymore.

int PyArray_ValidType(int typenum)
Returns NPY_TRUE if typenum represents a valid type-number (builtin or user-defined or character code). Oth-
erwise, this function returns NPY_FALSE.

New data types

void PyArray_InitArrFuncs(PyArray_ArrFuncs* f)
Initialize all function pointers and members to NULL.

int PyArray_RegisterDataType(PyArray_Descr* dtype)
Register a data-type as a new user-defined data type for arrays. The type must have most of its entries filled
in. This is not always checked and errors can produce segfaults. In particular, the typeobj member of the
dtype structure must be filled with a Python type that has a fixed-size element-size that corresponds to the
elsize member of dtype. Also the f member must have the required functions: nonzero, copyswap, copyswapn,
getitem, setitem, and cast (some of the cast functions may be NULL if no support is desired). To avoid confusion,
you should choose a unique character typecode but this is not enforced and not relied on internally.

A user-defined type number is returned that uniquely identifies the type. A pointer to the new structure can then
be obtained from PyArray_DescrFromType using the returned type number. A -1 is returned if an error
occurs. If this dtype has already been registered (checked only by the address of the pointer), then return the
previously-assigned type-number.

6.4. Array API 1235

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

int PyArray_RegisterCastFunc(PyArray_Descr* descr, int totype, PyArray_VectorUnaryFunc* cast-
func)

Register a low-level casting function, castfunc, to convert from the data-type, descr, to the given data-type
number, totype. Any old casting function is over-written. A 0 is returned on success or a -1 on failure.

int PyArray_RegisterCanCast(PyArray_Descr* descr, int totype, NPY_SCALARKIND scalar)
Register the data-type number, totype, as castable from data-type object, descr, of the given scalar kind. Use
scalar = NPY_NOSCALAR to register that an array of data-type descr can be cast safely to a data-type whose
type_number is totype.

Special functions for NPY_OBJECT

int PyArray_INCREF(PyArrayObject* op)
Used for an array, op, that contains any Python objects. It increments the reference count of every object in the
array according to the data-type of op. A -1 is returned if an error occurs, otherwise 0 is returned.

void PyArray_Item_INCREF(char* ptr, PyArray_Descr* dtype)
A function to INCREF all the objects at the location ptr according to the data-type dtype. If ptr is the start of
a structured type with an object at any offset, then this will (recursively) increment the reference count of all
object-like items in the structured type.

int PyArray_XDECREF(PyArrayObject* op)
Used for an array, op, that contains any Python objects. It decrements the reference count of every object in the
array according to the data-type of op. Normal return value is 0. A -1 is returned if an error occurs.

void PyArray_Item_XDECREF(char* ptr, PyArray_Descr* dtype)
A function to XDECREF all the object-like items at the location ptr as recorded in the data-type, dtype. This
works recursively so that if dtype itself has fields with data-types that contain object-like items, all the object-
like fields will be XDECREF 'd.

void PyArray_FillObjectArray(PyArrayObject* arr, PyObject* obj)
Fill a newly created array with a single value obj at all locations in the structure with object data-types. No
checking is performed but arr must be of data-type NPY_OBJECT and be single-segment and uninitialized (no
previous objects in position). Use PyArray_DECREF (arr) if you need to decrement all the items in the object
array prior to calling this function.

int PyArray_SetUpdateIfCopyBase(PyArrayObject* arr, PyArrayObject* base)
Precondition: arr is a copy of base (though possibly with different strides, ordering, etc.) Set the UP-
DATEIFCOPY flag and arr->base so that when arr is destructed, it will copy any changes back to base.
DEPRECATED, use PyArray_SetWritebackIfCopyBase`.

Returns 0 for success, -1 for failure.

int PyArray_SetWritebackIfCopyBase(PyArrayObject* arr, PyArrayObject* base)
Precondition: arr is a copy of base (though possibly with different strides, ordering, etc.) Sets
the NPY_ARRAY_WRITEBACKIFCOPY flag and arr->base, and set base to READONLY. Call
PyArray_ResolveWritebackIfCopy before calling Py_DECREF‘ in order copy any changes back to
base and reset the READONLY flag.

Returns 0 for success, -1 for failure.

6.4.4 Array flags

The flags attribute of the PyArrayObject structure contains important information about the memory used by
the array (pointed to by the data member) This flag information must be kept accurate or strange results and even
segfaults may result.

1236 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

There are 6 (binary) flags that describe the memory area used by the data buffer. These constants are defined in
arrayobject.h and determine the bit-position of the flag. Python exposes a nice attribute- based interface as well
as a dictionary-like interface for getting (and, if appropriate, setting) these flags.

Memory areas of all kinds can be pointed to by an ndarray, necessitating these flags. If you get an arbitrary
PyArrayObject in C-code, you need to be aware of the flags that are set. If you need to guarantee a certain
kind of array (like NPY_ARRAY_C_CONTIGUOUS and NPY_ARRAY_BEHAVED), then pass these requirements into
the PyArray_FromAny function.

Basic Array Flags

An ndarray can have a data segment that is not a simple contiguous chunk of well-behaved memory you can manip-
ulate. It may not be aligned with word boundaries (very important on some platforms). It might have its data in a
different byte-order than the machine recognizes. It might not be writeable. It might be in Fortan-contiguous order.
The array flags are used to indicate what can be said about data associated with an array.

In versions 1.6 and earlier of NumPy, the following flags did not have the _ARRAY_ macro namespace in them. That
form of the constant names is deprecated in 1.7.

NPY_ARRAY_C_CONTIGUOUS
The data area is in C-style contiguous order (last index varies the fastest).

NPY_ARRAY_F_CONTIGUOUS
The data area is in Fortran-style contiguous order (first index varies the fastest).

Note: Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays,
but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary if arr.
shape[dim] == 1 or the array has no elements. It does not generally hold that self.strides[-1] ==
self.itemsize for C-style contiguous arrays or self.strides[0] == self.itemsize for Fortran-
style contiguous arrays is true. The correct way to access the itemsize of an array from the C API is
PyArray_ITEMSIZE(arr).

See also:

Internal memory layout of an ndarray

NPY_ARRAY_OWNDATA
The data area is owned by this array.

NPY_ARRAY_ALIGNED
The data area and all array elements are aligned appropriately.

NPY_ARRAY_WRITEABLE
The data area can be written to.

Notice that the above 3 flags are defined so that a new, well- behaved array has these flags defined as true.

NPY_ARRAY_WRITEBACKIFCOPY
The data area represents a (well-behaved) copy whose information should be transferred back to the original
when PyArray_ResolveWritebackIfCopy is called.

This is a special flag that is set if this array represents a copy made because a user required certain flags in
PyArray_FromAny and a copy had to be made of some other array (and the user asked for this flag to be
set in such a situation). The base attribute then points to the “misbehaved” array (which is set read_only).
:c:func‘PyArray_ResolveWritebackIfCopy‘ will copy its contents back to the “misbehaved” array (casting if
necessary) and will reset the “misbehaved” array to NPY_ARRAY_WRITEABLE. If the “misbehaved” array

6.4. Array API 1237



NumPy Reference, Release 1.15.1

was not NPY_ARRAY_WRITEABLE to begin with then PyArray_FromAny would have returned an error
because NPY_ARRAY_WRITEBACKIFCOPY would not have been possible.

NPY_ARRAY_UPDATEIFCOPY
A deprecated version of NPY_ARRAY_WRITEBACKIFCOPY which depends upon dealloc to trigger the
writeback. For backwards compatibility, PyArray_ResolveWritebackIfCopy is called at dealloc
but relying on that behavior is deprecated and not supported in PyPy.

PyArray_UpdateFlags (obj, flags) will update the obj->flags for flags which can be
any of NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_F_CONTIGUOUS, NPY_ARRAY_ALIGNED, or
NPY_ARRAY_WRITEABLE.

Combinations of array flags

NPY_ARRAY_BEHAVED
NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE

NPY_ARRAY_CARRAY
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_BEHAVED

NPY_ARRAY_CARRAY_RO
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_ALIGNED

NPY_ARRAY_FARRAY
NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_BEHAVED

NPY_ARRAY_FARRAY_RO
NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_ALIGNED

NPY_ARRAY_DEFAULT
NPY_ARRAY_CARRAY

NPY_ARRAY_UPDATE_ALL
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_ALIGNED

Flag-like constants

These constants are used in PyArray_FromAny (and its macro forms) to specify desired properties of the new array.

NPY_ARRAY_FORCECAST
Cast to the desired type, even if it can’t be done without losing information.

NPY_ARRAY_ENSURECOPY
Make sure the resulting array is a copy of the original.

NPY_ARRAY_ENSUREARRAY
Make sure the resulting object is an actual ndarray, and not a sub-class.

NPY_ARRAY_NOTSWAPPED
Only used in PyArray_CheckFromAny to over-ride the byteorder of the data-type object passed in.

NPY_ARRAY_BEHAVED_NS
NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE | NPY_ARRAY_NOTSWAPPED

Flag checking

For all of these macros arr must be an instance of a (subclass of) PyArray_Type, but no checking is done.

1238 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

PyArray_CHKFLAGS(arr, flags)
The first parameter, arr, must be an ndarray or subclass. The parameter, flags, should
be an integer consisting of bitwise combinations of the possible flags an array can have:
NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_F_CONTIGUOUS, NPY_ARRAY_OWNDATA,
NPY_ARRAY_ALIGNED, NPY_ARRAY_WRITEABLE, NPY_ARRAY_WRITEBACKIFCOPY ,
NPY_ARRAY_UPDATEIFCOPY .

PyArray_IS_C_CONTIGUOUS(arr)
Evaluates true if arr is C-style contiguous.

PyArray_IS_F_CONTIGUOUS(arr)
Evaluates true if arr is Fortran-style contiguous.

PyArray_ISFORTRAN(arr)
Evaluates true if arr is Fortran-style contiguous and not C-style contiguous. PyArray_IS_F_CONTIGUOUS
is the correct way to test for Fortran-style contiguity.

PyArray_ISWRITEABLE(arr)
Evaluates true if the data area of arr can be written to

PyArray_ISALIGNED(arr)
Evaluates true if the data area of arr is properly aligned on the machine.

PyArray_ISBEHAVED(arr)
Evaluates true if the data area of arr is aligned and writeable and in machine byte-order according to its descrip-
tor.

PyArray_ISBEHAVED_RO(arr)
Evaluates true if the data area of arr is aligned and in machine byte-order.

PyArray_ISCARRAY(arr)
Evaluates true if the data area of arr is C-style contiguous, and PyArray_ISBEHAVED (arr) is true.

PyArray_ISFARRAY(arr)
Evaluates true if the data area of arr is Fortran-style contiguous and PyArray_ISBEHAVED (arr) is true.

PyArray_ISCARRAY_RO(arr)
Evaluates true if the data area of arr is C-style contiguous, aligned, and in machine byte-order.

PyArray_ISFARRAY_RO(arr)
Evaluates true if the data area of arr is Fortran-style contiguous, aligned, and in machine byte-order .

PyArray_ISONESEGMENT(arr)
Evaluates true if the data area of arr consists of a single (C-style or Fortran-style) contiguous segment.

void PyArray_UpdateFlags(PyArrayObject* arr, int flagmask)
The NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_ALIGNED, and NPY_ARRAY_F_CONTIGUOUS array
flags can be “calculated” from the array object itself. This routine updates one or more of these flags of arr
as specified in flagmask by performing the required calculation.

Warning: It is important to keep the flags updated (using PyArray_UpdateFlags can help) whenever a
manipulation with an array is performed that might cause them to change. Later calculations in NumPy that rely
on the state of these flags do not repeat the calculation to update them.

6.4.5 Array method alternative API

6.4. Array API 1239



NumPy Reference, Release 1.15.1

Conversion

PyObject* PyArray_GetField(PyArrayObject* self, PyArray_Descr* dtype, int offset)
Equivalent to ndarray.getfield (self, dtype, offset). Return a new array of the given dtype using the data
in the current array at a specified offset in bytes. The offset plus the itemsize of the new array type must be
less than self ->descr->elsize or an error is raised. The same shape and strides as the original array are used.
Therefore, this function has the effect of returning a field from a structured array. But, it can also be used to
select specific bytes or groups of bytes from any array type.

int PyArray_SetField(PyArrayObject* self, PyArray_Descr* dtype, int offset, PyObject* val)
Equivalent to ndarray.setfield (self, val, dtype, offset ). Set the field starting at offset in bytes and of the
given dtype to val. The offset plus dtype ->elsize must be less than self ->descr->elsize or an error is raised.
Otherwise, the val argument is converted to an array and copied into the field pointed to. If necessary, the
elements of val are repeated to fill the destination array, But, the number of elements in the destination must be
an integer multiple of the number of elements in val.

PyObject* PyArray_Byteswap(PyArrayObject* self, Bool inplace)
Equivalent to ndarray.byteswap (self, inplace). Return an array whose data area is byteswapped. If inplace
is non-zero, then do the byteswap inplace and return a reference to self. Otherwise, create a byteswapped copy
and leave self unchanged.

PyObject* PyArray_NewCopy(PyArrayObject* old, NPY_ORDER order)
Equivalent to ndarray.copy (self, fortran). Make a copy of the old array. The returned array is always
aligned and writeable with data interpreted the same as the old array. If order is NPY_CORDER, then a C-
style contiguous array is returned. If order is NPY_FORTRANORDER, then a Fortran-style contiguous array is
returned. If order is NPY_ANYORDER, then the array returned is Fortran-style contiguous only if the old one is;
otherwise, it is C-style contiguous.

PyObject* PyArray_ToList(PyArrayObject* self)
Equivalent to ndarray.tolist (self ). Return a nested Python list from self.

PyObject* PyArray_ToString(PyArrayObject* self, NPY_ORDER order)
Equivalent to ndarray.tobytes (self, order). Return the bytes of this array in a Python string.

PyObject* PyArray_ToFile(PyArrayObject* self, FILE* fp, char* sep, char* format)
Write the contents of self to the file pointer fp in C-style contiguous fashion. Write the data as binary bytes if sep
is the string “”or NULL. Otherwise, write the contents of self as text using the sep string as the item separator.
Each item will be printed to the file. If the format string is not NULL or “”, then it is a Python print statement
format string showing how the items are to be written.

int PyArray_Dump(PyObject* self, PyObject* file, int protocol)
Pickle the object in self to the given file (either a string or a Python file object). If file is a Python string it is
considered to be the name of a file which is then opened in binary mode. The given protocol is used (if protocol
is negative, or the highest available is used). This is a simple wrapper around cPickle.dump(self, file, protocol).

PyObject* PyArray_Dumps(PyObject* self, int protocol)
Pickle the object in self to a Python string and return it. Use the Pickle protocol provided (or the highest
available if protocol is negative).

int PyArray_FillWithScalar(PyArrayObject* arr, PyObject* obj)
Fill the array, arr, with the given scalar object, obj. The object is first converted to the data type of arr, and then
copied into every location. A -1 is returned if an error occurs, otherwise 0 is returned.

PyObject* PyArray_View(PyArrayObject* self, PyArray_Descr* dtype, PyTypeObject *ptype)
Equivalent to ndarray.view (self, dtype). Return a new view of the array self as possibly a different data-
type, dtype, and different array subclass ptype.

If dtype is NULL, then the returned array will have the same data type as self. The new data-type must be
consistent with the size of self. Either the itemsizes must be identical, or self must be single-segment and the

1240 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/type.html#c.PyTypeObject


NumPy Reference, Release 1.15.1

total number of bytes must be the same. In the latter case the dimensions of the returned array will be altered in
the last (or first for Fortran-style contiguous arrays) dimension. The data area of the returned array and self is
exactly the same.

Shape Manipulation

PyObject* PyArray_Newshape(PyArrayObject* self, PyArray_Dims* newshape, NPY_ORDER order)
Result will be a new array (pointing to the same memory location as self if possible), but having a shape given
by newshape. If the new shape is not compatible with the strides of self, then a copy of the array with the new
specified shape will be returned.

PyObject* PyArray_Reshape(PyArrayObject* self, PyObject* shape)
Equivalent to ndarray.reshape (self, shape) where shape is a sequence. Converts shape to a
PyArray_Dims structure and calls PyArray_Newshape internally. For back-ward compatibility – Not
recommended

PyObject* PyArray_Squeeze(PyArrayObject* self)
Equivalent to ndarray.squeeze (self ). Return a new view of self with all of the dimensions of length 1
removed from the shape.

Warning: matrix objects are always 2-dimensional. Therefore, PyArray_Squeeze has no effect on arrays of
matrix sub-class.

PyObject* PyArray_SwapAxes(PyArrayObject* self, int a1, int a2)
Equivalent to ndarray.swapaxes (self, a1, a2). The returned array is a new view of the data in self with
the given axes, a1 and a2, swapped.

PyObject* PyArray_Resize(PyArrayObject* self, PyArray_Dims* newshape, int refcheck,
NPY_ORDER fortran)

Equivalent to ndarray.resize (self, newshape, refcheck = refcheck, order= fortran ). This function only
works on single-segment arrays. It changes the shape of self inplace and will reallocate the memory for self
if newshape has a different total number of elements then the old shape. If reallocation is necessary, then
self must own its data, have self - >base==NULL, have self - >weakrefs==NULL, and (unless refcheck
is 0) not be referenced by any other array. The fortran argument can be NPY_ANYORDER, NPY_CORDER, or
NPY_FORTRANORDER. It currently has no effect. Eventually it could be used to determine how the resize
operation should view the data when constructing a differently-dimensioned array. Returns None on success
and NULL on error.

PyObject* PyArray_Transpose(PyArrayObject* self, PyArray_Dims* permute)
Equivalent to ndarray.transpose (self, permute). Permute the axes of the ndarray object self according
to the data structure permute and return the result. If permute is NULL, then the resulting array has its axes
reversed. For example if self has shape 10 × 20 × 30, and permute .ptr is (0,2,1) the shape of the result is
10 × 30 × 20. If permute is NULL, the shape of the result is 30 × 20 × 10.

PyObject* PyArray_Flatten(PyArrayObject* self, NPY_ORDER order)
Equivalent to ndarray.flatten (self, order). Return a 1-d copy of the array. If order is
NPY_FORTRANORDER the elements are scanned out in Fortran order (first-dimension varies the fastest). If
order is NPY_CORDER, the elements of self are scanned in C-order (last dimension varies the fastest). If
order NPY_ANYORDER, then the result of PyArray_ISFORTRAN (self ) is used to determine which order to
flatten.

PyObject* PyArray_Ravel(PyArrayObject* self, NPY_ORDER order)
Equivalent to self.ravel(order). Same basic functionality as PyArray_Flatten (self, order) except if order
is 0 and self is C-style contiguous, the shape is altered but no copy is performed.

6.4. Array API 1241

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

Item selection and manipulation

PyObject* PyArray_TakeFrom(PyArrayObject* self, PyObject* indices, int axis, PyArrayObject* ret,
NPY_CLIPMODE clipmode)

Equivalent to ndarray.take (self, indices, axis, ret, clipmode) except axis =None in Python is obtained by
setting axis = NPY_MAXDIMS in C. Extract the items from self indicated by the integer-valued indices along
the given axis. The clipmode argument can be NPY_RAISE, NPY_WRAP, or NPY_CLIP to indicate what to
do with out-of-bound indices. The ret argument can specify an output array rather than having one created
internally.

PyObject* PyArray_PutTo(PyArrayObject* self, PyObject* values, PyObject* indices,
NPY_CLIPMODE clipmode)

Equivalent to self.put(values, indices, clipmode ). Put values into self at the corresponding (flattened) indices.
If values is too small it will be repeated as necessary.

PyObject* PyArray_PutMask(PyArrayObject* self, PyObject* values, PyObject* mask)
Place the values in self wherever corresponding positions (using a flattened context) in mask are true. The
mask and self arrays must have the same total number of elements. If values is too small, it will be repeated as
necessary.

PyObject* PyArray_Repeat(PyArrayObject* self, PyObject* op, int axis)
Equivalent to ndarray.repeat (self, op, axis). Copy the elements of self, op times along the given axis.
Either op is a scalar integer or a sequence of length self ->dimensions[ axis ] indicating how many times to
repeat each item along the axis.

PyObject* PyArray_Choose(PyArrayObject* self, PyObject* op, PyArrayObject* ret,
NPY_CLIPMODE clipmode)

Equivalent to ndarray.choose (self, op, ret, clipmode). Create a new array by selecting elements from the
sequence of arrays in op based on the integer values in self. The arrays must all be broadcastable to the same
shape and the entries in self should be between 0 and len(op). The output is placed in ret unless it is NULL in
which case a new output is created. The clipmode argument determines behavior for when entries in self are not
between 0 and len(op).

NPY_RAISE
raise a ValueError;

NPY_WRAP
wrap values < 0 by adding len(op) and values >=len(op) by subtracting len(op) until they are in range;

NPY_CLIP
all values are clipped to the region [0, len(op) ).

PyObject* PyArray_Sort(PyArrayObject* self, int axis)
Equivalent to ndarray.sort (self, axis). Return an array with the items of self sorted along axis.

PyObject* PyArray_ArgSort(PyArrayObject* self, int axis)
Equivalent to ndarray.argsort (self, axis). Return an array of indices such that selection of these indices
along the given axis would return a sorted version of self. If self ->descr is a data-type with fields defined,
then self->descr->names is used to determine the sort order. A comparison where the first field is equal will use
the second field and so on. To alter the sort order of a structured array, create a new data-type with a different
order of names and construct a view of the array with that new data-type.

PyObject* PyArray_LexSort(PyObject* sort_keys, int axis)
Given a sequence of arrays (sort_keys) of the same shape, return an array of indices (similar to
PyArray_ArgSort (. . . )) that would sort the arrays lexicographically. A lexicographic sort specifies that
when two keys are found to be equal, the order is based on comparison of subsequent keys. A merge sort (which
leaves equal entries unmoved) is required to be defined for the types. The sort is accomplished by sorting the
indices first using the first sort_key and then using the second sort_key and so forth. This is equivalent to the

1242 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

lexsort(sort_keys, axis) Python command. Because of the way the merge-sort works, be sure to understand the
order the sort_keys must be in (reversed from the order you would use when comparing two elements).

If these arrays are all collected in a structured array, then PyArray_Sort (. . . ) can also be used to sort the
array directly.

PyObject* PyArray_SearchSorted(PyArrayObject* self, PyObject* values, NPY_SEARCHSIDE side,
PyObject* perm)

Equivalent to ndarray.searchsorted (self, values, side, perm). Assuming self is a 1-d array in ascending
order, then the output is an array of indices the same shape as values such that, if the elements in values were
inserted before the indices, the order of self would be preserved. No checking is done on whether or not self is
in ascending order.

The side argument indicates whether the index returned should be that of the first suitable location (if
NPY_SEARCHLEFT) or of the last (if NPY_SEARCHRIGHT).

The sorter argument, if not NULL, must be a 1D array of integer indices the same length as self, that sorts it into
ascending order. This is typically the result of a call to PyArray_ArgSort (. . . ) Binary search is used to find
the required insertion points.

int PyArray_Partition(PyArrayObject *self, PyArrayObject * ktharray, int axis,
NPY_SELECTKIND which)

Equivalent to ndarray.partition (self, ktharray, axis, kind). Partitions the array so that the values of the
element indexed by ktharray are in the positions they would be if the array is fully sorted and places all elements
smaller than the kth before and all elements equal or greater after the kth element. The ordering of all elements
within the partitions is undefined. If self ->descr is a data-type with fields defined, then self->descr->names is
used to determine the sort order. A comparison where the first field is equal will use the second field and so on.
To alter the sort order of a structured array, create a new data-type with a different order of names and construct
a view of the array with that new data-type. Returns zero on success and -1 on failure.

PyObject* PyArray_ArgPartition(PyArrayObject *op, PyArrayObject * ktharray, int axis,
NPY_SELECTKIND which)

Equivalent to ndarray.argpartition (self, ktharray, axis, kind). Return an array of indices such that
selection of these indices along the given axis would return a partitioned version of self.

PyObject* PyArray_Diagonal(PyArrayObject* self, int offset, int axis1, int axis2)
Equivalent to ndarray.diagonal (self, offset, axis1, axis2 ). Return the offset diagonals of the 2-d arrays
defined by axis1 and axis2.

npy_intp PyArray_CountNonzero(PyArrayObject* self)
New in version 1.6.

Counts the number of non-zero elements in the array object self.

PyObject* PyArray_Nonzero(PyArrayObject* self)
Equivalent to ndarray.nonzero (self ). Returns a tuple of index arrays that select elements of self that are
nonzero. If (nd= PyArray_NDIM ( self ))==1, then a single index array is returned. The index arrays have
data type NPY_INTP. If a tuple is returned (nd ̸= 1), then its length is nd.

PyObject* PyArray_Compress(PyArrayObject* self, PyObject* condition, int axis, PyArrayObject* out)
Equivalent to ndarray.compress (self, condition, axis ). Return the elements along axis corresponding to
elements of condition that are true.

Calculation

Tip: Pass in NPY_MAXDIMS for axis in order to achieve the same effect that is obtained by passing in axis = None
in Python (treating the array as a 1-d array).

6.4. Array API 1243

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

PyObject* PyArray_ArgMax(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to ndarray.argmax (self, axis). Return the index of the largest element of self along axis.

PyObject* PyArray_ArgMin(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to ndarray.argmin (self, axis). Return the index of the smallest element of self along axis.

Note: The out argument specifies where to place the result. If out is NULL, then the output array is created,
otherwise the output is placed in out which must be the correct size and type. A new reference to the output array
is always returned even when out is not NULL. The caller of the routine has the responsibility to DECREF out if not
NULL or a memory-leak will occur.

PyObject* PyArray_Max(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to ndarray.max (self, axis). Returns the largest element of self along the given axis. When the
result is a single element, returns a numpy scalar instead of an ndarray.

PyObject* PyArray_Min(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to ndarray.min (self, axis). Return the smallest element of self along the given axis. When the
result is a single element, returns a numpy scalar instead of an ndarray.

PyObject* PyArray_Ptp(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to ndarray.ptp (self, axis). Return the difference between the largest element of self along axis
and the smallest element of self along axis. When the result is a single element, returns a numpy scalar instead
of an ndarray.

Note: The rtype argument specifies the data-type the reduction should take place over. This is important if the data-
type of the array is not “large” enough to handle the output. By default, all integer data-types are made at least as large
as NPY_LONG for the “add” and “multiply” ufuncs (which form the basis for mean, sum, cumsum, prod, and cumprod
functions).

PyObject* PyArray_Mean(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to ndarray.mean (self, axis, rtype). Returns the mean of the elements along the given axis, using
the enumerated type rtype as the data type to sum in. Default sum behavior is obtained using NPY_NOTYPE for
rtype.

PyObject* PyArray_Trace(PyArrayObject* self, int offset, int axis1, int axis2, int rtype, PyArrayOb-
ject* out)

Equivalent to ndarray.trace (self, offset, axis1, axis2, rtype). Return the sum (using rtype as the data
type of summation) over the offset diagonal elements of the 2-d arrays defined by axis1 and axis2 variables. A
positive offset chooses diagonals above the main diagonal. A negative offset selects diagonals below the main
diagonal.

PyObject* PyArray_Clip(PyArrayObject* self, PyObject* min, PyObject* max)
Equivalent to ndarray.clip (self, min, max). Clip an array, self, so that values larger than max are fixed to
max and values less than min are fixed to min.

PyObject* PyArray_Conjugate(PyArrayObject* self)
Equivalent to ndarray.conjugate (self ). Return the complex conjugate of self. If self is not of complex
data type, then return self with a reference.

PyObject* PyArray_Round(PyArrayObject* self, int decimals, PyArrayObject* out)
Equivalent to ndarray.round (self, decimals, out). Returns the array with elements rounded to the nearest
decimal place. The decimal place is defined as the 10−decimals digit so that negative decimals cause rounding to
the nearest 10’s, 100’s, etc. If out is NULL, then the output array is created, otherwise the output is placed in out
which must be the correct size and type.

1244 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

PyObject* PyArray_Std(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to ndarray.std (self, axis, rtype). Return the standard deviation using data along axis converted
to data type rtype.

PyObject* PyArray_Sum(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to ndarray.sum (self, axis, rtype). Return 1-d vector sums of elements in self along axis. Perform
the sum after converting data to data type rtype.

PyObject* PyArray_CumSum(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to ndarray.cumsum (self, axis, rtype). Return cumulative 1-d sums of elements in self along
axis. Perform the sum after converting data to data type rtype.

PyObject* PyArray_Prod(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to ndarray.prod (self, axis, rtype). Return 1-d products of elements in self along axis. Perform
the product after converting data to data type rtype.

PyObject* PyArray_CumProd(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to ndarray.cumprod (self, axis, rtype). Return 1-d cumulative products of elements in self
along axis. Perform the product after converting data to data type rtype.

PyObject* PyArray_All(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to ndarray.all (self, axis). Return an array with True elements for every 1-d sub-array of self
defined by axis in which all the elements are True.

PyObject* PyArray_Any(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to ndarray.any (self, axis). Return an array with True elements for every 1-d sub-array of self
defined by axis in which any of the elements are True.

6.4.6 Functions

Array Functions

int PyArray_AsCArray(PyObject** op, void* ptr, npy_intp* dims, int nd, int typenum, int itemsize)
Sometimes it is useful to access a multidimensional array as a C-style multi-dimensional array so that algorithms
can be implemented using C’s a[i][j][k] syntax. This routine returns a pointer, ptr, that simulates this kind of
C-style array, for 1-, 2-, and 3-d ndarrays.

Parameters

• op – The address to any Python object. This Python object will be replaced with an equiv-
alent well-behaved, C-style contiguous, ndarray of the given data type specified by the last
two arguments. Be sure that stealing a reference in this way to the input object is justified.

• ptr – The address to a (ctype* for 1-d, ctype** for 2-d or ctype*** for 3-d) variable where
ctype is the equivalent C-type for the data type. On return, ptr will be addressable as a 1-d,
2-d, or 3-d array.

• dims – An output array that contains the shape of the array object. This array gives bound-
aries on any looping that will take place.

• nd – The dimensionality of the array (1, 2, or 3).

• typenum – The expected data type of the array.

• itemsize – This argument is only needed when typenum represents a flexible array. Oth-
erwise it should be 0.

6.4. Array API 1245

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

Note: The simulation of a C-style array is not complete for 2-d and 3-d arrays. For example, the simulated arrays of
pointers cannot be passed to subroutines expecting specific, statically-defined 2-d and 3-d arrays. To pass to functions
requiring those kind of inputs, you must statically define the required array and copy data.

int PyArray_Free(PyObject* op, void* ptr)
Must be called with the same objects and memory locations returned from PyArray_AsCArray (. . . ). This
function cleans up memory that otherwise would get leaked.

PyObject* PyArray_Concatenate(PyObject* obj, int axis)
Join the sequence of objects in obj together along axis into a single array. If the dimensions or types are not
compatible an error is raised.

PyObject* PyArray_InnerProduct(PyObject* obj1, PyObject* obj2)
Compute a product-sum over the last dimensions of obj1 and obj2. Neither array is conjugated.

PyObject* PyArray_MatrixProduct(PyObject* obj1, PyObject* obj)
Compute a product-sum over the last dimension of obj1 and the second-to-last dimension of obj2. For 2-d arrays
this is a matrix-product. Neither array is conjugated.

PyObject* PyArray_MatrixProduct2(PyObject* obj1, PyObject* obj, PyArrayObject* out)
New in version 1.6.

Same as PyArray_MatrixProduct, but store the result in out. The output array must have the correct shape, type,
and be C-contiguous, or an exception is raised.

PyObject* PyArray_EinsteinSum(char* subscripts, npy_intp nop, PyArrayObject** op_in,
PyArray_Descr* dtype, NPY_ORDER order, NPY_CASTING casting,
PyArrayObject* out)

New in version 1.6.

Applies the Einstein summation convention to the array operands provided, returning a new array or placing the
result in out. The string in subscripts is a comma separated list of index letters. The number of operands is in
nop, and op_in is an array containing those operands. The data type of the output can be forced with dtype,
the output order can be forced with order (NPY_KEEPORDER is recommended), and when dtype is specified,
casting indicates how permissive the data conversion should be.

See the einsum function for more details.

PyObject* PyArray_CopyAndTranspose(PyObject * op)
A specialized copy and transpose function that works only for 2-d arrays. The returned array is a transposed
copy of op.

PyObject* PyArray_Correlate(PyObject* op1, PyObject* op2, int mode)
Compute the 1-d correlation of the 1-d arrays op1 and op2 . The correlation is computed at each output point
by multiplying op1 by a shifted version of op2 and summing the result. As a result of the shift, needed values
outside of the defined range of op1 and op2 are interpreted as zero. The mode determines how many shifts to
return: 0 - return only shifts that did not need to assume zero- values; 1 - return an object that is the same size
as op1, 2 - return all possible shifts (any overlap at all is accepted).

Notes

This does not compute the usual correlation: if op2 is larger than op1, the arguments are swapped, and the
conjugate is never taken for complex arrays. See PyArray_Correlate2 for the usual signal processing correlation.

PyObject* PyArray_Correlate2(PyObject* op1, PyObject* op2, int mode)
Updated version of PyArray_Correlate, which uses the usual definition of correlation for 1d arrays. The corre-
lation is computed at each output point by multiplying op1 by a shifted version of op2 and summing the result.

1246 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

As a result of the shift, needed values outside of the defined range of op1 and op2 are interpreted as zero. The
mode determines how many shifts to return: 0 - return only shifts that did not need to assume zero- values; 1 -
return an object that is the same size as op1, 2 - return all possible shifts (any overlap at all is accepted).

Notes

Compute z as follows:

z[k] = sum_n op1[n] * conj(op2[n+k])

PyObject* PyArray_Where(PyObject* condition, PyObject* x, PyObject* y)
If both x and y are NULL, then return PyArray_Nonzero (condition). Otherwise, both x and y must be given
and the object returned is shaped like condition and has elements of x and y where condition is respectively True
or False.

Other functions

Bool PyArray_CheckStrides(int elsize, int nd, npy_intp numbytes, npy_intp* dims, npy_intp* new-
strides)

Determine if newstrides is a strides array consistent with the memory of an nd -dimensional array with shape
dims and element-size, elsize. The newstrides array is checked to see if jumping by the provided number of
bytes in each direction will ever mean jumping more than numbytes which is the assumed size of the available
memory segment. If numbytes is 0, then an equivalent numbytes is computed assuming nd, dims, and elsize refer
to a single-segment array. Return NPY_TRUE if newstrides is acceptable, otherwise return NPY_FALSE.

npy_intp PyArray_MultiplyList(npy_intp* seq, int n)

int PyArray_MultiplyIntList(int* seq, int n)
Both of these routines multiply an n -length array, seq, of integers and return the result. No overflow checking
is performed.

int PyArray_CompareLists(npy_intp* l1, npy_intp* l2, int n)
Given two n -length arrays of integers, l1, and l2, return 1 if the lists are identical; otherwise, return 0.

6.4.7 Auxiliary Data With Object Semantics

New in version 1.7.0.

NpyAuxData

When working with more complex dtypes which are composed of other dtypes, such as the struct dtype, creating inner
loops that manipulate the dtypes requires carrying along additional data. NumPy supports this idea through a struct
NpyAuxData, mandating a few conventions so that it is possible to do this.

Defining an NpyAuxData is similar to defining a class in C++, but the object semantics have to be tracked manually
since the API is in C. Here’s an example for a function which doubles up an element using an element copier function
as a primitive.:

typedef struct {
NpyAuxData base;
ElementCopier_Func *func;
NpyAuxData *funcdata;

} eldoubler_aux_data;

void free_element_doubler_aux_data(NpyAuxData *data)

(continues on next page)

6.4. Array API 1247

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

(continued from previous page)

{
eldoubler_aux_data *d = (eldoubler_aux_data *)data;
/* Free the memory owned by this auxdata */
NPY_AUXDATA_FREE(d->funcdata);
PyArray_free(d);

}

NpyAuxData *clone_element_doubler_aux_data(NpyAuxData *data)
{

eldoubler_aux_data *ret = PyArray_malloc(sizeof(eldoubler_aux_data));
if (ret == NULL) {

return NULL;
}

/* Raw copy of all data */
memcpy(ret, data, sizeof(eldoubler_aux_data));

/* Fix up the owned auxdata so we have our own copy */
ret->funcdata = NPY_AUXDATA_CLONE(ret->funcdata);
if (ret->funcdata == NULL) {

PyArray_free(ret);
return NULL;

}

return (NpyAuxData *)ret;
}

NpyAuxData *create_element_doubler_aux_data(
ElementCopier_Func *func,
NpyAuxData *funcdata)

{
eldoubler_aux_data *ret = PyArray_malloc(sizeof(eldoubler_aux_data));
if (ret == NULL) {

PyErr_NoMemory();
return NULL;

}
memset(&ret, 0, sizeof(eldoubler_aux_data));
ret->base->free = &free_element_doubler_aux_data;
ret->base->clone = &clone_element_doubler_aux_data;
ret->func = func;
ret->funcdata = funcdata;

return (NpyAuxData *)ret;
}

NpyAuxData_FreeFunc
The function pointer type for NpyAuxData free functions.

NpyAuxData_CloneFunc
The function pointer type for NpyAuxData clone functions. These functions should never set the Python excep-
tion on error, because they may be called from a multi-threaded context.

NPY_AUXDATA_FREE(auxdata)
A macro which calls the auxdata’s free function appropriately, does nothing if auxdata is NULL.

NPY_AUXDATA_CLONE(auxdata)
A macro which calls the auxdata’s clone function appropriately, returning a deep copy of the auxiliary data.

1248 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

6.4.8 Array Iterators

As of NumPy 1.6.0, these array iterators are superceded by the new array iterator, NpyIter.

An array iterator is a simple way to access the elements of an N-dimensional array quickly and efficiently. Section 2
provides more description and examples of this useful approach to looping over an array.

PyObject* PyArray_IterNew(PyObject* arr)
Return an array iterator object from the array, arr. This is equivalent to arr. flat. The array iterator object makes
it easy to loop over an N-dimensional non-contiguous array in C-style contiguous fashion.

PyObject* PyArray_IterAllButAxis(PyObject* arr, int *axis)
Return an array iterator that will iterate over all axes but the one provided in *axis. The returned iterator cannot
be used with PyArray_ITER_GOTO1D. This iterator could be used to write something similar to what ufuncs
do wherein the loop over the largest axis is done by a separate sub-routine. If *axis is negative then *axis will
be set to the axis having the smallest stride and that axis will be used.

PyObject *PyArray_BroadcastToShape(PyObject* arr, npy_intp *dimensions, int nd)
Return an array iterator that is broadcast to iterate as an array of the shape provided by dimensions and nd.

int PyArrayIter_Check(PyObject* op)
Evaluates true if op is an array iterator (or instance of a subclass of the array iterator type).

void PyArray_ITER_RESET(PyObject* iterator)
Reset an iterator to the beginning of the array.

void PyArray_ITER_NEXT(PyObject* iterator)
Incremement the index and the dataptr members of the iterator to point to the next element of the array. If the
array is not (C-style) contiguous, also increment the N-dimensional coordinates array.

void *PyArray_ITER_DATA(PyObject* iterator)
A pointer to the current element of the array.

void PyArray_ITER_GOTO(PyObject* iterator, npy_intp* destination)
Set the iterator index, dataptr, and coordinates members to the location in the array indicated by the N-
dimensional c-array, destination, which must have size at least iterator ->nd_m1+1.

PyArray_ITER_GOTO1D(PyObject* iterator, npy_intp index)
Set the iterator index and dataptr to the location in the array indicated by the integer index which points to an
element in the C-styled flattened array.

int PyArray_ITER_NOTDONE(PyObject* iterator)
Evaluates TRUE as long as the iterator has not looped through all of the elements, otherwise it evaluates FALSE.

6.4.9 Broadcasting (multi-iterators)

PyObject* PyArray_MultiIterNew(int num, ...)
A simplified interface to broadcasting. This function takes the number of arrays to broadcast and then
num extra ( PyObject * ) arguments. These arguments are converted to arrays and iterators are created.
PyArray_Broadcast is then called on the resulting multi-iterator object. The resulting, broadcasted mult-
iterator object is then returned. A broadcasted operation can then be performed using a single loop and using
PyArray_MultiIter_NEXT (..)

void PyArray_MultiIter_RESET(PyObject* multi)
Reset all the iterators to the beginning in a multi-iterator object, multi.

void PyArray_MultiIter_NEXT(PyObject* multi)
Advance each iterator in a multi-iterator object, multi, to its next (broadcasted) element.

6.4. Array API 1249

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

void *PyArray_MultiIter_DATA(PyObject* multi, int i)
Return the data-pointer of the i th iterator in a multi-iterator object.

void PyArray_MultiIter_NEXTi(PyObject* multi, int i)
Advance the pointer of only the i th iterator.

void PyArray_MultiIter_GOTO(PyObject* multi, npy_intp* destination)
Advance each iterator in a multi-iterator object, multi, to the given 𝑁 -dimensional destination where 𝑁 is the
number of dimensions in the broadcasted array.

void PyArray_MultiIter_GOTO1D(PyObject* multi, npy_intp index)
Advance each iterator in a multi-iterator object, multi, to the corresponding location of the index into the flattened
broadcasted array.

int PyArray_MultiIter_NOTDONE(PyObject* multi)
Evaluates TRUE as long as the multi-iterator has not looped through all of the elements (of the broadcasted
result), otherwise it evaluates FALSE.

int PyArray_Broadcast(PyArrayMultiIterObject* mit)
This function encapsulates the broadcasting rules. The mit container should already contain iterators for all
the arrays that need to be broadcast. On return, these iterators will be adjusted so that iteration over each
simultaneously will accomplish the broadcasting. A negative number is returned if an error occurs.

int PyArray_RemoveSmallest(PyArrayMultiIterObject* mit)
This function takes a multi-iterator object that has been previously “broadcasted,” finds the dimension with
the smallest “sum of strides” in the broadcasted result and adapts all the iterators so as not to iterate over
that dimension (by effectively making them of length-1 in that dimension). The corresponding dimension is
returned unless mit ->nd is 0, then -1 is returned. This function is useful for constructing ufunc-like routines
that broadcast their inputs correctly and then call a strided 1-d version of the routine as the inner-loop. This 1-d
version is usually optimized for speed and for this reason the loop should be performed over the axis that won’t
require large stride jumps.

6.4.10 Neighborhood iterator

New in version 1.4.0.

Neighborhood iterators are subclasses of the iterator object, and can be used to iter over a neighborhood of a point. For
example, you may want to iterate over every voxel of a 3d image, and for every such voxel, iterate over an hypercube.
Neighborhood iterator automatically handle boundaries, thus making this kind of code much easier to write than
manual boundaries handling, at the cost of a slight overhead.

PyObject* PyArray_NeighborhoodIterNew(PyArrayIterObject* iter, npy_intp bounds, int mode,
PyArrayObject* fill_value)

This function creates a new neighborhood iterator from an existing iterator. The neighborhood will be computed
relatively to the position currently pointed by iter, the bounds define the shape of the neighborhood iterator, and
the mode argument the boundaries handling mode.

The bounds argument is expected to be a (2 * iter->ao->nd) arrays, such as the range bound[2*i]->bounds[2*i+1]
defines the range where to walk for dimension i (both bounds are included in the walked coordinates). The
bounds should be ordered for each dimension (bounds[2*i] <= bounds[2*i+1]).

The mode should be one of:

• NPY_NEIGHBORHOOD_ITER_ZERO_PADDING: zero padding. Outside bounds values will be 0.

• NPY_NEIGHBORHOOD_ITER_ONE_PADDING: one padding, Outside bounds values will be 1.

• NPY_NEIGHBORHOOD_ITER_CONSTANT_PADDING: constant padding. Outside bounds values
will be the same as the first item in fill_value.

1250 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

• NPY_NEIGHBORHOOD_ITER_MIRROR_PADDING: mirror padding. Outside bounds values will be
as if the array items were mirrored. For example, for the array [1, 2, 3, 4], x[-2] will be 2, x[-2] will be 1,
x[4] will be 4, x[5] will be 1, etc. . .

• NPY_NEIGHBORHOOD_ITER_CIRCULAR_PADDING: circular padding. Outside bounds values will
be as if the array was repeated. For example, for the array [1, 2, 3, 4], x[-2] will be 3, x[-2] will be 4, x[4]
will be 1, x[5] will be 2, etc. . .

If the mode is constant filling (NPY_NEIGHBORHOOD_ITER_CONSTANT_PADDING), fill_value should
point to an array object which holds the filling value (the first item will be the filling value if the array contains
more than one item). For other cases, fill_value may be NULL.

• The iterator holds a reference to iter

• Return NULL on failure (in which case the reference count of iter is not changed)

• iter itself can be a Neighborhood iterator: this can be useful for .e.g automatic boundaries handling

• the object returned by this function should be safe to use as a normal iterator

• If the position of iter is changed, any subsequent call to PyArrayNeighborhoodIter_Next is undefined
behavior, and PyArrayNeighborhoodIter_Reset must be called.

PyArrayIterObject \*iter;
PyArrayNeighborhoodIterObject \*neigh_iter;
iter = PyArray_IterNew(x);

//For a 3x3 kernel
bounds = {-1, 1, -1, 1};
neigh_iter = (PyArrayNeighborhoodIterObject*)PyArrayNeighborhoodIter_New(

iter, bounds, NPY_NEIGHBORHOOD_ITER_ZERO_PADDING, NULL);

for(i = 0; i < iter->size; ++i) {
for (j = 0; j < neigh_iter->size; ++j) {

// Walk around the item currently pointed by iter->dataptr
PyArrayNeighborhoodIter_Next(neigh_iter);

}

// Move to the next point of iter
PyArrayIter_Next(iter);
PyArrayNeighborhoodIter_Reset(neigh_iter);

}

int PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter)
Reset the iterator position to the first point of the neighborhood. This should be called whenever the iter argu-
ment given at PyArray_NeighborhoodIterObject is changed (see example)

int PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter)
After this call, iter->dataptr points to the next point of the neighborhood. Calling this function after every point
of the neighborhood has been visited is undefined.

6.4.11 Array Scalars

PyObject* PyArray_Return(PyArrayObject* arr)
This function steals a reference to arr.

This function checks to see if arr is a 0-dimensional array and, if so, returns the appropriate array scalar. It
should be used whenever 0-dimensional arrays could be returned to Python.

6.4. Array API 1251

https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

PyObject* PyArray_Scalar(void* data, PyArray_Descr* dtype, PyObject* itemsize)
Return an array scalar object of the given enumerated typenum and itemsize by copying from memory pointed
to by data . If swap is nonzero then this function will byteswap the data if appropriate to the data-type because
array scalars are always in correct machine-byte order.

PyObject* PyArray_ToScalar(void* data, PyArrayObject* arr)
Return an array scalar object of the type and itemsize indicated by the array object arr copied from the memory
pointed to by data and swapping if the data in arr is not in machine byte-order.

PyObject* PyArray_FromScalar(PyObject* scalar, PyArray_Descr* outcode)
Return a 0-dimensional array of type determined by outcode from scalar which should be an array-scalar object.
If outcode is NULL, then the type is determined from scalar.

void PyArray_ScalarAsCtype(PyObject* scalar, void* ctypeptr)
Return in ctypeptr a pointer to the actual value in an array scalar. There is no error checking so scalar must be
an array-scalar object, and ctypeptr must have enough space to hold the correct type. For flexible-sized types,
a pointer to the data is copied into the memory of ctypeptr, for all other types, the actual data is copied into the
address pointed to by ctypeptr.

void PyArray_CastScalarToCtype(PyObject* scalar, void* ctypeptr, PyArray_Descr* outcode)
Return the data (cast to the data type indicated by outcode) from the array-scalar, scalar, into the memory
pointed to by ctypeptr (which must be large enough to handle the incoming memory).

PyObject* PyArray_TypeObjectFromType(int type)
Returns a scalar type-object from a type-number, type . Equivalent to PyArray_DescrFromType (type)-
>typeobj except for reference counting and error-checking. Returns a new reference to the typeobject on success
or NULL on failure.

NPY_SCALARKIND PyArray_ScalarKind(int typenum, PyArrayObject** arr)
See the function PyArray_MinScalarType for an alternative mechanism introduced in NumPy 1.6.0.

Return the kind of scalar represented by typenum and the array in *arr (if arr is not NULL ). The array is assumed
to be rank-0 and only used if typenum represents a signed integer. If arr is not NULL and the first element is neg-
ative then NPY_INTNEG_SCALAR is returned, otherwise NPY_INTPOS_SCALAR is returned. The possible
return values are NPY_{kind}_SCALAR where {kind} can be INTPOS, INTNEG, FLOAT, COMPLEX,
BOOL, or OBJECT. NPY_NOSCALAR is also an enumerated value NPY_SCALARKIND variables can take
on.

int PyArray_CanCoerceScalar(char thistype, char neededtype, NPY_SCALARKIND scalar)
See the function PyArray_ResultType for details of NumPy type promotion, updated in NumPy 1.6.0.

Implements the rules for scalar coercion. Scalars are only silently coerced from thistype to needed-
type if this function returns nonzero. If scalar is NPY_NOSCALAR, then this function is equivalent to
PyArray_CanCastSafely . The rule is that scalars of the same KIND can be coerced into arrays of the
same KIND. This rule means that high-precision scalars will never cause low-precision arrays of the same
KIND to be upcast.

6.4.12 Data-type descriptors

Warning: Data-type objects must be reference counted so be aware of the action on the data-type reference
of different C-API calls. The standard rule is that when a data-type object is returned it is a new reference.
Functions that take PyArray_Descr * objects and return arrays steal references to the data-type their inputs
unless otherwise noted. Therefore, you must own a reference to any data-type object used as input to such a
function.

1252 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

int PyArray_DescrCheck(PyObject* obj)
Evaluates as true if obj is a data-type object ( PyArray_Descr * ).

PyArray_Descr* PyArray_DescrNew(PyArray_Descr* obj)
Return a new data-type object copied from obj (the fields reference is just updated so that the new object points
to the same fields dictionary if any).

PyArray_Descr* PyArray_DescrNewFromType(int typenum)
Create a new data-type object from the built-in (or user-registered) data-type indicated by typenum. All builtin
types should not have any of their fields changed. This creates a new copy of the PyArray_Descr structure
so that you can fill it in as appropriate. This function is especially needed for flexible data-types which need to
have a new elsize member in order to be meaningful in array construction.

PyArray_Descr* PyArray_DescrNewByteorder(PyArray_Descr* obj, char newendian)
Create a new data-type object with the byteorder set according to newendian. All referenced data-type ob-
jects (in subdescr and fields members of the data-type object) are also changed (recursively). If a byteorder of
NPY_IGNORE is encountered it is left alone. If newendian is NPY_SWAP, then all byte-orders are swapped.
Other valid newendian values are NPY_NATIVE, NPY_LITTLE, and NPY_BIG which all cause the returned
data-typed descriptor (and all it’s referenced data-type descriptors) to have the corresponding byte- order.

PyArray_Descr* PyArray_DescrFromObject(PyObject* op, PyArray_Descr* mintype)
Determine an appropriate data-type object from the object op (which should be a “nested” sequence object) and
the minimum data-type descriptor mintype (which can be NULL ). Similar in behavior to array(op).dtype. Don’t
confuse this function with PyArray_DescrConverter. This function essentially looks at all the objects in
the (nested) sequence and determines the data-type from the elements it finds.

PyArray_Descr* PyArray_DescrFromScalar(PyObject* scalar)
Return a data-type object from an array-scalar object. No checking is done to be sure that scalar is an array
scalar. If no suitable data-type can be determined, then a data-type of NPY_OBJECT is returned by default.

PyArray_Descr* PyArray_DescrFromType(int typenum)
Returns a data-type object corresponding to typenum. The typenum can be one of the enumerated types, a
character code for one of the enumerated types, or a user-defined type.

int PyArray_DescrConverter(PyObject* obj, PyArray_Descr** dtype)
Convert any compatible Python object, obj, to a data-type object in dtype. A large number of Python objects can
be converted to data-type objects. See Data type objects (dtype) for a complete description. This version of the
converter converts None objects to a NPY_DEFAULT_TYPE data-type object. This function can be used with
the “O&” character code in PyArg_ParseTuple processing.

int PyArray_DescrConverter2(PyObject* obj, PyArray_Descr** dtype)
Convert any compatible Python object, obj, to a data-type object in dtype. This version of the converter converts
None objects so that the returned data-type is NULL. This function can also be used with the “O&” character in
PyArg_ParseTuple processing.

int Pyarray_DescrAlignConverter(PyObject* obj, PyArray_Descr** dtype)
Like PyArray_DescrConverter except it aligns C-struct-like objects on word-boundaries as the compiler
would.

int Pyarray_DescrAlignConverter2(PyObject* obj, PyArray_Descr** dtype)
Like PyArray_DescrConverter2 except it aligns C-struct-like objects on word-boundaries as the com-
piler would.

PyObject *PyArray_FieldNames(PyObject* dict)
Take the fields dictionary, dict, such as the one attached to a data-type object and construct an ordered-list of
field names such as is stored in the names field of the PyArray_Descr object.

6.4.13 Conversion Utilities

6.4. Array API 1253

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

For use with PyArg_ParseTuple

All of these functions can be used in PyArg_ParseTuple (. . . ) with the “O&” format specifier to automatically
convert any Python object to the required C-object. All of these functions return NPY_SUCCEED if successful and
NPY_FAIL if not. The first argument to all of these function is a Python object. The second argument is the address
of the C-type to convert the Python object to.

Warning: Be sure to understand what steps you should take to manage the memory when using these conversion
functions. These functions can require freeing memory, and/or altering the reference counts of specific objects
based on your use.

int PyArray_Converter(PyObject* obj, PyObject** address)
Convert any Python object to a PyArrayObject. If PyArray_Check (obj) is TRUE then its reference
count is incremented and a reference placed in address. If obj is not an array, then convert it to an array using
PyArray_FromAny . No matter what is returned, you must DECREF the object returned by this routine in
address when you are done with it.

int PyArray_OutputConverter(PyObject* obj, PyArrayObject** address)
This is a default converter for output arrays given to functions. If obj is Py_None or NULL, then *address will
be NULL but the call will succeed. If PyArray_Check ( obj) is TRUE then it is returned in *address without
incrementing its reference count.

int PyArray_IntpConverter(PyObject* obj, PyArray_Dims* seq)
Convert any Python sequence, obj, smaller than NPY_MAXDIMS to a C-array of npy_intp. The Python
object could also be a single number. The seq variable is a pointer to a structure with members ptr and len. On
successful return, seq ->ptr contains a pointer to memory that must be freed, by calling PyDimMem_FREE, to
avoid a memory leak. The restriction on memory size allows this converter to be conveniently used for sequences
intended to be interpreted as array shapes.

int PyArray_BufferConverter(PyObject* obj, PyArray_Chunk* buf)
Convert any Python object, obj, with a (single-segment) buffer interface to a variable with members that detail
the object’s use of its chunk of memory. The buf variable is a pointer to a structure with base, ptr, len, and flags
members. The PyArray_Chunk structure is binary compatible with the Python’s buffer object (through its
len member on 32-bit platforms and its ptr member on 64-bit platforms or in Python 2.5). On return, the base
member is set to obj (or its base if obj is already a buffer object pointing to another object). If you need to hold
on to the memory be sure to INCREF the base member. The chunk of memory is pointed to by buf ->ptr member
and has length buf ->len. The flags member of buf is NPY_BEHAVED_ROwith the NPY_ARRAY_WRITEABLE
flag set if obj has a writeable buffer interface.

int PyArray_AxisConverter(PyObject * obj, int* axis)
Convert a Python object, obj, representing an axis argument to the proper value for passing to the functions that
take an integer axis. Specifically, if obj is None, axis is set to NPY_MAXDIMS which is interpreted correctly by
the C-API functions that take axis arguments.

int PyArray_BoolConverter(PyObject* obj, Bool* value)
Convert any Python object, obj, to NPY_TRUE or NPY_FALSE, and place the result in value.

int PyArray_ByteorderConverter(PyObject* obj, char* endian)
Convert Python strings into the corresponding byte-order character: ‘>’, ‘<’, ‘s’, ‘=’, or ‘|’.

int PyArray_SortkindConverter(PyObject* obj, NPY_SORTKIND* sort)
Convert Python strings into one of NPY_QUICKSORT (starts with ‘q’ or ‘Q’) , NPY_HEAPSORT (starts with
‘h’ or ‘H’), or NPY_MERGESORT (starts with ‘m’ or ‘M’).

int PyArray_SearchsideConverter(PyObject* obj, NPY_SEARCHSIDE* side)
Convert Python strings into one of NPY_SEARCHLEFT (starts with ‘l’ or ‘L’), or NPY_SEARCHRIGHT (starts

1254 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/none.html#c.Py_None
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

with ‘r’ or ‘R’).

int PyArray_OrderConverter(PyObject* obj, NPY_ORDER* order)
Convert the Python strings ‘C’, ‘F’, ‘A’, and ‘K’ into the NPY_ORDER enumeration NPY_CORDER,
NPY_FORTRANORDER, NPY_ANYORDER, and NPY_KEEPORDER.

int PyArray_CastingConverter(PyObject* obj, NPY_CASTING* casting)
Convert the Python strings ‘no’, ‘equiv’, ‘safe’, ‘same_kind’, and ‘unsafe’ into the NPY_CASTING enumeration
NPY_NO_CASTING, NPY_EQUIV_CASTING, NPY_SAFE_CASTING, NPY_SAME_KIND_CASTING, and
NPY_UNSAFE_CASTING.

int PyArray_ClipmodeConverter(PyObject* object, NPY_CLIPMODE* val)
Convert the Python strings ‘clip’, ‘wrap’, and ‘raise’ into the NPY_CLIPMODE enumeration NPY_CLIP,
NPY_WRAP, and NPY_RAISE.

int PyArray_ConvertClipmodeSequence(PyObject* object, NPY_CLIPMODE* modes, int n)
Converts either a sequence of clipmodes or a single clipmode into a C array of NPY_CLIPMODE values. The
number of clipmodes n must be known before calling this function. This function is provided to help functions
allow a different clipmode for each dimension.

Other conversions

int PyArray_PyIntAsInt(PyObject* op)
Convert all kinds of Python objects (including arrays and array scalars) to a standard integer. On error, -1 is
returned and an exception set. You may find useful the macro:

#define error_converting(x) (((x) == -1) && PyErr_Occurred()

npy_intp PyArray_PyIntAsIntp(PyObject* op)
Convert all kinds of Python objects (including arrays and array scalars) to a (platform-pointer-sized) integer. On
error, -1 is returned and an exception set.

int PyArray_IntpFromSequence(PyObject* seq, npy_intp* vals, int maxvals)
Convert any Python sequence (or single Python number) passed in as seq to (up to) maxvals pointer-sized
integers and place them in the vals array. The sequence can be smaller then maxvals as the number of converted
objects is returned.

int PyArray_TypestrConvert(int itemsize, int gentype)
Convert typestring characters (with itemsize) to basic enumerated data types. The typestring character cor-
responding to signed and unsigned integers, floating point numbers, and complex-floating point numbers are
recognized and converted. Other values of gentype are returned. This function can be used to convert, for
example, the string ‘f4’ to NPY_FLOAT32.

6.4.14 Miscellaneous

Importing the API

In order to make use of the C-API from another extension module, the import_array function must be called.
If the extension module is self-contained in a single .c file, then that is all that needs to be done. If, however, the
extension module involves multiple files where the C-API is needed then some additional steps must be taken.

void import_array(void)
This function must be called in the initialization section of a module that will make use of the C-API. It imports
the module where the function-pointer table is stored and points the correct variable to it.

PY_ARRAY_UNIQUE_SYMBOL

6.4. Array API 1255

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

NO_IMPORT_ARRAY
Using these #defines you can use the C-API in multiple files for a single extension module. In each file
you must define PY_ARRAY_UNIQUE_SYMBOL to some name that will hold the C-API (e.g. myexten-
sion_ARRAY_API). This must be done before including the numpy/arrayobject.h file. In the module initial-
ization routine you call import_array . In addition, in the files that do not have the module initialization
sub_routine define NO_IMPORT_ARRAY prior to including numpy/arrayobject.h.

Suppose I have two files coolmodule.c and coolhelper.c which need to be compiled and linked into a single
extension module. Suppose coolmodule.c contains the required initcool module initialization function (with the
import_array() function called). Then, coolmodule.c would have at the top:

#define PY_ARRAY_UNIQUE_SYMBOL cool_ARRAY_API
#include numpy/arrayobject.h

On the other hand, coolhelper.c would contain at the top:

#define NO_IMPORT_ARRAY
#define PY_ARRAY_UNIQUE_SYMBOL cool_ARRAY_API
#include numpy/arrayobject.h

You can also put the common two last lines into an extension-local header file as long as you make sure that
NO_IMPORT_ARRAY is #defined before #including that file.

Internally, these #defines work as follows:

• If neither is defined, the C-API is declared to be static void**, so it is only visible within the com-
pilation unit that #includes numpy/arrayobject.h.

• If PY_ARRAY_UNIQUE_SYMBOL is #defined, but NO_IMPORT_ARRAY is not, the C-API is declared to
be void**, so that it will also be visible to other compilation units.

• If NO_IMPORT_ARRAY is #defined, regardless of whether PY_ARRAY_UNIQUE_SYMBOL is, the C-API
is declared to be extern void**, so it is expected to be defined in another compilation unit.

• Whenever PY_ARRAY_UNIQUE_SYMBOL is #defined, it also changes the name of the variable holding
the C-API, which defaults to PyArray_API, to whatever the macro is #defined to.

Checking the API Version

Because python extensions are not used in the same way as usual libraries on most platforms, some errors cannot
be automatically detected at build time or even runtime. For example, if you build an extension using a function
available only for numpy >= 1.3.0, and you import the extension later with numpy 1.2, you will not get an import error
(but almost certainly a segmentation fault when calling the function). That’s why several functions are provided to
check for numpy versions. The macros NPY_VERSION and NPY_FEATURE_VERSION corresponds to the numpy
version used to build the extension, whereas the versions returned by the functions PyArray_GetNDArrayCVersion
and PyArray_GetNDArrayCFeatureVersion corresponds to the runtime numpy’s version.

The rules for ABI and API compatibilities can be summarized as follows:

• Whenever NPY_VERSION != PyArray_GetNDArrayCVersion, the extension has to be recompiled (ABI incom-
patibility).

• NPY_VERSION == PyArray_GetNDArrayCVersion and NPY_FEATURE_VERSION <=
PyArray_GetNDArrayCFeatureVersion means backward compatible changes.

ABI incompatibility is automatically detected in every numpy’s version. API incompatibility detection was added in
numpy 1.4.0. If you want to supported many different numpy versions with one extension binary, you have to build
your extension with the lowest NPY_FEATURE_VERSION as possible.

1256 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

unsigned int PyArray_GetNDArrayCVersion(void)
This just returns the value NPY_VERSION . NPY_VERSION changes whenever a backward incompatible
change at the ABI level. Because it is in the C-API, however, comparing the output of this function from the
value defined in the current header gives a way to test if the C-API has changed thus requiring a re-compilation
of extension modules that use the C-API. This is automatically checked in the function import_array .

unsigned int PyArray_GetNDArrayCFeatureVersion(void)
New in version 1.4.0.

This just returns the value NPY_FEATURE_VERSION. NPY_FEATURE_VERSION changes whenever the API
changes (e.g. a function is added). A changed value does not always require a recompile.

Internal Flexibility

int PyArray_SetNumericOps(PyObject* dict)
NumPy stores an internal table of Python callable objects that are used to implement arithmetic operations for
arrays as well as certain array calculation methods. This function allows the user to replace any or all of these
Python objects with their own versions. The keys of the dictionary, dict, are the named functions to replace and
the paired value is the Python callable object to use. Care should be taken that the function used to replace an
internal array operation does not itself call back to that internal array operation (unless you have designed the
function to handle that), or an unchecked infinite recursion can result (possibly causing program crash). The key
names that represent operations that can be replaced are:

add, subtract, multiply, divide, remainder, power, square, reciprocal, ones_like, sqrt, nega-
tive, positive, absolute, invert, left_shift, right_shift, bitwise_and, bitwise_xor, bitwise_or, less,
less_equal, equal, not_equal, greater, greater_equal, floor_divide, true_divide, logical_or, logi-
cal_and, floor, ceil, maximum, minimum, rint.

These functions are included here because they are used at least once in the array object’s methods. The function
returns -1 (without setting a Python Error) if one of the objects being assigned is not callable.

PyObject* PyArray_GetNumericOps(void)
Return a Python dictionary containing the callable Python objects stored in the internal arithmetic operation
table. The keys of this dictionary are given in the explanation for PyArray_SetNumericOps.

void PyArray_SetStringFunction(PyObject* op, int repr)
This function allows you to alter the tp_str and tp_repr methods of the array object to any Python function. Thus
you can alter what happens for all arrays when str(arr) or repr(arr) is called from Python. The function to be
called is passed in as op. If repr is non-zero, then this function will be called in response to repr(arr), otherwise
the function will be called in response to str(arr). No check on whether or not op is callable is performed. The
callable passed in to op should expect an array argument and should return a string to be printed.

Memory management

char* PyDataMem_NEW(size_t nbytes)

PyDataMem_FREE(char* ptr)

char* PyDataMem_RENEW(void * ptr, size_t newbytes)
Macros to allocate, free, and reallocate memory. These macros are used internally to create arrays.

npy_intp* PyDimMem_NEW(nd)

PyDimMem_FREE(npy_intp* ptr)

npy_intp* PyDimMem_RENEW(npy_intp* ptr, npy_intp newnd)
Macros to allocate, free, and reallocate dimension and strides memory.

PyArray_malloc(nbytes)

6.4. Array API 1257

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

PyArray_free(ptr)

PyArray_realloc(ptr, nbytes)
These macros use different memory allocators, depending on the constant NPY_USE_PYMEM. The system mal-
loc is used when NPY_USE_PYMEM is 0, if NPY_USE_PYMEM is 1, then the Python memory allocator is used.

int PyArray_ResolveWritebackIfCopy(PyArrayObject* obj)
If obj.flags has NPY_ARRAY_WRITEBACKIFCOPY or (deprecated) NPY_ARRAY_UPDATEIFCOPY ,
this function clears the flags, DECREF s obj->base and makes it writeable, and sets obj->base to NULL.
It then copies obj->data to obj->base->data, and returns the error state of the copy operation. This is
the opposite of PyArray_SetWritebackIfCopyBase. Usually this is called once you are finished
with obj, just before Py_DECREF(obj). It may be called multiple times, or with NULL input. See also
PyArray_DiscardWritebackIfCopy .

Returns 0 if nothing was done, -1 on error, and 1 if action was taken.

Threading support

These macros are only meaningful if NPY_ALLOW_THREADS evaluates True during compilation of the extension
module. Otherwise, these macros are equivalent to whitespace. Python uses a single Global Interpreter Lock (GIL)
for each Python process so that only a single thread may execute at a time (even on multi-cpu machines). When
calling out to a compiled function that may take time to compute (and does not have side-effects for other threads like
updated global variables), the GIL should be released so that other Python threads can run while the time-consuming
calculations are performed. This can be accomplished using two groups of macros. Typically, if one macro in a group
is used in a code block, all of them must be used in the same code block. Currently, NPY_ALLOW_THREADS is
defined to the python-defined WITH_THREADS constant unless the environment variable NPY_NOSMP is set in which
case NPY_ALLOW_THREADS is defined to be 0.

Group 1

This group is used to call code that may take some time but does not use any Python C-API calls. Thus,
the GIL should be released during its calculation.

NPY_BEGIN_ALLOW_THREADS
Equivalent to Py_BEGIN_ALLOW_THREADS except it uses NPY_ALLOW_THREADS to determine
if the macro if replaced with white-space or not.

NPY_END_ALLOW_THREADS
Equivalent to Py_END_ALLOW_THREADS except it uses NPY_ALLOW_THREADS to determine if
the macro if replaced with white-space or not.

NPY_BEGIN_THREADS_DEF
Place in the variable declaration area. This macro sets up the variable needed for storing the Python
state.

NPY_BEGIN_THREADS
Place right before code that does not need the Python interpreter (no Python C-API calls). This
macro saves the Python state and releases the GIL.

NPY_END_THREADS
Place right after code that does not need the Python interpreter. This macro acquires the GIL and
restores the Python state from the saved variable.

NPY_BEGIN_THREADS_DESCR(PyArray_Descr *dtype)
Useful to release the GIL only if dtype does not contain arbitrary Python objects which may need
the Python interpreter during execution of the loop. Equivalent to

1258 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/init.html#c.Py_BEGIN_ALLOW_THREADS
https://docs.python.org/dev/c-api/init.html#c.Py_END_ALLOW_THREADS


NumPy Reference, Release 1.15.1

NPY_END_THREADS_DESCR(PyArray_Descr *dtype)
Useful to regain the GIL in situations where it was released using the BEGIN form of this macro.

NPY_BEGIN_THREADS_THRESHOLDED(int loop_size)
Useful to release the GIL only if loop_size exceeds a minimum threshold, currently set to 500.
Should be matched with a NPY_END_THREADS to regain the GIL.

Group 2

This group is used to re-acquire the Python GIL after it has been released. For example, suppose the
GIL has been released (using the previous calls), and then some path in the code (perhaps in a different
subroutine) requires use of the Python C-API, then these macros are useful to acquire the GIL. These
macros accomplish essentially a reverse of the previous three (acquire the LOCK saving what state it had)
and then re-release it with the saved state.

NPY_ALLOW_C_API_DEF
Place in the variable declaration area to set up the necessary variable.

NPY_ALLOW_C_API
Place before code that needs to call the Python C-API (when it is known that the GIL has already
been released).

NPY_DISABLE_C_API
Place after code that needs to call the Python C-API (to re-release the GIL).

Tip: Never use semicolons after the threading support macros.

Priority

NPY_PRIORITY
Default priority for arrays.

NPY_SUBTYPE_PRIORITY
Default subtype priority.

NPY_SCALAR_PRIORITY
Default scalar priority (very small)

double PyArray_GetPriority(PyObject* obj, double def)
Return the __array_priority__ attribute (converted to a double) of obj or def if no attribute of that name
exists. Fast returns that avoid the attribute lookup are provided for objects of type PyArray_Type.

Default buffers

NPY_BUFSIZE
Default size of the user-settable internal buffers.

NPY_MIN_BUFSIZE
Smallest size of user-settable internal buffers.

NPY_MAX_BUFSIZE
Largest size allowed for the user-settable buffers.

6.4. Array API 1259

https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

Other constants

NPY_NUM_FLOATTYPE
The number of floating-point types

NPY_MAXDIMS
The maximum number of dimensions allowed in arrays.

NPY_VERSION
The current version of the ndarray object (check to see if this variable is defined to guarantee the
numpy/arrayobject.h header is being used).

NPY_FALSE
Defined as 0 for use with Bool.

NPY_TRUE
Defined as 1 for use with Bool.

NPY_FAIL
The return value of failed converter functions which are called using the “O&” syntax in
PyArg_ParseTuple-like functions.

NPY_SUCCEED
The return value of successful converter functions which are called using the “O&” syntax in
PyArg_ParseTuple-like functions.

Miscellaneous Macros

PyArray_SAMESHAPE(a1, a2)
Evaluates as True if arrays a1 and a2 have the same shape.

PyArray_MAX(a, b)
Returns the maximum of a and b. If (a) or (b) are expressions they are evaluated twice.

PyArray_MIN(a, b)
Returns the minimum of a and b. If (a) or (b) are expressions they are evaluated twice.

PyArray_CLT(a, b)

PyArray_CGT(a, b)

PyArray_CLE(a, b)

PyArray_CGE(a, b)

PyArray_CEQ(a, b)

PyArray_CNE(a, b)
Implements the complex comparisons between two complex numbers (structures with a real and imag member)
using NumPy’s definition of the ordering which is lexicographic: comparing the real parts first and then the
complex parts if the real parts are equal.

PyArray_REFCOUNT(PyObject* op)
Returns the reference count of any Python object.

PyArray_DiscardWritebackIfCopy(PyObject* obj)
If obj.flags has NPY_ARRAY_WRITEBACKIFCOPY or (deprecated) NPY_ARRAY_UPDATEIFCOPY ,
this function clears the flags, DECREF s obj->base and makes it writeable, and sets obj->base to NULL. In
contrast to PyArray_DiscardWritebackIfCopy it makes no attempt to copy the data from obj->base
This undoes PyArray_SetWritebackIfCopyBase. Usually this is called after an error when you are
finished with obj, just before Py_DECREF(obj). It may be called multiple times, or with NULL input.

1260 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple
https://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

PyArray_XDECREF_ERR(PyObject* obj)
Deprecated in 1.14, use PyArray_DiscardWritebackIfCopy followed by Py_XDECREF

DECREF’s an array object which may have the (deprecated) NPY_ARRAY_UPDATEIFCOPY or
NPY_ARRAY_WRITEBACKIFCOPY flag set without causing the contents to be copied back into the origi-
nal array. Resets the NPY_ARRAY_WRITEABLE flag on the base object. This is useful for recovering from an
error condition when writeback semantics are used, but will lead to wrong results.

Enumerated Types

NPY_SORTKIND
A special variable-type which can take on the values NPY_{KIND} where {KIND} is

QUICKSORT, HEAPSORT, MERGESORT

NPY_NSORTS
Defined to be the number of sorts.

NPY_SCALARKIND
A special variable type indicating the number of “kinds” of scalars distinguished in determining scalar-coercion
rules. This variable can take on the values NPY_{KIND} where {KIND} can be

NOSCALAR, BOOL_SCALAR, INTPOS_SCALAR, INTNEG_SCALAR, FLOAT_SCALAR,
COMPLEX_SCALAR, OBJECT_SCALAR

NPY_NSCALARKINDS
Defined to be the number of scalar kinds (not including NPY_NOSCALAR).

NPY_ORDER
An enumeration type indicating the element order that an array should be interpreted in. When a brand new
array is created, generally only NPY_CORDER and NPY_FORTRANORDER are used, whereas when one
or more inputs are provided, the order can be based on them.

NPY_ANYORDER
Fortran order if all the inputs are Fortran, C otherwise.

NPY_CORDER
C order.

NPY_FORTRANORDER
Fortran order.

NPY_KEEPORDER
An order as close to the order of the inputs as possible, even if the input is in neither C nor Fortran order.

NPY_CLIPMODE
A variable type indicating the kind of clipping that should be applied in certain functions.

NPY_RAISE
The default for most operations, raises an exception if an index is out of bounds.

NPY_CLIP
Clips an index to the valid range if it is out of bounds.

NPY_WRAP
Wraps an index to the valid range if it is out of bounds.

NPY_CASTING
New in version 1.6.

An enumeration type indicating how permissive data conversions should be. This is used by the iterator added
in NumPy 1.6, and is intended to be used more broadly in a future version.

6.4. Array API 1261

https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

NPY_NO_CASTING
Only allow identical types.

NPY_EQUIV_CASTING
Allow identical and casts involving byte swapping.

NPY_SAFE_CASTING
Only allow casts which will not cause values to be rounded, truncated, or otherwise changed.

NPY_SAME_KIND_CASTING
Allow any safe casts, and casts between types of the same kind. For example, float64 -> float32 is permitted
with this rule.

NPY_UNSAFE_CASTING
Allow any cast, no matter what kind of data loss may occur.

6.5 Array Iterator API

New in version 1.6.

6.5.1 Array Iterator

The array iterator encapsulates many of the key features in ufuncs, allowing user code to support features like output
parameters, preservation of memory layouts, and buffering of data with the wrong alignment or type, without requiring
difficult coding.

This page documents the API for the iterator. The iterator is named NpyIter and functions are named NpyIter_*.

There is an introductory guide to array iteration which may be of interest for those using this C API. In many instances,
testing out ideas by creating the iterator in Python is a good idea before writing the C iteration code.

6.5.2 Simple Iteration Example

The best way to become familiar with the iterator is to look at its usage within the NumPy codebase itself. For example,
here is a slightly tweaked version of the code for PyArray_CountNonzero, which counts the number of non-zero
elements in an array.

npy_intp PyArray_CountNonzero(PyArrayObject* self)
{

/* Nonzero boolean function */
PyArray_NonzeroFunc* nonzero = PyArray_DESCR(self)->f->nonzero;

NpyIter* iter;
NpyIter_IterNextFunc *iternext;
char** dataptr;
npy_intp nonzero_count;
npy_intp* strideptr,* innersizeptr;

/* Handle zero-sized arrays specially */
if (PyArray_SIZE(self) == 0) {

return 0;
}

/*
(continues on next page)

1262 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

(continued from previous page)

* Create and use an iterator to count the nonzeros.

* flag NPY_ITER_READONLY

* - The array is never written to.

* flag NPY_ITER_EXTERNAL_LOOP

* - Inner loop is done outside the iterator for efficiency.

* flag NPY_ITER_NPY_ITER_REFS_OK

* - Reference types are acceptable.

* order NPY_KEEPORDER

* - Visit elements in memory order, regardless of strides.

* This is good for performance when the specific order

* elements are visited is unimportant.

* casting NPY_NO_CASTING

* - No casting is required for this operation.

*/
iter = NpyIter_New(self, NPY_ITER_READONLY|

NPY_ITER_EXTERNAL_LOOP|
NPY_ITER_REFS_OK,

NPY_KEEPORDER, NPY_NO_CASTING,
NULL);

if (iter == NULL) {
return -1;

}

/*
* The iternext function gets stored in a local variable

* so it can be called repeatedly in an efficient manner.

*/
iternext = NpyIter_GetIterNext(iter, NULL);
if (iternext == NULL) {

NpyIter_Deallocate(iter);
return -1;

}
/* The location of the data pointer which the iterator may update */
dataptr = NpyIter_GetDataPtrArray(iter);
/* The location of the stride which the iterator may update */
strideptr = NpyIter_GetInnerStrideArray(iter);
/* The location of the inner loop size which the iterator may update */
innersizeptr = NpyIter_GetInnerLoopSizePtr(iter);

nonzero_count = 0;
do {

/* Get the inner loop data/stride/count values */
char* data = *dataptr;
npy_intp stride = *strideptr;
npy_intp count = *innersizeptr;

/* This is a typical inner loop for NPY_ITER_EXTERNAL_LOOP */
while (count--) {

if (nonzero(data, self)) {
++nonzero_count;

}
data += stride;

}

/* Increment the iterator to the next inner loop */
} while(iternext(iter));

(continues on next page)

6.5. Array Iterator API 1263



NumPy Reference, Release 1.15.1

(continued from previous page)

NpyIter_Deallocate(iter);

return nonzero_count;
}

6.5.3 Simple Multi-Iteration Example

Here is a simple copy function using the iterator. The order parameter is used to control the memory layout of the
allocated result, typically NPY_KEEPORDER is desired.

PyObject *CopyArray(PyObject *arr, NPY_ORDER order)
{

NpyIter *iter;
NpyIter_IterNextFunc *iternext;
PyObject *op[2], *ret;
npy_uint32 flags;
npy_uint32 op_flags[2];
npy_intp itemsize, *innersizeptr, innerstride;
char **dataptrarray;

/*
* No inner iteration - inner loop is handled by CopyArray code

*/
flags = NPY_ITER_EXTERNAL_LOOP;
/*
* Tell the constructor to automatically allocate the output.

* The data type of the output will match that of the input.

*/
op[0] = arr;
op[1] = NULL;
op_flags[0] = NPY_ITER_READONLY;
op_flags[1] = NPY_ITER_WRITEONLY | NPY_ITER_ALLOCATE;

/* Construct the iterator */
iter = NpyIter_MultiNew(2, op, flags, order, NPY_NO_CASTING,

op_flags, NULL);
if (iter == NULL) {

return NULL;
}

/*
* Make a copy of the iternext function pointer and

* a few other variables the inner loop needs.

*/
iternext = NpyIter_GetIterNext(iter, NULL);
innerstride = NpyIter_GetInnerStrideArray(iter)[0];
itemsize = NpyIter_GetDescrArray(iter)[0]->elsize;
/*
* The inner loop size and data pointers may change during the

* loop, so just cache the addresses.

*/
innersizeptr = NpyIter_GetInnerLoopSizePtr(iter);
dataptrarray = NpyIter_GetDataPtrArray(iter);

/*
(continues on next page)

1264 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

(continued from previous page)

* Note that because the iterator allocated the output,

* it matches the iteration order and is packed tightly,

* so we don't need to check it like the input.

*/
if (innerstride == itemsize) {

do {
memcpy(dataptrarray[1], dataptrarray[0],

itemsize * (*innersizeptr));
} while (iternext(iter));

} else {
/* For efficiency, should specialize this based on item size... */
npy_intp i;
do {

npy_intp size = *innersizeptr;
char *src = dataptrarray[0], *dst = dataptrarray[1];
for(i = 0; i < size; i++, src += innerstride, dst += itemsize) {

memcpy(dst, src, itemsize);
}

} while (iternext(iter));
}

/* Get the result from the iterator object array */
ret = NpyIter_GetOperandArray(iter)[1];
Py_INCREF(ret);

if (NpyIter_Deallocate(iter) != NPY_SUCCEED) {
Py_DECREF(ret);
return NULL;

}

return ret;
}

6.5.4 Iterator Data Types

The iterator layout is an internal detail, and user code only sees an incomplete struct.

NpyIter
This is an opaque pointer type for the iterator. Access to its contents can only be done through the iterator API.

NpyIter_Type
This is the type which exposes the iterator to Python. Currently, no API is exposed which provides access to the
values of a Python-created iterator. If an iterator is created in Python, it must be used in Python and vice versa.
Such an API will likely be created in a future version.

NpyIter_IterNextFunc
This is a function pointer for the iteration loop, returned by NpyIter_GetIterNext.

NpyIter_GetMultiIndexFunc
This is a function pointer for getting the current iterator multi-index, returned by
NpyIter_GetGetMultiIndex.

6.5. Array Iterator API 1265



NumPy Reference, Release 1.15.1

6.5.5 Construction and Destruction

NpyIter* NpyIter_New(PyArrayObject* op, npy_uint32 flags, NPY_ORDER order, NPY_CASTING casting,
PyArray_Descr* dtype)

Creates an iterator for the given numpy array object op.

Flags that may be passed in flags are any combination of the global and per-operand flags documented in
NpyIter_MultiNew , except for NPY_ITER_ALLOCATE.

Any of the NPY_ORDER enum values may be passed to order. For efficient iteration, NPY_KEEPORDER is
the best option, and the other orders enforce the particular iteration pattern.

Any of the NPY_CASTING enum values may be passed to casting. The values include
NPY_NO_CASTING, NPY_EQUIV_CASTING, NPY_SAFE_CASTING, NPY_SAME_KIND_CASTING, and
NPY_UNSAFE_CASTING. To allow the casts to occur, copying or buffering must also be enabled.

If dtype isn’t NULL, then it requires that data type. If copying is allowed, it will make a temporary copy if the
data is castable. If NPY_ITER_UPDATEIFCOPY is enabled, it will also copy the data back with another cast
upon iterator destruction.

Returns NULL if there is an error, otherwise returns the allocated iterator.

To make an iterator similar to the old iterator, this should work.

iter = NpyIter_New(op, NPY_ITER_READWRITE,
NPY_CORDER, NPY_NO_CASTING, NULL);

If you want to edit an array with aligned double code, but the order doesn’t matter, you would use this.

dtype = PyArray_DescrFromType(NPY_DOUBLE);
iter = NpyIter_New(op, NPY_ITER_READWRITE|

NPY_ITER_BUFFERED|
NPY_ITER_NBO|
NPY_ITER_ALIGNED,
NPY_KEEPORDER,
NPY_SAME_KIND_CASTING,
dtype);

Py_DECREF(dtype);

NpyIter* NpyIter_MultiNew(npy_intp nop, PyArrayObject** op, npy_uint32 flags,
NPY_ORDER order, NPY_CASTING casting, npy_uint32* op_flags,
PyArray_Descr** op_dtypes)

Creates an iterator for broadcasting the nop array objects provided in op, using regular NumPy broadcasting
rules.

Any of the NPY_ORDER enum values may be passed to order. For efficient iteration, NPY_KEEPORDER is
the best option, and the other orders enforce the particular iteration pattern. When using NPY_KEEPORDER,
if you also want to ensure that the iteration is not reversed along an axis, you should pass the flag
NPY_ITER_DONT_NEGATE_STRIDES.

Any of the NPY_CASTING enum values may be passed to casting. The values include
NPY_NO_CASTING, NPY_EQUIV_CASTING, NPY_SAFE_CASTING, NPY_SAME_KIND_CASTING, and
NPY_UNSAFE_CASTING. To allow the casts to occur, copying or buffering must also be enabled.

If op_dtypes isn’t NULL, it specifies a data type or NULL for each op[i].

Returns NULL if there is an error, otherwise returns the allocated iterator.

Flags that may be passed in flags, applying to the whole iterator, are:

1266 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

NPY_ITER_C_INDEX
Causes the iterator to track a raveled flat index matching C order. This option cannot be used
with NPY_ITER_F_INDEX.

NPY_ITER_F_INDEX
Causes the iterator to track a raveled flat index matching Fortran order. This option cannot be
used with NPY_ITER_C_INDEX.

NPY_ITER_MULTI_INDEX
Causes the iterator to track a multi-index. This prevents the iterator from coalescing axes to
produce bigger inner loops. If the loop is also not buffered and no index is being tracked
(NpyIter_RemoveAxis can be called), then the iterator size can be -1 to indicate that the iter-
ator is too large. This can happen due to complex broadcasting and will result in errors being
created when the setting the iterator range, removing the multi index, or getting the next func-
tion. However, it is possible to remove axes again and use the iterator normally if the size is
small enough after removal.

NPY_ITER_EXTERNAL_LOOP
Causes the iterator to skip iteration of the innermost loop, requiring the user of the iterator to
handle it.

This flag is incompatible with NPY_ITER_C_INDEX, NPY_ITER_F_INDEX , and
NPY_ITER_MULTI_INDEX.

NPY_ITER_DONT_NEGATE_STRIDES
This only affects the iterator when NPY_KEEPORDER is specified for the order parameter. By
default with NPY_KEEPORDER, the iterator reverses axes which have negative strides, so that
memory is traversed in a forward direction. This disables this step. Use this flag if you want
to use the underlying memory-ordering of the axes, but don’t want an axis reversed. This is the
behavior of numpy.ravel(a, order='K'), for instance.

NPY_ITER_COMMON_DTYPE
Causes the iterator to convert all the operands to a common data type, calculated based on the
ufunc type promotion rules. Copying or buffering must be enabled.

If the common data type is known ahead of time, don’t use this flag. Instead, set the requested
dtype for all the operands.

NPY_ITER_REFS_OK
Indicates that arrays with reference types (object arrays or structured arrays containing an object
type) may be accepted and used in the iterator. If this flag is enabled, the caller must be sure to
check whether NpyIter_IterationNeedsAPI(iter) is true, in which case it may not
release the GIL during iteration.

NPY_ITER_ZEROSIZE_OK
Indicates that arrays with a size of zero should be permitted. Since the typical iteration loop does
not naturally work with zero-sized arrays, you must check that the IterSize is larger than zero
before entering the iteration loop. Currently only the operands are checked, not a forced shape.

NPY_ITER_REDUCE_OK
Permits writeable operands with a dimension with zero stride and size greater than one. Note
that such operands must be read/write.

When buffering is enabled, this also switches to a special buffering mode which reduces the loop
length as necessary to not trample on values being reduced.

Note that if you want to do a reduction on an automatically allocated output, you must use
NpyIter_GetOperandArray to get its reference, then set every value to the reduction unit
before doing the iteration loop. In the case of a buffered reduction, this means you must also

6.5. Array Iterator API 1267



NumPy Reference, Release 1.15.1

specify the flag NPY_ITER_DELAY_BUFALLOC, then reset the iterator after initializing the
allocated operand to prepare the buffers.

NPY_ITER_RANGED
Enables support for iteration of sub-ranges of the full iterindex
range [0, NpyIter_IterSize(iter)). Use the function
NpyIter_ResetToIterIndexRange to specify a range for iteration.

This flag can only be used with NPY_ITER_EXTERNAL_LOOP when
NPY_ITER_BUFFERED is enabled. This is because without buffering, the inner loop is
always the size of the innermost iteration dimension, and allowing it to get cut up would require
special handling, effectively making it more like the buffered version.

NPY_ITER_BUFFERED
Causes the iterator to store buffering data, and use buffering to satisfy data type, alignment,
and byte-order requirements. To buffer an operand, do not specify the NPY_ITER_COPY or
NPY_ITER_UPDATEIFCOPY flags, because they will override buffering. Buffering is espe-
cially useful for Python code using the iterator, allowing for larger chunks of data at once to
amortize the Python interpreter overhead.

If used with NPY_ITER_EXTERNAL_LOOP, the inner loop for the caller may get larger chunks
than would be possible without buffering, because of how the strides are laid out.

Note that if an operand is given the flag NPY_ITER_COPY or NPY_ITER_UPDATEIFCOPY ,
a copy will be made in preference to buffering. Buffering will still occur when the array was
broadcast so elements need to be duplicated to get a constant stride.

In normal buffering, the size of each inner loop is equal to the buffer size, or possibly larger if
NPY_ITER_GROWINNER is specified. If NPY_ITER_REDUCE_OK is enabled and a reduction
occurs, the inner loops may become smaller depending on the structure of the reduction.

NPY_ITER_GROWINNER
When buffering is enabled, this allows the size of the inner loop to grow when buffering isn’t
necessary. This option is best used if you’re doing a straight pass through all the data, rather
than anything with small cache-friendly arrays of temporary values for each inner loop.

NPY_ITER_DELAY_BUFALLOC
When buffering is enabled, this delays allocation of the buffers until NpyIter_Reset or an-
other reset function is called. This flag exists to avoid wasteful copying of buffer data when
making multiple copies of a buffered iterator for multi-threaded iteration.

Another use of this flag is for setting up reduction operations. After the iterator is created, and a
reduction output is allocated automatically by the iterator (be sure to use READWRITE access),
its value may be initialized to the reduction unit. Use NpyIter_GetOperandArray to get
the object. Then, call NpyIter_Reset to allocate and fill the buffers with their initial values.

NPY_ITER_COPY_IF_OVERLAP
If any write operand has overlap with any read operand, eliminate all overlap by making tem-
porary copies (enabling UPDATEIFCOPY for write operands, if necessary). A pair of operands
has overlap if there is a memory address that contains data common to both arrays.

Because exact overlap detection has exponential runtime in the number of dimensions, the de-
cision is made based on heuristics, which has false positives (needless copies in unusual cases)
but has no false negatives.

If any read/write overlap exists, this flag ensures the result of the operation is the same as if
all operands were copied. In cases where copies would need to be made, the result of the
computation may be undefined without this flag!

Flags that may be passed in op_flags[i], where 0 <= i < nop:

1268 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

NPY_ITER_READWRITE

NPY_ITER_READONLY

NPY_ITER_WRITEONLY
Indicate how the user of the iterator will read or write to op[i]. Exactly one of these flags must
be specified per operand. Using NPY_ITER_READWRITE or NPY_ITER_WRITEONLY for a
user-provided operand may trigger WRITEBACKIFCOPY‘ semantics. The data will be written
back to the original array when NpyIter_Deallocate is called.

NPY_ITER_COPY
Allow a copy of op[i] to be made if it does not meet the data type or alignment requirements
as specified by the constructor flags and parameters.

NPY_ITER_UPDATEIFCOPY
Triggers NPY_ITER_COPY , and when an array operand is flagged for writing and is copied,
causes the data in a copy to be copied back to op[i] when NpyIter_Deallocate is called.

If the operand is flagged as write-only and a copy is needed, an uninitialized temporary array
will be created and then copied to back to op[i] on calling NpyIter_Deallocate, instead
of doing the unnecessary copy operation.

NPY_ITER_NBO

NPY_ITER_ALIGNED

NPY_ITER_CONTIG
Causes the iterator to provide data for op[i] that is in native byte order, aligned according to
the dtype requirements, contiguous, or any combination.

By default, the iterator produces pointers into the arrays provided, which may be aligned or
unaligned, and with any byte order. If copying or buffering is not enabled and the operand data
doesn’t satisfy the constraints, an error will be raised.

The contiguous constraint applies only to the inner loop, successive inner loops may have arbi-
trary pointer changes.

If the requested data type is in non-native byte order, the NBO flag overrides it and the requested
data type is converted to be in native byte order.

NPY_ITER_ALLOCATE
This is for output arrays, and requires that the flag NPY_ITER_WRITEONLY or
NPY_ITER_READWRITE be set. If op[i] is NULL, creates a new array with the final broad-
cast dimensions, and a layout matching the iteration order of the iterator.

When op[i] is NULL, the requested data type op_dtypes[i] may be NULL as well, in
which case it is automatically generated from the dtypes of the arrays which are flagged as
readable. The rules for generating the dtype are the same is for UFuncs. Of special note is
handling of byte order in the selected dtype. If there is exactly one input, the input’s dtype is
used as is. Otherwise, if more than one input dtypes are combined together, the output will be in
native byte order.

After being allocated with this flag, the caller may retrieve the new array by calling
NpyIter_GetOperandArray and getting the i-th object in the returned C array. The caller
must call Py_INCREF on it to claim a reference to the array.

NPY_ITER_NO_SUBTYPE
For use with NPY_ITER_ALLOCATE, this flag disables allocating an array subtype for the
output, forcing it to be a straight ndarray.

TODO: Maybe it would be better to introduce a function NpyIter_GetWrappedOutput
and remove this flag?

6.5. Array Iterator API 1269



NumPy Reference, Release 1.15.1

NPY_ITER_NO_BROADCAST
Ensures that the input or output matches the iteration dimensions exactly.

NPY_ITER_ARRAYMASK
New in version 1.7.

Indicates that this operand is the mask to use for selecting elements when writing to operands
which have the NPY_ITER_WRITEMASKED flag applied to them. Only one operand may have
NPY_ITER_ARRAYMASK flag applied to it.

The data type of an operand with this flag should be either NPY_BOOL, NPY_MASK, or a struct
dtype whose fields are all valid mask dtypes. In the latter case, it must match up with a struct
operand being WRITEMASKED, as it is specifying a mask for each field of that array.

This flag only affects writing from the buffer back to the array. This means that if the operand is
also NPY_ITER_READWRITE or NPY_ITER_WRITEONLY , code doing iteration can write to
this operand to control which elements will be untouched and which ones will be modified. This
is useful when the mask should be a combination of input masks, for example. Mask values can
be created with the NpyMask_Create function.

NPY_ITER_WRITEMASKED
New in version 1.7.

Indicates that only elements which the operand with the ARRAYMASK flag indicates are in-
tended to be modified by the iteration. In general, the iterator does not enforce this, it is up to
the code doing the iteration to follow that promise. Code can use the NpyMask_IsExposed
inline function to test whether the mask at a particular element allows writing.

When this flag is used, and this operand is buffered, this changes how data is copied from the
buffer into the array. A masked copying routine is used, which only copies the elements in the
buffer for which NpyMask_IsExposed returns true from the corresponding element in the
ARRAYMASK operand.

NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE
In memory overlap checks, assume that operands with
NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE enabled are accessed only in the iter-
ator order.

This enables the iterator to reason about data dependency, possibly avoiding unnecessary copies.

This flag has effect only if NPY_ITER_COPY_IF_OVERLAP is enabled on the iterator.

NpyIter* NpyIter_AdvancedNew(npy_intp nop, PyArrayObject** op, npy_uint32 flags,
NPY_ORDER order, NPY_CASTING casting, npy_uint32* op_flags,
PyArray_Descr** op_dtypes, int oa_ndim, int** op_axes,
npy_intp* itershape, npy_intp buffersize)

Extends NpyIter_MultiNew with several advanced options providing more control over broadcasting and
buffering.

If -1/NULL values are passed to oa_ndim, op_axes, itershape, and buffersize, it is equivalent to
NpyIter_MultiNew .

The parameter oa_ndim, when not zero or -1, specifies the number of dimensions that will be iterated with cus-
tomized broadcasting. If it is provided, op_axes must and itershape can also be provided. The op_axes
parameter let you control in detail how the axes of the operand arrays get matched together and iterated. In
op_axes, you must provide an array of nop pointers to oa_ndim-sized arrays of type npy_intp. If an en-
try in op_axes is NULL, normal broadcasting rules will apply. In op_axes[j][i] is stored either a valid
axis of op[j], or -1 which means newaxis. Within each op_axes[j] array, axes may not be repeated. The
following example is how normal broadcasting applies to a 3-D array, a 2-D array, a 1-D array and a scalar.

1270 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

Note: Before NumPy 1.8 oa_ndim == 0` was used for signalling that that ``op_axes
and itershape are unused. This is deprecated and should be replaced with -1. Better backward compatibility
may be achieved by using NpyIter_MultiNew for this case.

int oa_ndim = 3; /* # iteration axes */
int op0_axes[] = {0, 1, 2}; /* 3-D operand */
int op1_axes[] = {-1, 0, 1}; /* 2-D operand */
int op2_axes[] = {-1, -1, 0}; /* 1-D operand */
int op3_axes[] = {-1, -1, -1} /* 0-D (scalar) operand */
int* op_axes[] = {op0_axes, op1_axes, op2_axes, op3_axes};

The itershape parameter allows you to force the iterator to have a specific iteration shape. It is an array of
length oa_ndim. When an entry is negative, its value is determined from the operands. This parameter allows
automatically allocated outputs to get additional dimensions which don’t match up with any dimension of an
input.

If buffersize is zero, a default buffer size is used, otherwise it specifies how big of a buffer to use. Buffers
which are powers of 2 such as 4096 or 8192 are recommended.

Returns NULL if there is an error, otherwise returns the allocated iterator.

NpyIter* NpyIter_Copy(NpyIter* iter)
Makes a copy of the given iterator. This function is provided primarily to enable multi-threaded iteration of the
data.

TODO: Move this to a section about multithreaded iteration.

The recommended approach to multithreaded iteration is to first create an iterator with
the flags NPY_ITER_EXTERNAL_LOOP, NPY_ITER_RANGED, NPY_ITER_BUFFERED,
NPY_ITER_DELAY_BUFALLOC, and possibly NPY_ITER_GROWINNER. Create a copy of this it-
erator for each thread (minus one for the first iterator). Then, take the iteration index range [0,
NpyIter_GetIterSize(iter)) and split it up into tasks, for example using a TBB paral-
lel_for loop. When a thread gets a task to execute, it then uses its copy of the iterator by calling
NpyIter_ResetToIterIndexRange and iterating over the full range.

When using the iterator in multi-threaded code or in code not holding the Python GIL, care must be taken to
only call functions which are safe in that context. NpyIter_Copy cannot be safely called without the Python
GIL, because it increments Python references. The Reset* and some other functions may be safely called by
passing in the errmsg parameter as non-NULL, so that the functions will pass back errors through it instead
of setting a Python exception.

NpyIter_Deallocate must be called for each copy.

int NpyIter_RemoveAxis(NpyIter* iter, int axis)``
Removes an axis from iteration. This requires that NPY_ITER_MULTI_INDEX was set for iterator creation,
and does not work if buffering is enabled or an index is being tracked. This function also resets the iterator to
its initial state.

This is useful for setting up an accumulation loop, for example. The iterator can first be created with all the
dimensions, including the accumulation axis, so that the output gets created correctly. Then, the accumulation
axis can be removed, and the calculation done in a nested fashion.

WARNING: This function may change the internal memory layout of the iterator. Any cached functions or
pointers from the iterator must be retrieved again! The iterator range will be reset as well.

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_RemoveMultiIndex(NpyIter* iter)
If the iterator is tracking a multi-index, this strips support for them, and does further iterator optimizations that
are possible if multi-indices are not needed. This function also resets the iterator to its initial state.

6.5. Array Iterator API 1271



NumPy Reference, Release 1.15.1

WARNING: This function may change the internal memory layout of the iterator. Any cached functions or
pointers from the iterator must be retrieved again!

After calling this function, NpyIter_HasMultiIndex(iter) will return false.

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_EnableExternalLoop(NpyIter* iter)
If NpyIter_RemoveMultiIndex was called, you may want to enable the flag
NPY_ITER_EXTERNAL_LOOP. This flag is not permitted together with NPY_ITER_MULTI_INDEX,
so this function is provided to enable the feature after NpyIter_RemoveMultiIndex is called. This
function also resets the iterator to its initial state.

WARNING: This function changes the internal logic of the iterator. Any cached functions or pointers from the
iterator must be retrieved again!

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_Deallocate(NpyIter* iter)
Deallocates the iterator object and resolves any needed writebacks.

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_Reset(NpyIter* iter, char** errmsg)
Resets the iterator back to its initial state, at the beginning of the iteration range.

Returns NPY_SUCCEED or NPY_FAIL. If errmsg is non-NULL, no Python exception is set when NPY_FAIL
is returned. Instead, *errmsg is set to an error message. When errmsg is non-NULL, the function may be safely
called without holding the Python GIL.

int NpyIter_ResetToIterIndexRange(NpyIter* iter, npy_intp istart, npy_intp iend, char** errmsg)
Resets the iterator and restricts it to the iterindex range [istart, iend). See NpyIter_Copy for
an explanation of how to use this for multi-threaded iteration. This requires that the flag NPY_ITER_RANGED
was passed to the iterator constructor.

If you want to reset both the iterindex range and the base pointers at the same time, you can do the following
to avoid extra buffer copying (be sure to add the return code error checks when you copy this code).

/* Set to a trivial empty range */
NpyIter_ResetToIterIndexRange(iter, 0, 0);
/* Set the base pointers */
NpyIter_ResetBasePointers(iter, baseptrs);
/* Set to the desired range */
NpyIter_ResetToIterIndexRange(iter, istart, iend);

Returns NPY_SUCCEED or NPY_FAIL. If errmsg is non-NULL, no Python exception is set when NPY_FAIL
is returned. Instead, *errmsg is set to an error message. When errmsg is non-NULL, the function may be safely
called without holding the Python GIL.

int NpyIter_ResetBasePointers(NpyIter *iter, char** baseptrs, char** errmsg)
Resets the iterator back to its initial state, but using the values in baseptrs for the data instead of the pointers
from the arrays being iterated. This functions is intended to be used, together with the op_axes parameter, by
nested iteration code with two or more iterators.

Returns NPY_SUCCEED or NPY_FAIL. If errmsg is non-NULL, no Python exception is set when NPY_FAIL
is returned. Instead, *errmsg is set to an error message. When errmsg is non-NULL, the function may be safely
called without holding the Python GIL.

TODO: Move the following into a special section on nested iterators.

Creating iterators for nested iteration requires some care. All the iterator operands must match exactly, or the
calls to NpyIter_ResetBasePointers will be invalid. This means that automatic copies and output al-

1272 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

location should not be used haphazardly. It is possible to still use the automatic data conversion and casting
features of the iterator by creating one of the iterators with all the conversion parameters enabled, then grabbing
the allocated operands with the NpyIter_GetOperandArray function and passing them into the construc-
tors for the rest of the iterators.

WARNING: When creating iterators for nested iteration, the code must not use a dimension more than once in
the different iterators. If this is done, nested iteration will produce out-of-bounds pointers during iteration.

WARNING: When creating iterators for nested iteration, buffering can only be applied to the innermost iterator.
If a buffered iterator is used as the source for baseptrs, it will point into a small buffer instead of the array
and the inner iteration will be invalid.

The pattern for using nested iterators is as follows.

NpyIter *iter1, *iter1;
NpyIter_IterNextFunc *iternext1, *iternext2;
char **dataptrs1;

/*
* With the exact same operands, no copies allowed, and

* no axis in op_axes used both in iter1 and iter2.

* Buffering may be enabled for iter2, but not for iter1.

*/
iter1 = ...; iter2 = ...;

iternext1 = NpyIter_GetIterNext(iter1);
iternext2 = NpyIter_GetIterNext(iter2);
dataptrs1 = NpyIter_GetDataPtrArray(iter1);

do {
NpyIter_ResetBasePointers(iter2, dataptrs1);
do {

/* Use the iter2 values */
} while (iternext2(iter2));

} while (iternext1(iter1));

int NpyIter_GotoMultiIndex(NpyIter* iter, npy_intp* multi_index)
Adjusts the iterator to point to the ndim indices pointed to by multi_index. Returns an error if a multi-index
is not being tracked, the indices are out of bounds, or inner loop iteration is disabled.

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_GotoIndex(NpyIter* iter, npy_intp index)
Adjusts the iterator to point to the index specified. If the iterator was constructed with the flag
NPY_ITER_C_INDEX, index is the C-order index, and if the iterator was constructed with the flag
NPY_ITER_F_INDEX, index is the Fortran-order index. Returns an error if there is no index being tracked,
the index is out of bounds, or inner loop iteration is disabled.

Returns NPY_SUCCEED or NPY_FAIL.

npy_intp NpyIter_GetIterSize(NpyIter* iter)
Returns the number of elements being iterated. This is the product of all the dimensions in the shape. When a
multi index is being tracked (and NpyIter_RemoveAxis may be called) the size may be -1 to indicate an iterator
is too large. Such an iterator is invalid, but may become valid after NpyIter_RemoveAxis is called. It is not
necessary to check for this case.

npy_intp NpyIter_GetIterIndex(NpyIter* iter)
Gets the iterindex of the iterator, which is an index matching the iteration order of the iterator.

void NpyIter_GetIterIndexRange(NpyIter* iter, npy_intp* istart, npy_intp* iend)

6.5. Array Iterator API 1273



NumPy Reference, Release 1.15.1

Gets the iterindex sub-range that is being iterated. If NPY_ITER_RANGED was not specified, this always
returns the range [0, NpyIter_IterSize(iter)).

int NpyIter_GotoIterIndex(NpyIter* iter, npy_intp iterindex)
Adjusts the iterator to point to the iterindex specified. The IterIndex is an index matching the iteration order
of the iterator. Returns an error if the iterindex is out of bounds, buffering is enabled, or inner loop iteration
is disabled.

Returns NPY_SUCCEED or NPY_FAIL.

npy_bool NpyIter_HasDelayedBufAlloc(NpyIter* iter)
Returns 1 if the flag NPY_ITER_DELAY_BUFALLOC was passed to the iterator constructor, and no call to one
of the Reset functions has been done yet, 0 otherwise.

npy_bool NpyIter_HasExternalLoop(NpyIter* iter)
Returns 1 if the caller needs to handle the inner-most 1-dimensional loop, or 0 if the iterator
handles all looping. This is controlled by the constructor flag NPY_ITER_EXTERNAL_LOOP or
NpyIter_EnableExternalLoop.

npy_bool NpyIter_HasMultiIndex(NpyIter* iter)
Returns 1 if the iterator was created with the NPY_ITER_MULTI_INDEX flag, 0 otherwise.

npy_bool NpyIter_HasIndex(NpyIter* iter)
Returns 1 if the iterator was created with the NPY_ITER_C_INDEX or NPY_ITER_F_INDEX flag, 0 other-
wise.

npy_bool NpyIter_RequiresBuffering(NpyIter* iter)
Returns 1 if the iterator requires buffering, which occurs when an operand needs conversion or alignment and
so cannot be used directly.

npy_bool NpyIter_IsBuffered(NpyIter* iter)
Returns 1 if the iterator was created with the NPY_ITER_BUFFERED flag, 0 otherwise.

npy_bool NpyIter_IsGrowInner(NpyIter* iter)
Returns 1 if the iterator was created with the NPY_ITER_GROWINNER flag, 0 otherwise.

npy_intp NpyIter_GetBufferSize(NpyIter* iter)
If the iterator is buffered, returns the size of the buffer being used, otherwise returns 0.

int NpyIter_GetNDim(NpyIter* iter)
Returns the number of dimensions being iterated. If a multi-index was not requested in the iterator constructor,
this value may be smaller than the number of dimensions in the original objects.

int NpyIter_GetNOp(NpyIter* iter)
Returns the number of operands in the iterator.

When NPY_ITER_USE_MASKNA is used on an operand, a new operand is added to the end of the operand list
in the iterator to track that operand’s NA mask. Thus, this equals the number of construction operands plus the
number of operands for which the flag NPY_ITER_USE_MASKNA was specified.

int NpyIter_GetFirstMaskNAOp(NpyIter* iter)
New in version 1.7.

Returns the index of the first NA mask operand in the array. This value is equal to the number of operands
passed into the constructor.

npy_intp* NpyIter_GetAxisStrideArray(NpyIter* iter, int axis)
Gets the array of strides for the specified axis. Requires that the iterator be tracking a multi-index, and that
buffering not be enabled.

This may be used when you want to match up operand axes in some fashion, then remove them with
NpyIter_RemoveAxis to handle their processing manually. By calling this function before removing the

1274 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

axes, you can get the strides for the manual processing.

Returns NULL on error.

int NpyIter_GetShape(NpyIter* iter, npy_intp* outshape)
Returns the broadcast shape of the iterator in outshape. This can only be called on an iterator which is
tracking a multi-index.

Returns NPY_SUCCEED or NPY_FAIL.

PyArray_Descr** NpyIter_GetDescrArray(NpyIter* iter)
This gives back a pointer to the nop data type Descrs for the objects being iterated. The result points into iter,
so the caller does not gain any references to the Descrs.

This pointer may be cached before the iteration loop, calling iternext will not change it.

PyObject** NpyIter_GetOperandArray(NpyIter* iter)
This gives back a pointer to the nop operand PyObjects that are being iterated. The result points into iter, so
the caller does not gain any references to the PyObjects.

npy_int8* NpyIter_GetMaskNAIndexArray(NpyIter* iter)
New in version 1.7.

This gives back a pointer to the nop indices which map construction operands with NPY_ITER_USE_MASKNA
flagged to their corresponding NA mask operands and vice versa. For operands which were not flagged with
NPY_ITER_USE_MASKNA, this array contains negative values.

PyObject* NpyIter_GetIterView(NpyIter* iter, npy_intp i)
This gives back a reference to a new ndarray view, which is a view into the i-th object in the array
NpyIter_GetOperandArray , whose dimensions and strides match the internal optimized iteration pat-
tern. A C-order iteration of this view is equivalent to the iterator’s iteration order.

For example, if an iterator was created with a single array as its input, and it was possible to rearrange all its
axes and then collapse it into a single strided iteration, this would return a view that is a one-dimensional array.

void NpyIter_GetReadFlags(NpyIter* iter, char* outreadflags)
Fills nop flags. Sets outreadflags[i] to 1 if op[i] can be read from, and to 0 if not.

void NpyIter_GetWriteFlags(NpyIter* iter, char* outwriteflags)
Fills nop flags. Sets outwriteflags[i] to 1 if op[i] can be written to, and to 0 if not.

int NpyIter_CreateCompatibleStrides(NpyIter* iter, npy_intp itemsize, npy_intp* outstrides)
Builds a set of strides which are the same as the strides of an output array created using the
NPY_ITER_ALLOCATE flag, where NULL was passed for op_axes. This is for data packed contiguously,
but not necessarily in C or Fortran order. This should be used together with NpyIter_GetShape and
NpyIter_GetNDim with the flag NPY_ITER_MULTI_INDEX passed into the constructor.

A use case for this function is to match the shape and layout of the iterator and tack on one or more dimensions.
For example, in order to generate a vector per input value for a numerical gradient, you pass in ndim*itemsize
for itemsize, then add another dimension to the end with size ndim and stride itemsize. To do the Hessian matrix,
you do the same thing but add two dimensions, or take advantage of the symmetry and pack it into 1 dimension
with a particular encoding.

This function may only be called if the iterator is tracking a multi-index and if
NPY_ITER_DONT_NEGATE_STRIDES was used to prevent an axis from being iterated in reverse or-
der.

If an array is created with this method, simply adding ‘itemsize’ for each iteration will traverse the new array
matching the iterator.

Returns NPY_SUCCEED or NPY_FAIL.

6.5. Array Iterator API 1275

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

npy_bool NpyIter_IsFirstVisit(NpyIter* iter, int iop)
New in version 1.7.

Checks to see whether this is the first time the elements of the specified reduction operand which the iterator
points at are being seen for the first time. The function returns a reasonable answer for reduction operands and
when buffering is disabled. The answer may be incorrect for buffered non-reduction operands.

This function is intended to be used in EXTERNAL_LOOP mode only, and will produce some wrong answers
when that mode is not enabled.

If this function returns true, the caller should also check the inner loop stride of the operand, because if that
stride is 0, then only the first element of the innermost external loop is being visited for the first time.

WARNING: For performance reasons, ‘iop’ is not bounds-checked, it is not confirmed that ‘iop’ is actually a
reduction operand, and it is not confirmed that EXTERNAL_LOOP mode is enabled. These checks are the
responsibility of the caller, and should be done outside of any inner loops.

6.5.6 Functions For Iteration

NpyIter_IterNextFunc* NpyIter_GetIterNext(NpyIter* iter, char** errmsg)
Returns a function pointer for iteration. A specialized version of the function pointer may be calculated by this
function instead of being stored in the iterator structure. Thus, to get good performance, it is required that the
function pointer be saved in a variable rather than retrieved for each loop iteration.

Returns NULL if there is an error. If errmsg is non-NULL, no Python exception is set when NPY_FAIL is
returned. Instead, *errmsg is set to an error message. When errmsg is non-NULL, the function may be safely
called without holding the Python GIL.

The typical looping construct is as follows.

NpyIter_IterNextFunc *iternext = NpyIter_GetIterNext(iter, NULL);
char** dataptr = NpyIter_GetDataPtrArray(iter);

do {
/* use the addresses dataptr[0], ... dataptr[nop-1] */

} while(iternext(iter));

When NPY_ITER_EXTERNAL_LOOP is specified, the typical inner loop construct is as follows.

NpyIter_IterNextFunc *iternext = NpyIter_GetIterNext(iter, NULL);
char** dataptr = NpyIter_GetDataPtrArray(iter);
npy_intp* stride = NpyIter_GetInnerStrideArray(iter);
npy_intp* size_ptr = NpyIter_GetInnerLoopSizePtr(iter), size;
npy_intp iop, nop = NpyIter_GetNOp(iter);

do {
size = *size_ptr;
while (size--) {

/* use the addresses dataptr[0], ... dataptr[nop-1] */
for (iop = 0; iop < nop; ++iop) {

dataptr[iop] += stride[iop];
}

}
} while (iternext());

Observe that we are using the dataptr array inside the iterator, not copying the values to a local temporary.
This is possible because when iternext() is called, these pointers will be overwritten with fresh values, not
incrementally updated.

1276 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

If a compile-time fixed buffer is being used (both flags NPY_ITER_BUFFERED and
NPY_ITER_EXTERNAL_LOOP), the inner size may be used as a signal as well. The size is guaranteed
to become zero when iternext() returns false, enabling the following loop construct. Note that if you use
this construct, you should not pass NPY_ITER_GROWINNER as a flag, because it will cause larger sizes under
some circumstances.

/* The constructor should have buffersize passed as this value */
#define FIXED_BUFFER_SIZE 1024

NpyIter_IterNextFunc *iternext = NpyIter_GetIterNext(iter, NULL);
char **dataptr = NpyIter_GetDataPtrArray(iter);
npy_intp *stride = NpyIter_GetInnerStrideArray(iter);
npy_intp *size_ptr = NpyIter_GetInnerLoopSizePtr(iter), size;
npy_intp i, iop, nop = NpyIter_GetNOp(iter);

/* One loop with a fixed inner size */
size = *size_ptr;
while (size == FIXED_BUFFER_SIZE) {

/*
* This loop could be manually unrolled by a factor

* which divides into FIXED_BUFFER_SIZE

*/
for (i = 0; i < FIXED_BUFFER_SIZE; ++i) {

/* use the addresses dataptr[0], ... dataptr[nop-1] */
for (iop = 0; iop < nop; ++iop) {

dataptr[iop] += stride[iop];
}

}
iternext();
size = *size_ptr;

}

/* Finish-up loop with variable inner size */
if (size > 0) do {

size = *size_ptr;
while (size--) {

/* use the addresses dataptr[0], ... dataptr[nop-1] */
for (iop = 0; iop < nop; ++iop) {

dataptr[iop] += stride[iop];
}

}
} while (iternext());

NpyIter_GetMultiIndexFunc *NpyIter_GetGetMultiIndex(NpyIter* iter, char** errmsg)
Returns a function pointer for getting the current multi-index of the iterator. Returns NULL if the iterator is
not tracking a multi-index. It is recommended that this function pointer be cached in a local variable before the
iteration loop.

Returns NULL if there is an error. If errmsg is non-NULL, no Python exception is set when NPY_FAIL is
returned. Instead, *errmsg is set to an error message. When errmsg is non-NULL, the function may be safely
called without holding the Python GIL.

char** NpyIter_GetDataPtrArray(NpyIter* iter)
This gives back a pointer to the nop data pointers. If NPY_ITER_EXTERNAL_LOOP was not specified, each
data pointer points to the current data item of the iterator. If no inner iteration was specified, it points to the first
data item of the inner loop.

This pointer may be cached before the iteration loop, calling iternext will not change it. This function may
be safely called without holding the Python GIL.

6.5. Array Iterator API 1277



NumPy Reference, Release 1.15.1

char** NpyIter_GetInitialDataPtrArray(NpyIter* iter)
Gets the array of data pointers directly into the arrays (never into the buffers), corresponding to iteration index
0.

These pointers are different from the pointers accepted by NpyIter_ResetBasePointers, because the
direction along some axes may have been reversed.

This function may be safely called without holding the Python GIL.

npy_intp* NpyIter_GetIndexPtr(NpyIter* iter)
This gives back a pointer to the index being tracked, or NULL if no index is being tracked. It is only useable if
one of the flags NPY_ITER_C_INDEX or NPY_ITER_F_INDEX were specified during construction.

When the flag NPY_ITER_EXTERNAL_LOOP is used, the code needs to know the parameters for doing the inner
loop. These functions provide that information.

npy_intp* NpyIter_GetInnerStrideArray(NpyIter* iter)
Returns a pointer to an array of the nop strides, one for each iterated object, to be used by the inner loop.

This pointer may be cached before the iteration loop, calling iternext will not change it. This function may
be safely called without holding the Python GIL.

WARNING: While the pointer may be cached, its values may change if the iterator is buffered.

npy_intp* NpyIter_GetInnerLoopSizePtr(NpyIter* iter)
Returns a pointer to the number of iterations the inner loop should execute.

This address may be cached before the iteration loop, calling iternext will not change it. The value itself
may change during iteration, in particular if buffering is enabled. This function may be safely called without
holding the Python GIL.

void NpyIter_GetInnerFixedStrideArray(NpyIter* iter, npy_intp* out_strides)
Gets an array of strides which are fixed, or will not change during the entire iteration. For strides that may
change, the value NPY_MAX_INTP is placed in the stride.

Once the iterator is prepared for iteration (after a reset if NPY_DELAY_BUFALLOC was used), call this to get
the strides which may be used to select a fast inner loop function. For example, if the stride is 0, that means
the inner loop can always load its value into a variable once, then use the variable throughout the loop, or if the
stride equals the itemsize, a contiguous version for that operand may be used.

This function may be safely called without holding the Python GIL.

6.5.7 Converting from Previous NumPy Iterators

The old iterator API includes functions like PyArrayIter_Check, PyArray_Iter* and PyArray_ITER_*. The multi-
iterator array includes PyArray_MultiIter*, PyArray_Broadcast, and PyArray_RemoveSmallest. The new iterator
design replaces all of this functionality with a single object and associated API. One goal of the new API is that all
uses of the existing iterator should be replaceable with the new iterator without significant effort. In 1.6, the major
exception to this is the neighborhood iterator, which does not have corresponding features in this iterator.

Here is a conversion table for which functions to use with the new iterator:

1278 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

Iterator Functions
PyArray_IterNew NpyIter_New
PyArray_IterAllButAxis NpyIter_New + axes parameter or Iterator flag

NPY_ITER_EXTERNAL_LOOP
PyArray_BroadcastToShape NOT SUPPORTED (Use the support for multiple operands instead.)
PyArrayIter_Check Will need to add this in Python exposure
PyArray_ITER_RESET NpyIter_Reset
PyArray_ITER_NEXT Function pointer from NpyIter_GetIterNext
PyArray_ITER_DATA NpyIter_GetDataPtrArray
PyArray_ITER_GOTO NpyIter_GotoMultiIndex
PyArray_ITER_GOTO1D NpyIter_GotoIndex or NpyIter_GotoIterIndex
PyArray_ITER_NOTDONE Return value of iternext function pointer
Multi-iterator Functions
PyArray_MultiIterNew NpyIter_MultiNew
PyArray_MultiIter_RESET NpyIter_Reset
PyArray_MultiIter_NEXT Function pointer from NpyIter_GetIterNext
PyArray_MultiIter_DATA NpyIter_GetDataPtrArray
PyArray_MultiIter_NEXTi NOT SUPPORTED (always lock-step iteration)
PyArray_MultiIter_GOTO NpyIter_GotoMultiIndex
PyArray_MultiIter_GOTO1D NpyIter_GotoIndex or NpyIter_GotoIterIndex
PyArray_MultiIter_NOTDONE Return value of iternext function pointer
PyArray_Broadcast Handled by NpyIter_MultiNew
PyArray_RemoveSmallest Iterator flag NPY_ITER_EXTERNAL_LOOP
Other Functions
PyArray_ConvertToCommonTypeIterator flag NPY_ITER_COMMON_DTYPE

6.6 UFunc API

6.6.1 Constants

UFUNC_ERR_{HANDLER}
{HANDLER} can be IGNORE, WARN, RAISE, or CALL

UFUNC_{THING}_{ERR}
{THING} can be MASK, SHIFT, or FPE, and {ERR} can be DIVIDEBYZERO, OVERFLOW, UNDER-
FLOW, and INVALID.

PyUFunc_{VALUE}
{VALUE} can be One (1), Zero (0), or None (-1)

6.6.2 Macros

NPY_LOOP_BEGIN_THREADS
Used in universal function code to only release the Python GIL if loop->obj is not true (i.e. this is not an
OBJECT array loop). Requires use of NPY_BEGIN_THREADS_DEF in variable declaration area.

NPY_LOOP_END_THREADS
Used in universal function code to re-acquire the Python GIL if it was released (because loop->obj was not true).

UFUNC_CHECK_ERROR(loop)
A macro used internally to check for errors and goto fail if found. This macro requires a fail label in the current

6.6. UFunc API 1279



NumPy Reference, Release 1.15.1

code block. The loop variable must have at least members (obj, errormask, and errorobj). If loop ->obj is
nonzero, then PyErr_Occurred () is called (meaning the GIL must be held). If loop ->obj is zero, then if
loop ->errormask is nonzero, PyUFunc_checkfperr is called with arguments loop ->errormask and loop
->errobj. If the result of this check of the IEEE floating point registers is true then the code redirects to the fail
label which must be defined.

UFUNC_CHECK_STATUS(ret)
Deprecated: use npy_clear_floatstatus from npy_math.h instead.

A macro that expands to platform-dependent code. The ret variable can be any integer. The
UFUNC_FPE_{ERR} bits are set in ret according to the status of the corresponding error flags of the float-
ing point processor.

6.6.3 Functions

PyObject* PyUFunc_FromFuncAndData(PyUFuncGenericFunction* func, void** data, char* types,
int ntypes, int nin, int nout, int identity, char* name, char* doc,
int unused)

Create a new broadcasting universal function from required variables. Each ufunc builds around the notion
of an element-by-element operation. Each ufunc object contains pointers to 1-d loops implementing the basic
functionality for each supported type.

Note: The func, data, types, name, and doc arguments are not copied by PyUFunc_FromFuncAndData.
The caller must ensure that the memory used by these arrays is not freed as long as the ufunc object is alive.

Parameters

• func – Must to an array of length ntypes containing PyUFuncGenericFunction
items. These items are pointers to functions that actually implement the underlying
(element-by-element) function 𝑁 times.

• data – Should be NULL or a pointer to an array of size ntypes . This array may contain
arbitrary extra-data to be passed to the corresponding 1-d loop function in the func array.

• types – Length (nin + nout) * ntypes array of char encoding the
PyArray_Descr.type_num (built-in only) that the corresponding function in the func
array accepts. For instance, for a comparison ufunc with three ntypes, two nin and
one nout, where the first function accepts npy_int32 and the the second npy_int64,
with both returning npy_bool, types would be (char[]) {5, 5, 0, 7, 7, 0}
since NPY_INT32 is 5, NPY_INT64 is 7, and NPY_BOOL is 0 (on the python side,
these are exposed via dtype.num, i.e., for the example here, dtype(np.int32).num,
dtype(np.int64).num, and dtype(np.bool_).num, resp.).

casting-rules will be used at runtime to find the first func callable by the input/output
provided.

• ntypes – How many different data-type-specific functions the ufunc has implemented.

• nin – The number of inputs to this operation.

• nout – The number of outputs

• name – The name for the ufunc. Specifying a name of ‘add’ or ‘multiply’ enables a special
behavior for integer-typed reductions when no dtype is given. If the input type is an integer
(or boolean) data type smaller than the size of the int_ data type, it will be internally upcast
to the int_ (or uint) data type.

1280 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/exceptions.html#c.PyErr_Occurred
https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

• doc – Allows passing in a documentation string to be stored with the ufunc. The docu-
mentation string should not contain the name of the function or the calling signature as that
will be dynamically determined from the object and available when accessing the __doc__
attribute of the ufunc.

• unused – Unused and present for backwards compatibility of the C-API.

PyObject* PyUFunc_FromFuncAndDataAndSignature(PyUFuncGenericFunction* func, void** data,
char* types, int ntypes, int nin, int nout,
int identity, char* name, char* doc, int unused,
char *signature)

This function is very similar to PyUFunc_FromFuncAndData above, but has an extra signature argument, to
define a generalized universal functions. Similarly to how ufuncs are built around an element-by-element op-
eration, gufuncs are around subarray-by-subarray operations, the signature defining the subarrays to operate
on.

Parameters

• signature – The signature for the new gufunc. Setting it to NULL is equivalent to calling
PyUFunc_FromFuncAndData. A copy of the string is made, so the passed in buffer can be
freed.

int PyUFunc_RegisterLoopForType(PyUFuncObject* ufunc, int usertype, PyUFuncGenericFunc-
tion function, int* arg_types, void* data)

This function allows the user to register a 1-d loop with an already- created ufunc to be used whenever the ufunc
is called with any of its input arguments as the user-defined data-type. This is needed in order to make ufuncs
work with built-in data-types. The data-type must have been previously registered with the numpy system. The
loop is passed in as function. This loop can take arbitrary data which should be passed in as data. The data-types
the loop requires are passed in as arg_types which must be a pointer to memory at least as large as ufunc->nargs.

int PyUFunc_RegisterLoopForDescr(PyUFuncObject* ufunc, PyArray_Descr* userdtype, PyU-
FuncGenericFunction function, PyArray_Descr** arg_dtypes,
void* data)

This function behaves like PyUFunc_RegisterLoopForType above, except that it allows the user to register a 1-d
loop using PyArray_Descr objects instead of dtype type num values. This allows a 1-d loop to be registered for
structured array data-dtypes and custom data-types instead of scalar data-types.

int PyUFunc_ReplaceLoopBySignature(PyUFuncObject* ufunc, PyUFuncGenericFunction newfunc,
int* signature, PyUFuncGenericFunction* oldfunc)

Replace a 1-d loop matching the given signature in the already-created ufunc with the new 1-d loop newfunc.
Return the old 1-d loop function in oldfunc. Return 0 on success and -1 on failure. This function works only
with built-in types (use PyUFunc_RegisterLoopForType for user-defined types). A signature is an array
of data-type numbers indicating the inputs followed by the outputs assumed by the 1-d loop.

int PyUFunc_GenericFunction(PyUFuncObject* self, PyObject* args, PyObject* kwds, PyArrayOb-
ject** mps)

A generic ufunc call. The ufunc is passed in as self, the arguments to the ufunc as args and kwds. The mps
argument is an array of PyArrayObject pointers whose values are discarded and which receive the converted
input arguments as well as the ufunc outputs when success is returned. The user is responsible for managing
this array and receives a new reference for each array in mps. The total number of arrays in mps is given by self
->nin + self ->nout.

Returns 0 on success, -1 on error.

int PyUFunc_checkfperr(int errmask, PyObject* errobj)
A simple interface to the IEEE error-flag checking support. The errmask argument is a mask of
UFUNC_MASK_{ERR} bitmasks indicating which errors to check for (and how to check for them). The errobj
must be a Python tuple with two elements: a string containing the name which will be used in any communica-
tion of error and either a callable Python object (call-back function) or Py_None. The callable object will only

6.6. UFunc API 1281

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/none.html#c.Py_None


NumPy Reference, Release 1.15.1

be used if UFUNC_ERR_CALL is set as the desired error checking method. This routine manages the GIL and
is safe to call even after releasing the GIL. If an error in the IEEE-compatible hardware is determined a -1 is
returned, otherwise a 0 is returned.

void PyUFunc_clearfperr()
Clear the IEEE error flags.

void PyUFunc_GetPyValues(char* name, int* bufsize, int* errmask, PyObject** errobj)
Get the Python values used for ufunc processing from the thread-local storage area unless the defaults have been
set in which case the name lookup is bypassed. The name is placed as a string in the first element of *errobj.
The second element is the looked-up function to call on error callback. The value of the looked-up buffer-size
to use is passed into bufsize, and the value of the error mask is placed into errmask.

6.6.4 Generic functions

At the core of every ufunc is a collection of type-specific functions that defines the basic functionality for each of the
supported types. These functions must evaluate the underlying function 𝑁 ≥ 1 times. Extra-data may be passed in
that may be used during the calculation. This feature allows some general functions to be used as these basic looping
functions. The general function has all the code needed to point variables to the right place and set up a function call.
The general function assumes that the actual function to call is passed in as the extra data and calls it with the correct
values. All of these functions are suitable for placing directly in the array of functions stored in the functions member
of the PyUFuncObject structure.

void PyUFunc_f_f_As_d_d(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_d_d(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_f_f(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_g_g(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_F_F_As_D_D(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_F_F(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_D_D(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_G_G(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_e_e(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_e_e_As_f_f(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_e_e_As_d_d(char** args, npy_intp* dimensions, npy_intp* steps, void* func)
Type specific, core 1-d functions for ufuncs where each calculation is obtained by calling a function taking one
input argument and returning one output. This function is passed in func. The letters correspond to dtype-
char’s of the supported data types ( e - half, f - float, d - double, g - long double, F - cfloat, D - cdouble,
G - clongdouble). The argument func must support the same signature. The _As_X_X variants assume ndar-
ray’s of one data type but cast the values to use an underlying function that takes a different data type. Thus,
PyUFunc_f_f_As_d_d uses ndarrays of data type NPY_FLOAT but calls out to a C-function that takes
double and returns double.

void PyUFunc_ff_f_As_dd_d(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_ff_f(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_dd_d(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_gg_g(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_FF_F_As_DD_D(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_DD_D(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

1282 Chapter 6. NumPy C-API

https://docs.python.org/dev/c-api/structures.html#c.PyObject


NumPy Reference, Release 1.15.1

void PyUFunc_FF_F(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_GG_G(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_ee_e(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_ee_e_As_ff_f(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_ee_e_As_dd_d(char** args, npy_intp* dimensions, npy_intp* steps, void* func)
Type specific, core 1-d functions for ufuncs where each calculation is obtained by calling a function taking two
input arguments and returning one output. The underlying function to call is passed in as func. The letters
correspond to dtypechar’s of the specific data type supported by the general-purpose function. The argument
func must support the corresponding signature. The _As_XX_X variants assume ndarrays of one data type but
cast the values at each iteration of the loop to use the underlying function that takes a different data type.

void PyUFunc_O_O(char** args, npy_intp* dimensions, npy_intp* steps, void* func)

void PyUFunc_OO_O(char** args, npy_intp* dimensions, npy_intp* steps, void* func)
One-input, one-output, and two-input, one-output core 1-d functions for the NPY_OBJECT data type.
These functions handle reference count issues and return early on error. The actual function to call is
func and it must accept calls with the signature (PyObject*) (PyObject*) for PyUFunc_O_O or
(PyObject*)(PyObject *, PyObject *) for PyUFunc_OO_O.

void PyUFunc_O_O_method(char** args, npy_intp* dimensions, npy_intp* steps, void* func)
This general purpose 1-d core function assumes that func is a string representing a method of the input object.
For each iteration of the loop, the Python object is extracted from the array and its func method is called returning
the result to the output array.

void PyUFunc_OO_O_method(char** args, npy_intp* dimensions, npy_intp* steps, void* func)
This general purpose 1-d core function assumes that func is a string representing a method of the input object
that takes one argument. The first argument in args is the method whose function is called, the second argument
in args is the argument passed to the function. The output of the function is stored in the third entry of args.

void PyUFunc_On_Om(char** args, npy_intp* dimensions, npy_intp* steps, void* func)
This is the 1-d core function used by the dynamic ufuncs created by umath.frompyfunc(function, nin, nout). In
this case func is a pointer to a PyUFunc_PyFuncData structure which has definition

PyUFunc_PyFuncData

typedef struct {
int nin;
int nout;
PyObject *callable;

} PyUFunc_PyFuncData;

At each iteration of the loop, the nin input objects are extracted from their object arrays and placed into an
argument tuple, the Python callable is called with the input arguments, and the nout outputs are placed into their
object arrays.

6.6.5 Importing the API

PY_UFUNC_UNIQUE_SYMBOL

NO_IMPORT_UFUNC

void import_ufunc(void)
These are the constants and functions for accessing the ufunc C-API from extension modules in precisely the
same way as the array C-API can be accessed. The import_ufunc () function must always be called (in
the initialization subroutine of the extension module). If your extension module is in one file then that is all

6.6. UFunc API 1283



NumPy Reference, Release 1.15.1

that is required. The other two constants are useful if your extension module makes use of multiple files.
In that case, define PY_UFUNC_UNIQUE_SYMBOL to something unique to your code and then in source
files that do not contain the module initialization function but still need access to the UFUNC API, define
PY_UFUNC_UNIQUE_SYMBOL to the same name used previously and also define NO_IMPORT_UFUNC.

The C-API is actually an array of function pointers. This array is created (and pointed to by a global variable)
by import_ufunc. The global variable is either statically defined or allowed to be seen by other files depending
on the state of PY_UFUNC_UNIQUE_SYMBOL and NO_IMPORT_UFUNC.

6.7 Generalized Universal Function API

There is a general need for looping over not only functions on scalars but also over functions on vectors (or arrays).
This concept is realized in NumPy by generalizing the universal functions (ufuncs). In regular ufuncs, the elementary
function is limited to element-by-element operations, whereas the generalized version (gufuncs) supports “sub-array”
by “sub-array” operations. The Perl vector library PDL provides a similar functionality and its terms are re-used in
the following.

Each generalized ufunc has information associated with it that states what the “core” dimensionality of the inputs is,
as well as the corresponding dimensionality of the outputs (the element-wise ufuncs have zero core dimensions). The
list of the core dimensions for all arguments is called the “signature” of a ufunc. For example, the ufunc numpy.add
has signature (),()->() defining two scalar inputs and one scalar output.

Another example is the function inner1d(a, b) with a signature of (i),(i)->(). This applies the inner
product along the last axis of each input, but keeps the remaining indices intact. For example, where a is of shape (3,
5, N) and b is of shape (5, N), this will return an output of shape (3,5). The underlying elementary function
is called 3 * 5 times. In the signature, we specify one core dimension (i) for each input and zero core dimensions
() for the output, since it takes two 1-d arrays and returns a scalar. By using the same name i, we specify that the
two corresponding dimensions should be of the same size.

The dimensions beyond the core dimensions are called “loop” dimensions. In the above example, this corresponds to
(3, 5).

The signature determines how the dimensions of each input/output array are split into core and loop dimensions:

1. Each dimension in the signature is matched to a dimension of the corresponding passed-in array, starting from
the end of the shape tuple. These are the core dimensions, and they must be present in the arrays, or an error
will be raised.

2. Core dimensions assigned to the same label in the signature (e.g. the i in inner1d’s (i),(i)->()) must
have exactly matching sizes, no broadcasting is performed.

3. The core dimensions are removed from all inputs and the remaining dimensions are broadcast together, defining
the loop dimensions.

4. The shape of each output is determined from the loop dimensions plus the output’s core dimensions

Typically, the size of all core dimensions in an output will be determined by the size of a core dimension with the same
label in an input array. This is not a requirement, and it is possible to define a signature where a label comes up for
the first time in an output, although some precautions must be taken when calling such a function. An example would
be the function euclidean_pdist(a), with signature (n,d)->(p), that given an array of n d-dimensional
vectors, computes all unique pairwise Euclidean distances among them. The output dimension p must therefore be
equal to n * (n - 1) / 2, but it is the caller’s responsibility to pass in an output array of the right size. If the size
of a core dimension of an output cannot be determined from a passed in input or output array, an error will be raised.

Note: Prior to NumPy 1.10.0, less strict checks were in place: missing core dimensions were created by prepending 1’s
to the shape as necessary, core dimensions with the same label were broadcast together, and undetermined dimensions
were created with size 1.

1284 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

6.7.1 Definitions

Elementary Function Each ufunc consists of an elementary function that performs the most basic operation on the
smallest portion of array arguments (e.g. adding two numbers is the most basic operation in adding two arrays).
The ufunc applies the elementary function multiple times on different parts of the arrays. The input/output of
elementary functions can be vectors; e.g., the elementary function of inner1d takes two vectors as input.

Signature A signature is a string describing the input/output dimensions of the elementary function of a ufunc. See
section below for more details.

Core Dimension The dimensionality of each input/output of an elementary function is defined by its core dimen-
sions (zero core dimensions correspond to a scalar input/output). The core dimensions are mapped to the last
dimensions of the input/output arrays.

Dimension Name A dimension name represents a core dimension in the signature. Different dimensions may share
a name, indicating that they are of the same size.

Dimension Index A dimension index is an integer representing a dimension name. It enumerates the dimension
names according to the order of the first occurrence of each name in the signature.

6.7.2 Details of Signature

The signature defines “core” dimensionality of input and output variables, and thereby also defines the contraction of
the dimensions. The signature is represented by a string of the following format:

• Core dimensions of each input or output array are represented by a list of dimension names in parentheses,
(i_1,...,i_N); a scalar input/output is denoted by (). Instead of i_1, i_2, etc, one can use any valid
Python variable name.

• Dimension lists for different arguments are separated by ",". Input/output arguments are separated by "->".

• If one uses the same dimension name in multiple locations, this enforces the same size of the corresponding
dimensions.

The formal syntax of signatures is as follows:

<Signature> ::= <Input arguments> "->" <Output arguments>
<Input arguments> ::= <Argument list>
<Output arguments> ::= <Argument list>
<Argument list> ::= nil | <Argument> | <Argument> "," <Argument list>
<Argument> ::= "(" <Core dimension list> ")"
<Core dimension list> ::= nil | <Core dimension name> |

<Core dimension name> "," <Core dimension list>
<Core dimension name> ::= valid Python variable name

Notes:

1. All quotes are for clarity.

2. Core dimensions that share the same name must have the exact same size. Each dimension name typically
corresponds to one level of looping in the elementary function’s implementation.

3. White spaces are ignored.

Here are some examples of signatures:

6.7. Generalized Universal Function API 1285



NumPy Reference, Release 1.15.1

add (),()->()
inner1d (i),(i)->()
sum1d (i)->()
dot2d (m,n),(n,

p)->(m,p)
matrix multiplication

outer_inner (i,t),(j,
t)->(i,j)

inner over the last dimension, outer over the second to last, and
loop/broadcast over the rest.

6.7.3 C-API for implementing Elementary Functions

The current interface remains unchanged, and PyUFunc_FromFuncAndData can still be used to implement (spe-
cialized) ufuncs, consisting of scalar elementary functions.

One can use PyUFunc_FromFuncAndDataAndSignature to declare a more general ufunc. The argument list
is the same as PyUFunc_FromFuncAndData, with an additional argument specifying the signature as C string.

Furthermore, the callback function is of the same type as before, void (*foo)(char **args, intp

*dimensions, intp *steps, void *func). When invoked, args is a list of length nargs containing
the data of all input/output arguments. For a scalar elementary function, steps is also of length nargs, denoting the
strides used for the arguments. dimensions is a pointer to a single integer defining the size of the axis to be looped
over.

For a non-trivial signature, dimensions will also contain the sizes of the core dimensions as well, starting at the
second entry. Only one size is provided for each unique dimension name and the sizes are given according to the first
occurrence of a dimension name in the signature.

The first nargs elements of steps remain the same as for scalar ufuncs. The following elements contain the strides
of all core dimensions for all arguments in order.

For example, consider a ufunc with signature (i,j),(i)->(). In this case, args will contain three pointers to the
data of the input/output arrays a, b, c. Furthermore, dimensions will be [N, I, J] to define the size of N of
the loop and the sizes I and J for the core dimensions i and j. Finally, steps will be [a_N, b_N, c_N, a_i,
a_j, b_i], containing all necessary strides.

6.8 NumPy core libraries

New in version 1.3.0.

Starting from numpy 1.3.0, we are working on separating the pure C, “computational” code from the python dependent
code. The goal is twofolds: making the code cleaner, and enabling code reuse by other extensions outside numpy
(scipy, etc. . . ).

6.8.1 NumPy core math library

The numpy core math library (‘npymath’) is a first step in this direction. This library contains most math-related C99
functionality, which can be used on platforms where C99 is not well supported. The core math functions have the
same API as the C99 ones, except for the npy_* prefix.

The available functions are defined in <numpy/npy_math.h> - please refer to this header when in doubt.

1286 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

Floating point classification

NPY_NAN
This macro is defined to a NaN (Not a Number), and is guaranteed to have the signbit unset (‘positive’ NaN).
The corresponding single and extension precision macro are available with the suffix F and L.

NPY_INFINITY
This macro is defined to a positive inf. The corresponding single and extension precision macro are available
with the suffix F and L.

NPY_PZERO
This macro is defined to positive zero. The corresponding single and extension precision macro are available
with the suffix F and L.

NPY_NZERO
This macro is defined to negative zero (that is with the sign bit set). The corresponding single and extension
precision macro are available with the suffix F and L.

int npy_isnan(x)
This is a macro, and is equivalent to C99 isnan: works for single, double and extended precision, and return a
non 0 value is x is a NaN.

int npy_isfinite(x)
This is a macro, and is equivalent to C99 isfinite: works for single, double and extended precision, and return a
non 0 value is x is neither a NaN nor an infinity.

int npy_isinf(x)
This is a macro, and is equivalent to C99 isinf: works for single, double and extended precision, and return a
non 0 value is x is infinite (positive and negative).

int npy_signbit(x)
This is a macro, and is equivalent to C99 signbit: works for single, double and extended precision, and return a
non 0 value is x has the signbit set (that is the number is negative).

double npy_copysign(double x, double y)
This is a function equivalent to C99 copysign: return x with the same sign as y. Works for any value, including
inf and nan. Single and extended precisions are available with suffix f and l.

New in version 1.4.0.

Useful math constants

The following math constants are available in npy_math.h. Single and extended precision are also available by adding
the F and L suffixes respectively.

NPY_E
Base of natural logarithm (𝑒)

NPY_LOG2E
Logarithm to base 2 of the Euler constant ( ln(𝑒)ln(2) )

NPY_LOG10E
Logarithm to base 10 of the Euler constant ( ln(𝑒)

ln(10) )

NPY_LOGE2
Natural logarithm of 2 (ln(2))

NPY_LOGE10
Natural logarithm of 10 (ln(10))

6.8. NumPy core libraries 1287



NumPy Reference, Release 1.15.1

NPY_PI
Pi (𝜋)

NPY_PI_2
Pi divided by 2 (𝜋2 )

NPY_PI_4
Pi divided by 4 (𝜋4 )

NPY_1_PI
Reciprocal of pi ( 1

𝜋 )

NPY_2_PI
Two times the reciprocal of pi ( 2𝜋 )

NPY_EULER

The Euler constant lim𝑛→∞(
∑︀𝑛

𝑘=1
1
𝑘 − ln𝑛)

Low-level floating point manipulation

Those can be useful for precise floating point comparison.

double npy_nextafter(double x, double y)
This is a function equivalent to C99 nextafter: return next representable floating point value from x in the
direction of y. Single and extended precisions are available with suffix f and l.

New in version 1.4.0.

double npy_spacing(double x)
This is a function equivalent to Fortran intrinsic. Return distance between x and next representable floating point
value from x, e.g. spacing(1) == eps. spacing of nan and +/- inf return nan. Single and extended precisions are
available with suffix f and l.

New in version 1.4.0.

void npy_set_floatstatus_divbyzero()
Set the divide by zero floating point exception

New in version 1.6.0.

void npy_set_floatstatus_overflow()
Set the overflow floating point exception

New in version 1.6.0.

void npy_set_floatstatus_underflow()
Set the underflow floating point exception

New in version 1.6.0.

void npy_set_floatstatus_invalid()
Set the invalid floating point exception

New in version 1.6.0.

int npy_get_floatstatus()
Get floating point status. Returns a bitmask with following possible flags:

• NPY_FPE_DIVIDEBYZERO

• NPY_FPE_OVERFLOW

• NPY_FPE_UNDERFLOW

1288 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

• NPY_FPE_INVALID

Note that npy_get_floatstatus_barrier is preferable as it prevents agressive compiler optimizations
reordering the call relative to the code setting the status, which could lead to incorrect results.

New in version 1.9.0.

int npy_get_floatstatus_barrier(char*)
Get floating point status. A pointer to a local variable is passed in to prevent aggresive compiler optimizations
from reodering this function call relative to the code setting the status, which could lead to incorrect results.

Returns a bitmask with following possible flags:

• NPY_FPE_DIVIDEBYZERO

• NPY_FPE_OVERFLOW

• NPY_FPE_UNDERFLOW

• NPY_FPE_INVALID

New in version 1.15.0.

int npy_clear_floatstatus()
Clears the floating point status. Returns the previous status mask.

Note that npy_clear_floatstatus_barrier is preferable as it prevents agressive compiler optimiza-
tions reordering the call relative to the code setting the status, which could lead to incorrect results.

New in version 1.9.0.

int npy_clear_floatstatus_barrier(char*)
Clears the floating point status. A pointer to a local variable is passed in to prevent aggresive compiler optimiza-
tions from reodering this function call. Returns the previous status mask.

New in version 1.15.0.

n Complex functions ~~~~~~~~~~~~~~~~~

New in version 1.4.0.

C99-like complex functions have been added. Those can be used if you wish to implement portable C extensions.
Since we still support platforms without C99 complex type, you need to restrict to C90-compatible syntax, e.g.:

/* a = 1 + 2i \*/
npy_complex a = npy_cpack(1, 2);
npy_complex b;

b = npy_log(a);

Linking against the core math library in an extension

New in version 1.4.0.

To use the core math library in your own extension, you need to add the npymath compile and link options to your
extension in your setup.py:

>>> from numpy.distutils.misc_util import get_info
>>> info = get_info('npymath')
>>> config.add_extension('foo', sources=['foo.c'], extra_info=info)

In other words, the usage of info is exactly the same as when using blas_info and co.

6.8. NumPy core libraries 1289



NumPy Reference, Release 1.15.1

Half-precision functions

New in version 2.0.0.

The header file <numpy/halffloat.h> provides functions to work with IEEE 754-2008 16-bit floating point values.
While this format is not typically used for numerical computations, it is useful for storing values which require floating
point but do not need much precision. It can also be used as an educational tool to understand the nature of floating
point round-off error.

Like for other types, NumPy includes a typedef npy_half for the 16 bit float. Unlike for most of the other types, you
cannot use this as a normal type in C, since it is a typedef for npy_uint16. For example, 1.0 looks like 0x3c00 to C,
and if you do an equality comparison between the different signed zeros, you will get -0.0 != 0.0 (0x8000 != 0x0000),
which is incorrect.

For these reasons, NumPy provides an API to work with npy_half values accessible by including <numpy/halffloat.h>
and linking to ‘npymath’. For functions that are not provided directly, such as the arithmetic operations, the preferred
method is to convert to float or double and back again, as in the following example.

npy_half sum(int n, npy_half *array) {
float ret = 0;
while(n--) {

ret += npy_half_to_float(*array++);
}
return npy_float_to_half(ret);

}

External Links:

• 754-2008 IEEE Standard for Floating-Point Arithmetic

• Half-precision Float Wikipedia Article.

• OpenGL Half Float Pixel Support

• The OpenEXR image format.

NPY_HALF_ZERO
This macro is defined to positive zero.

NPY_HALF_PZERO
This macro is defined to positive zero.

NPY_HALF_NZERO
This macro is defined to negative zero.

NPY_HALF_ONE
This macro is defined to 1.0.

NPY_HALF_NEGONE
This macro is defined to -1.0.

NPY_HALF_PINF
This macro is defined to +inf.

NPY_HALF_NINF
This macro is defined to -inf.

NPY_HALF_NAN
This macro is defined to a NaN value, guaranteed to have its sign bit unset.

float npy_half_to_float(npy_half h)
Converts a half-precision float to a single-precision float.

1290 Chapter 6. NumPy C-API

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://en.wikipedia.org/wiki/Half_precision_floating-point_format
http://www.opengl.org/registry/specs/ARB/half_float_pixel.txt
http://www.openexr.com/about.html


NumPy Reference, Release 1.15.1

double npy_half_to_double(npy_half h)
Converts a half-precision float to a double-precision float.

npy_half npy_float_to_half(float f)
Converts a single-precision float to a half-precision float. The value is rounded to the nearest representable half,
with ties going to the nearest even. If the value is too small or too big, the system’s floating point underflow or
overflow bit will be set.

npy_half npy_double_to_half(double d)
Converts a double-precision float to a half-precision float. The value is rounded to the nearest representable half,
with ties going to the nearest even. If the value is too small or too big, the system’s floating point underflow or
overflow bit will be set.

int npy_half_eq(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 == h2).

int npy_half_ne(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 != h2).

int npy_half_le(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 <= h2).

int npy_half_lt(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 < h2).

int npy_half_ge(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 >= h2).

int npy_half_gt(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 > h2).

int npy_half_eq_nonan(npy_half h1, npy_half h2)
Compares two half-precision floats that are known to not be NaN (h1 == h2). If a value is NaN, the result is
undefined.

int npy_half_lt_nonan(npy_half h1, npy_half h2)
Compares two half-precision floats that are known to not be NaN (h1 < h2). If a value is NaN, the result is
undefined.

int npy_half_le_nonan(npy_half h1, npy_half h2)
Compares two half-precision floats that are known to not be NaN (h1 <= h2). If a value is NaN, the result is
undefined.

int npy_half_iszero(npy_half h)
Tests whether the half-precision float has a value equal to zero. This may be slightly faster than calling
npy_half_eq(h, NPY_ZERO).

int npy_half_isnan(npy_half h)
Tests whether the half-precision float is a NaN.

int npy_half_isinf(npy_half h)
Tests whether the half-precision float is plus or minus Inf.

int npy_half_isfinite(npy_half h)
Tests whether the half-precision float is finite (not NaN or Inf).

int npy_half_signbit(npy_half h)
Returns 1 is h is negative, 0 otherwise.

npy_half npy_half_copysign(npy_half x, npy_half y)
Returns the value of x with the sign bit copied from y. Works for any value, including Inf and NaN.

6.8. NumPy core libraries 1291



NumPy Reference, Release 1.15.1

npy_half npy_half_spacing(npy_half h)
This is the same for half-precision float as npy_spacing and npy_spacingf described in the low-level floating
point section.

npy_half npy_half_nextafter(npy_half x, npy_half y)
This is the same for half-precision float as npy_nextafter and npy_nextafterf described in the low-level floating
point section.

npy_uint16 npy_floatbits_to_halfbits(npy_uint32 f)
Low-level function which converts a 32-bit single-precision float, stored as a uint32, into a 16-bit half-precision
float.

npy_uint16 npy_doublebits_to_halfbits(npy_uint64 d)
Low-level function which converts a 64-bit double-precision float, stored as a uint64, into a 16-bit half-precision
float.

npy_uint32 npy_halfbits_to_floatbits(npy_uint16 h)
Low-level function which converts a 16-bit half-precision float into a 32-bit single-precision float, stored as a
uint32.

npy_uint64 npy_halfbits_to_doublebits(npy_uint16 h)
Low-level function which converts a 16-bit half-precision float into a 64-bit double-precision float, stored as a
uint64.

6.9 C API Deprecations

6.9.1 Background

The API exposed by NumPy for third-party extensions has grown over years of releases, and has allowed programmers
to directly access NumPy functionality from C. This API can be best described as “organic”. It has emerged from
multiple competing desires and from multiple points of view over the years, strongly influenced by the desire to make
it easy for users to move to NumPy from Numeric and Numarray. The core API originated with Numeric in 1995 and
there are patterns such as the heavy use of macros written to mimic Python’s C-API as well as account for compiler
technology of the late 90’s. There is also only a small group of volunteers who have had very little time to spend on
improving this API.

There is an ongoing effort to improve the API. It is important in this effort to ensure that code that compiles for
NumPy 1.X continues to compile for NumPy 1.X. At the same time, certain API’s will be marked as deprecated so
that future-looking code can avoid these API’s and follow better practices.

Another important role played by deprecation markings in the C API is to move towards hiding internal details of the
NumPy implementation. For those needing direct, easy, access to the data of ndarrays, this will not remove this ability.
Rather, there are many potential performance optimizations which require changing the implementation details, and
NumPy developers have been unable to try them because of the high value of preserving ABI compatibility. By
deprecating this direct access, we will in the future be able to improve NumPy’s performance in ways we cannot
presently.

6.9.2 Deprecation Mechanism NPY_NO_DEPRECATED_API

In C, there is no equivalent to the deprecation warnings that Python supports. One way to do deprecations is to flag
them in the documentation and release notes, then remove or change the deprecated features in a future major version
(NumPy 2.0 and beyond). Minor versions of NumPy should not have major C-API changes, however, that prevent
code that worked on a previous minor release. For example, we will do our best to ensure that code that compiled and
worked on NumPy 1.4 should continue to work on NumPy 1.7 (but perhaps with compiler warnings).

1292 Chapter 6. NumPy C-API



NumPy Reference, Release 1.15.1

To use the NPY_NO_DEPRECATED_API mechanism, you need to #define it to the target API version of NumPy
before #including any NumPy headers. If you want to confirm that your code is clean against 1.7, use:

#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION

On compilers which support a #warning mechanism, NumPy issues a compiler warning if you do not define the
symbol NPY_NO_DEPRECATED_API. This way, the fact that there are deprecations will be flagged for third-party
developers who may not have read the release notes closely.

6.9. C API Deprecations 1293



NumPy Reference, Release 1.15.1

1294 Chapter 6. NumPy C-API



CHAPTER

SEVEN

NUMPY INTERNALS

7.1 NumPy C Code Explanations

Fanaticism consists of redoubling your efforts when you have forgotten your aim. — George Santayana

An authority is a person who can tell you more about something than you really care to know. — Unknown

This Chapter attempts to explain the logic behind some of the new pieces of code. The purpose behind these explana-
tions is to enable somebody to be able to understand the ideas behind the implementation somewhat more easily than
just staring at the code. Perhaps in this way, the algorithms can be improved on, borrowed from, and/or optimized.

7.1.1 Memory model

One fundamental aspect of the ndarray is that an array is seen as a “chunk” of memory starting at some location. The
interpretation of this memory depends on the stride information. For each dimension in an 𝑁 -dimensional array, an
integer (stride) dictates how many bytes must be skipped to get to the next element in that dimension. Unless you have
a single-segment array, this stride information must be consulted when traversing through an array. It is not difficult
to write code that accepts strides, you just have to use (char *) pointers because strides are in units of bytes. Keep
in mind also that strides do not have to be unit-multiples of the element size. Also, remember that if the number of
dimensions of the array is 0 (sometimes called a rank-0 array), then the strides and dimensions variables are NULL.

Besides the structural information contained in the strides and dimensions members of the PyArrayObject, the
flags contain important information about how the data may be accessed. In particular, the NPY_ARRAY_ALIGNED
flag is set when the memory is on a suitable boundary according to the data-type array. Even if you have a contiguous
chunk of memory, you cannot just assume it is safe to dereference a data- type-specific pointer to an element. Only
if the NPY_ARRAY_ALIGNED flag is set is this a safe operation (on some platforms it will work but on others, like
Solaris, it will cause a bus error). The NPY_ARRAY_WRITEABLE should also be ensured if you plan on writing to
the memory area of the array. It is also possible to obtain a pointer to an unwritable memory area. Sometimes, writing
to the memory area when the NPY_ARRAY_WRITEABLE flag is not set will just be rude. Other times it can cause
program crashes ( e.g. a data-area that is a read-only memory-mapped file).

7.1.2 Data-type encapsulation

The data-type is an important abstraction of the ndarray. Operations will look to the data-type to provide the key
functionality that is needed to operate on the array. This functionality is provided in the list of function pointers
pointed to by the ‘f’ member of the PyArray_Descr structure. In this way, the number of data-types can be
extended simply by providing a PyArray_Descr structure with suitable function pointers in the ‘f’ member. For
built-in types there are some optimizations that by-pass this mechanism, but the point of the data- type abstraction is
to allow new data-types to be added.

1295



NumPy Reference, Release 1.15.1

One of the built-in data-types, the void data-type allows for arbitrary structured types containing 1 or more fields as
elements of the array. A field is simply another data-type object along with an offset into the current structured type. In
order to support arbitrarily nested fields, several recursive implementations of data-type access are implemented for the
void type. A common idiom is to cycle through the elements of the dictionary and perform a specific operation based
on the data-type object stored at the given offset. These offsets can be arbitrary numbers. Therefore, the possibility of
encountering mis- aligned data must be recognized and taken into account if necessary.

7.1.3 N-D Iterators

A very common operation in much of NumPy code is the need to iterate over all the elements of a general, strided,
N-dimensional array. This operation of a general-purpose N-dimensional loop is abstracted in the notion of an iterator
object. To write an N-dimensional loop, you only have to create an iterator object from an ndarray, work with the
dataptr member of the iterator object structure and call the macro PyArray_ITER_NEXT (it) on the iterator object
to move to the next element. The “next” element is always in C-contiguous order. The macro works by first special
casing the C-contiguous, 1-D, and 2-D cases which work very simply.

For the general case, the iteration works by keeping track of a list of coordinate counters in the iterator object. At each
iteration, the last coordinate counter is increased (starting from 0). If this counter is smaller than one less than the size
of the array in that dimension (a pre-computed and stored value), then the counter is increased and the dataptr member
is increased by the strides in that dimension and the macro ends. If the end of a dimension is reached, the counter
for the last dimension is reset to zero and the dataptr is moved back to the beginning of that dimension by subtracting
the strides value times one less than the number of elements in that dimension (this is also pre-computed and stored
in the backstrides member of the iterator object). In this case, the macro does not end, but a local dimension counter
is decremented so that the next-to-last dimension replaces the role that the last dimension played and the previously-
described tests are executed again on the next-to-last dimension. In this way, the dataptr is adjusted appropriately for
arbitrary striding.

The coordinates member of the PyArrayIterObject structure maintains the current N-d counter unless
the underlying array is C-contiguous in which case the coordinate counting is by-passed. The index mem-
ber of the PyArrayIterObject keeps track of the current flat index of the iterator. It is updated by the
PyArray_ITER_NEXT macro.

7.1.4 Broadcasting

In Numeric, broadcasting was implemented in several lines of code buried deep in ufuncobject.c. In NumPy, the
notion of broadcasting has been abstracted so that it can be performed in multiple places. Broadcasting is handled by
the function PyArray_Broadcast. This function requires a PyArrayMultiIterObject (or something that
is a binary equivalent) to be passed in. The PyArrayMultiIterObject keeps track of the broadcast number of
dimensions and size in each dimension along with the total size of the broadcast result. It also keeps track of the
number of arrays being broadcast and a pointer to an iterator for each of the arrays being broadcast.

The PyArray_Broadcast function takes the iterators that have already been defined and uses them to determine
the broadcast shape in each dimension (to create the iterators at the same time that broadcasting occurs then use the
PyMultiIter_New function). Then, the iterators are adjusted so that each iterator thinks it is iterating over an array
with the broadcast size. This is done by adjusting the iterators number of dimensions, and the shape in each dimension.
This works because the iterator strides are also adjusted. Broadcasting only adjusts (or adds) length-1 dimensions. For
these dimensions, the strides variable is simply set to 0 so that the data-pointer for the iterator over that array doesn’t
move as the broadcasting operation operates over the extended dimension.

Broadcasting was always implemented in Numeric using 0-valued strides for the extended dimensions. It
is done in exactly the same way in NumPy. The big difference is that now the array of strides is kept
track of in a PyArrayIterObject, the iterators involved in a broadcast result are kept track of in a
PyArrayMultiIterObject, and the PyArray_BroadCast call implements the broad-casting rules.

1296 Chapter 7. NumPy internals



NumPy Reference, Release 1.15.1

7.1.5 Array Scalars

The array scalars offer a hierarchy of Python types that allow a one- to-one correspondence between the data-type
stored in an array and the Python-type that is returned when an element is extracted from the array. An exception to
this rule was made with object arrays. Object arrays are heterogeneous collections of arbitrary Python objects. When
you select an item from an object array, you get back the original Python object (and not an object array scalar which
does exist but is rarely used for practical purposes).

The array scalars also offer the same methods and attributes as arrays with the intent that the same code can be used to
support arbitrary dimensions (including 0-dimensions). The array scalars are read-only (immutable) with the exception
of the void scalar which can also be written to so that structured array field setting works more naturally (a[0][‘f1’] =
value ).

7.1.6 Indexing

All python indexing operations arr[index] are organized by first preparing the index and finding the index type.
The supported index types are:

• integer

• newaxis

• slice

• ellipsis

• integer arrays/array-likes (fancy)

• boolean (single boolean array); if there is more than one boolean array as index or the shape does not match
exactly, the boolean array will be converted to an integer array instead.

• 0-d boolean (and also integer); 0-d boolean arrays are a special case which has to be handled in the advanced
indexing code. They signal that a 0-d boolean array had to be interpreted as an integer array.

As well as the scalar array special case signaling that an integer array was interpreted as an integer index, which is
important because an integer array index forces a copy but is ignored if a scalar is returned (full integer index). The
prepared index is guaranteed to be valid with the exception of out of bound values and broadcasting errors for advanced
indexing. This includes that an ellipsis is added for incomplete indices for example when a two dimensional array is
indexed with a single integer.

The next step depends on the type of index which was found. If all dimensions are indexed with an integer a scalar
is returned or set. A single boolean indexing array will call specialized boolean functions. Indices containing an
ellipsis or slice but no advanced indexing will always create a view into the old array by calculating the new strides
and memory offset. This view can then either be returned or, for assignments, filled using PyArray_CopyObject.
Note that PyArray_CopyObject may also be called on temporary arrays in other branches to support complicated
assignments when the array is of object dtype.

Advanced indexing

By far the most complex case is advanced indexing, which may or may not be combined with typical view based
indexing. Here integer indices are interpreted as view based. Before trying to understand this, you may want to make
yourself familiar with its subtleties. The advanced indexing code has three different branches and one special case:

• There is one indexing array and it, as well as the assignment array, can be iterated trivially. For example they
may be contiguous. Also the indexing array must be of intp type and the value array in assignments should be
of the correct type. This is purely a fast path.

• There are only integer array indices so that no subarray exists.

7.1. NumPy C Code Explanations 1297



NumPy Reference, Release 1.15.1

• View based and advanced indexing is mixed. In this case the view based indexing defines a collection of
subarrays that are combined by the advanced indexing. For example, arr[[1, 2, 3], :] is created by
vertically stacking the subarrays arr[1, :], arr[2,:], and arr[3, :].

• There is a subarray but it has exactly one element. This case can be handled as if there is no subarray, but needs
some care during setup.

Deciding what case applies, checking broadcasting, and determining the kind of transposition needed are all done in
PyArray_MapIterNew. After setting up, there are two cases. If there is no subarray or it only has one element, no
subarray iteration is necessary and an iterator is prepared which iterates all indexing arrays as well as the result or
value array. If there is a subarray, there are three iterators prepared. One for the indexing arrays, one for the result or
value array (minus its subarray), and one for the subarrays of the original and the result/assignment array. The first
two iterators give (or allow calculation) of the pointers into the start of the subarray, which then allows to restart the
subarray iteration.

When advanced indices are next to each other transposing may be necessary. All necessary transposing is handled
by PyArray_MapIterSwapAxes and has to be handled by the caller unless PyArray_MapIterNew is asked to
allocate the result.

After preparation, getting and setting is relatively straight forward, although the different modes of iteration need to
be considered. Unless there is only a single indexing array during item getting, the validity of the indices is checked
beforehand. Otherwise it is handled in the inner loop itself for optimization.

7.1.7 Universal Functions

Universal functions are callable objects that take 𝑁 inputs and produce 𝑀 outputs by wrapping basic 1-D loops that
work element-by-element into full easy-to use functions that seamlessly implement broadcasting, type-checking and
buffered coercion, and output-argument handling. New universal functions are normally created in C, although there
is a mechanism for creating ufuncs from Python functions (frompyfunc). The user must supply a 1-D loop that
implements the basic function taking the input scalar values and placing the resulting scalars into the appropriate
output slots as explained in implementation.

Setup

Every ufunc calculation involves some overhead related to setting up the calculation. The practical significance of
this overhead is that even though the actual calculation of the ufunc is very fast, you will be able to write array and
type-specific code that will work faster for small arrays than the ufunc. In particular, using ufuncs to perform many
calculations on 0-D arrays will be slower than other Python-based solutions (the silently-imported scalarmath module
exists precisely to give array scalars the look-and-feel of ufunc based calculations with significantly reduced overhead).

When a ufunc is called, many things must be done. The information collected from these setup operations is stored
in a loop-object. This loop object is a C-structure (that could become a Python object but is not initialized as such
because it is only used internally). This loop object has the layout needed to be used with PyArray_Broadcast so that
the broadcasting can be handled in the same way as it is handled in other sections of code.

The first thing done is to look-up in the thread-specific global dictionary the current values for the buffer-size, the error
mask, and the associated error object. The state of the error mask controls what happens when an error condition is
found. It should be noted that checking of the hardware error flags is only performed after each 1-D loop is executed.
This means that if the input and output arrays are contiguous and of the correct type so that a single 1-D loop is
performed, then the flags may not be checked until all elements of the array have been calculated. Looking up these
values in a thread- specific dictionary takes time which is easily ignored for all but very small arrays.

After checking, the thread-specific global variables, the inputs are evaluated to determine how the ufunc should proceed
and the input and output arrays are constructed if necessary. Any inputs which are not arrays are converted to arrays
(using context if necessary). Which of the inputs are scalars (and therefore converted to 0-D arrays) is noted.

1298 Chapter 7. NumPy internals



NumPy Reference, Release 1.15.1

Next, an appropriate 1-D loop is selected from the 1-D loops available to the ufunc based on the input array types. This
1-D loop is selected by trying to match the signature of the data-types of the inputs against the available signatures.
The signatures corresponding to built-in types are stored in the types member of the ufunc structure. The signatures
corresponding to user-defined types are stored in a linked-list of function-information with the head element stored
as a CObject in the userloops dictionary keyed by the data-type number (the first user-defined type in the argument
list is used as the key). The signatures are searched until a signature is found to which the input arrays can all be cast
safely (ignoring any scalar arguments which are not allowed to determine the type of the result). The implication of
this search procedure is that “lesser types” should be placed below “larger types” when the signatures are stored. If no
1-D loop is found, then an error is reported. Otherwise, the argument_list is updated with the stored signature — in
case casting is necessary and to fix the output types assumed by the 1-D loop.

If the ufunc has 2 inputs and 1 output and the second input is an Object array then a special-case check is performed
so that NotImplemented is returned if the second input is not an ndarray, has the __array_priority__ attribute, and
has an __r{op}__ special method. In this way, Python is signaled to give the other object a chance to complete the
operation instead of using generic object-array calculations. This allows (for example) sparse matrices to override the
multiplication operator 1-D loop.

For input arrays that are smaller than the specified buffer size, copies are made of all non-contiguous, mis-aligned, or
out-of- byteorder arrays to ensure that for small arrays, a single loop is used. Then, array iterators are created for all
the input arrays and the resulting collection of iterators is broadcast to a single shape.

The output arguments (if any) are then processed and any missing return arrays are constructed. If any pro-
vided output array doesn’t have the correct type (or is mis-aligned) and is smaller than the buffer size, then
a new output array is constructed with the special WRITEBACKIFCOPY flag set. At the end of the function,
PyArray_ResolveWritebackIfCopy is called so that its contents will be copied back into the output array.
Iterators for the output arguments are then processed.

Finally, the decision is made about how to execute the looping mechanism to ensure that all elements of the input
arrays are combined to produce the output arrays of the correct type. The options for loop execution are one-loop (for
contiguous, aligned, and correct data type), strided-loop (for non-contiguous but still aligned and correct data type),
and a buffered loop (for mis-aligned or incorrect data type situations). Depending on which execution method is called
for, the loop is then setup and computed.

Function call

This section describes how the basic universal function computation loop is setup and executed for each of the three
different kinds of execution. If NPY_ALLOW_THREADS is defined during compilation, then as long as no object
arrays are involved, the Python Global Interpreter Lock (GIL) is released prior to calling the loops. It is re-acquired if
necessary to handle error conditions. The hardware error flags are checked only after the 1-D loop is completed.

One Loop

This is the simplest case of all. The ufunc is executed by calling the underlying 1-D loop exactly once. This is possible
only when we have aligned data of the correct type (including byte-order) for both input and output and all arrays have
uniform strides (either contiguous, 0-D, or 1-D). In this case, the 1-D computational loop is called once to compute
the calculation for the entire array. Note that the hardware error flags are only checked after the entire calculation is
complete.

Strided Loop

When the input and output arrays are aligned and of the correct type, but the striding is not uniform (non-contiguous
and 2-D or larger), then a second looping structure is employed for the calculation. This approach converts all of the
iterators for the input and output arguments to iterate over all but the largest dimension. The inner loop is then handled

7.1. NumPy C Code Explanations 1299



NumPy Reference, Release 1.15.1

by the underlying 1-D computational loop. The outer loop is a standard iterator loop on the converted iterators. The
hardware error flags are checked after each 1-D loop is completed.

Buffered Loop

This is the code that handles the situation whenever the input and/or output arrays are either misaligned or of the wrong
data-type (including being byte-swapped) from what the underlying 1-D loop expects. The arrays are also assumed to
be non-contiguous. The code works very much like the strided-loop except for the inner 1-D loop is modified so that
pre-processing is performed on the inputs and post- processing is performed on the outputs in bufsize chunks (where
bufsize is a user-settable parameter). The underlying 1-D computational loop is called on data that is copied over (if it
needs to be). The setup code and the loop code is considerably more complicated in this case because it has to handle:

• memory allocation of the temporary buffers

• deciding whether or not to use buffers on the input and output data (mis-aligned and/or wrong data-type)

• copying and possibly casting data for any inputs or outputs for which buffers are necessary.

• special-casing Object arrays so that reference counts are properly handled when copies and/or casts are neces-
sary.

• breaking up the inner 1-D loop into bufsize chunks (with a possible remainder).

Again, the hardware error flags are checked at the end of each 1-D loop.

Final output manipulation

Ufuncs allow other array-like classes to be passed seamlessly through the interface in that inputs of a particu-
lar class will induce the outputs to be of that same class. The mechanism by which this works is the following.
If any of the inputs are not ndarrays and define the __array_wrap__ method, then the class with the largest
__array_priority__ attribute determines the type of all the outputs (with the exception of any output arrays
passed in). The __array_wrap__ method of the input array will be called with the ndarray being returned from
the ufunc as it’s input. There are two calling styles of the __array_wrap__ function supported. The first takes
the ndarray as the first argument and a tuple of “context” as the second argument. The context is (ufunc, arguments,
output argument number). This is the first call tried. If a TypeError occurs, then the function is called with just the
ndarray as the first argument.

Methods

There are three methods of ufuncs that require calculation similar to the general-purpose ufuncs. These are reduce,
accumulate, and reduceat. Each of these methods requires a setup command followed by a loop. There are four loop
styles possible for the methods corresponding to no-elements, one-element, strided-loop, and buffered- loop. These
are the same basic loop styles as implemented for the general purpose function call except for the no-element and one-
element cases which are special-cases occurring when the input array objects have 0 and 1 elements respectively.

Setup

The setup function for all three methods is construct_reduce. This function creates a reducing loop object and
fills it with parameters needed to complete the loop. All of the methods only work on ufuncs that take 2-inputs and
return 1 output. Therefore, the underlying 1-D loop is selected assuming a signature of [ otype, otype, otype
] where otype is the requested reduction data-type. The buffer size and error handling is then retrieved from (per-
thread) global storage. For small arrays that are mis-aligned or have incorrect data-type, a copy is made so that the
un-buffered section of code is used. Then, the looping strategy is selected. If there is 1 element or 0 elements in the
array, then a simple looping method is selected. If the array is not mis-aligned and has the correct data-type, then

1300 Chapter 7. NumPy internals



NumPy Reference, Release 1.15.1

strided looping is selected. Otherwise, buffered looping must be performed. Looping parameters are then established,
and the return array is constructed. The output array is of a different shape depending on whether the method is reduce,
accumulate, or reduceat. If an output array is already provided, then it’s shape is checked. If the output array is not
C-contiguous, aligned, and of the correct data type, then a temporary copy is made with the WRITEBACKIFCOPY
flag set. In this way, the methods will be able to work with a well-behaved output array but the result will be copied
back into the true output array when PyArray_ResolveWritebackIfCopy is called at function completion.
Finally, iterators are set up to loop over the correct axis (depending on the value of axis provided to the method) and
the setup routine returns to the actual computation routine.

Reduce

All of the ufunc methods use the same underlying 1-D computational loops with input and output arguments adjusted
so that the appropriate reduction takes place. For example, the key to the functioning of reduce is that the 1-D loop is
called with the output and the second input pointing to the same position in memory and both having a step- size of 0.
The first input is pointing to the input array with a step- size given by the appropriate stride for the selected axis. In
this way, the operation performed is

𝑜 = 𝑖[0]

𝑜 = 𝑖[𝑘]<op>𝑜 𝑘 = 1 . . . 𝑁

where 𝑁 + 1 is the number of elements in the input, 𝑖, 𝑜 is the output, and 𝑖[𝑘] is the 𝑘th element of 𝑖 along the selected
axis. This basic operations is repeated for arrays with greater than 1 dimension so that the reduction takes place for
every 1-D sub-array along the selected axis. An iterator with the selected dimension removed handles this looping.

For buffered loops, care must be taken to copy and cast data before the loop function is called because the underlying
loop expects aligned data of the correct data-type (including byte-order). The buffered loop must handle this copying
and casting prior to calling the loop function on chunks no greater than the user-specified bufsize.

Accumulate

The accumulate function is very similar to the reduce function in that the output and the second input both point to the
output. The difference is that the second input points to memory one stride behind the current output pointer. Thus,
the operation performed is

𝑜[0] = 𝑖[0]

𝑜[𝑘] = 𝑖[𝑘]<op>𝑜[𝑘 − 1] 𝑘 = 1 . . . 𝑁.

The output has the same shape as the input and each 1-D loop operates over 𝑁 elements when the shape in the selected
axis is 𝑁+1. Again, buffered loops take care to copy and cast the data before calling the underlying 1-D computational
loop.

Reduceat

The reduceat function is a generalization of both the reduce and accumulate functions. It implements a reduce over
ranges of the input array specified by indices. The extra indices argument is checked to be sure that every input
is not too large for the input array along the selected dimension before the loop calculations take place. The loop
implementation is handled using code that is very similar to the reduce code repeated as many times as there are
elements in the indices input. In particular: the first input pointer passed to the underlying 1-D computational loop
points to the input array at the correct location indicated by the index array. In addition, the output pointer and the
second input pointer passed to the underlying 1-D loop point to the same position in memory. The size of the 1-D
computational loop is fixed to be the difference between the current index and the next index (when the current index

7.1. NumPy C Code Explanations 1301



NumPy Reference, Release 1.15.1

is the last index, then the next index is assumed to be the length of the array along the selected dimension). In this
way, the 1-D loop will implement a reduce over the specified indices.

Mis-aligned or a loop data-type that does not match the input and/or output data-type is handled using buffered code
where-in data is copied to a temporary buffer and cast to the correct data-type if necessary prior to calling the under-
lying 1-D function. The temporary buffers are created in (element) sizes no bigger than the user settable buffer-size
value. Thus, the loop must be flexible enough to call the underlying 1-D computational loop enough times to complete
the total calculation in chunks no bigger than the buffer-size.

7.2 Internal organization of numpy arrays

It helps to understand a bit about how numpy arrays are handled under the covers to help understand numpy better.
This section will not go into great detail. Those wishing to understand the full details are referred to Travis Oliphant’s
book “Guide to NumPy”.

NumPy arrays consist of two major components, the raw array data (from now on, referred to as the data buffer), and
the information about the raw array data. The data buffer is typically what people think of as arrays in C or Fortran,
a contiguous (and fixed) block of memory containing fixed sized data items. NumPy also contains a significant set of
data that describes how to interpret the data in the data buffer. This extra information contains (among other things):

1. The basic data element’s size in bytes

2. The start of the data within the data buffer (an offset relative to the beginning of the data buffer).

3. The number of dimensions and the size of each dimension

4. The separation between elements for each dimension (the ‘stride’). This does not have to be a multiple of the
element size

5. The byte order of the data (which may not be the native byte order)

6. Whether the buffer is read-only

7. Information (via the dtype object) about the interpretation of the basic data element. The basic data element
may be as simple as a int or a float, or it may be a compound object (e.g., struct-like), a fixed character field, or
Python object pointers.

8. Whether the array is to interpreted as C-order or Fortran-order.

This arrangement allow for very flexible use of arrays. One thing that it allows is simple changes of the metadata
to change the interpretation of the array buffer. Changing the byteorder of the array is a simple change involving no
rearrangement of the data. The shape of the array can be changed very easily without changing anything in the data
buffer or any data copying at all

Among other things that are made possible is one can create a new array metadata object that uses the same data buffer
to create a new view of that data buffer that has a different interpretation of the buffer (e.g., different shape, offset,
byte order, strides, etc) but shares the same data bytes. Many operations in numpy do just this such as slices. Other
operations, such as transpose, don’t move data elements around in the array, but rather change the information about
the shape and strides so that the indexing of the array changes, but the data in the doesn’t move.

Typically these new versions of the array metadata but the same data buffer are new ‘views’ into the data buffer. There
is a different ndarray object, but it uses the same data buffer. This is why it is necessary to force copies through use of
the .copy() method if one really wants to make a new and independent copy of the data buffer.

New views into arrays mean the object reference counts for the data buffer increase. Simply doing away with the
original array object will not remove the data buffer if other views of it still exist.

1302 Chapter 7. NumPy internals



NumPy Reference, Release 1.15.1

7.3 Multidimensional Array Indexing Order Issues

What is the right way to index multi-dimensional arrays? Before you jump to conclusions about the one and true
way to index multi-dimensional arrays, it pays to understand why this is a confusing issue. This section will try to
explain in detail how numpy indexing works and why we adopt the convention we do for images, and when it may be
appropriate to adopt other conventions.

The first thing to understand is that there are two conflicting conventions for indexing 2-dimensional arrays. Matrix
notation uses the first index to indicate which row is being selected and the second index to indicate which column
is selected. This is opposite the geometrically oriented-convention for images where people generally think the first
index represents x position (i.e., column) and the second represents y position (i.e., row). This alone is the source of
much confusion; matrix-oriented users and image-oriented users expect two different things with regard to indexing.

The second issue to understand is how indices correspond to the order the array is stored in memory. In Fortran the first
index is the most rapidly varying index when moving through the elements of a two dimensional array as it is stored
in memory. If you adopt the matrix convention for indexing, then this means the matrix is stored one column at a time
(since the first index moves to the next row as it changes). Thus Fortran is considered a Column-major language. C
has just the opposite convention. In C, the last index changes most rapidly as one moves through the array as stored
in memory. Thus C is a Row-major language. The matrix is stored by rows. Note that in both cases it presumes that
the matrix convention for indexing is being used, i.e., for both Fortran and C, the first index is the row. Note this
convention implies that the indexing convention is invariant and that the data order changes to keep that so.

But that’s not the only way to look at it. Suppose one has large two-dimensional arrays (images or matrices) stored
in data files. Suppose the data are stored by rows rather than by columns. If we are to preserve our index convention
(whether matrix or image) that means that depending on the language we use, we may be forced to reorder the data
if it is read into memory to preserve our indexing convention. For example if we read row-ordered data into memory
without reordering, it will match the matrix indexing convention for C, but not for Fortran. Conversely, it will match
the image indexing convention for Fortran, but not for C. For C, if one is using data stored in row order, and one wants
to preserve the image index convention, the data must be reordered when reading into memory.

In the end, which you do for Fortran or C depends on which is more important, not reordering data or preserving the
indexing convention. For large images, reordering data is potentially expensive, and often the indexing convention is
inverted to avoid that.

The situation with numpy makes this issue yet more complicated. The internal machinery of numpy arrays is flexible
enough to accept any ordering of indices. One can simply reorder indices by manipulating the internal stride infor-
mation for arrays without reordering the data at all. NumPy will know how to map the new index order to the data
without moving the data.

So if this is true, why not choose the index order that matches what you most expect? In particular, why not define
row-ordered images to use the image convention? (This is sometimes referred to as the Fortran convention vs the C
convention, thus the ‘C’ and ‘FORTRAN’ order options for array ordering in numpy.) The drawback of doing this
is potential performance penalties. It’s common to access the data sequentially, either implicitly in array operations
or explicitly by looping over rows of an image. When that is done, then the data will be accessed in non-optimal
order. As the first index is incremented, what is actually happening is that elements spaced far apart in memory are
being sequentially accessed, with usually poor memory access speeds. For example, for a two dimensional image ‘im’
defined so that im[0, 10] represents the value at x=0, y=10. To be consistent with usual Python behavior then im[0]
would represent a column at x=0. Yet that data would be spread over the whole array since the data are stored in
row order. Despite the flexibility of numpy’s indexing, it can’t really paper over the fact basic operations are rendered
inefficient because of data order or that getting contiguous subarrays is still awkward (e.g., im[:,0] for the first row,
vs im[0]), thus one can’t use an idiom such as for row in im; for col in im does work, but doesn’t yield contiguous
column data.

As it turns out, numpy is smart enough when dealing with ufuncs to determine which index is the most rapidly varying
one in memory and uses that for the innermost loop. Thus for ufuncs there is no large intrinsic advantage to either
approach in most cases. On the other hand, use of .flat with an FORTRAN ordered array will lead to non-optimal
memory access as adjacent elements in the flattened array (iterator, actually) are not contiguous in memory.

7.3. Multidimensional Array Indexing Order Issues 1303



NumPy Reference, Release 1.15.1

Indeed, the fact is that Python indexing on lists and other sequences naturally leads to an outside-to inside ordering
(the first index gets the largest grouping, the next the next largest, and the last gets the smallest element). Since image
data are normally stored by rows, this corresponds to position within rows being the last item indexed.

If you do want to use Fortran ordering realize that there are two approaches to consider: 1) accept that the first index
is just not the most rapidly changing in memory and have all your I/O routines reorder your data when going from
memory to disk or visa versa, or use numpy’s mechanism for mapping the first index to the most rapidly varying
data. We recommend the former if possible. The disadvantage of the latter is that many of numpy’s functions will
yield arrays without Fortran ordering unless you are careful to use the ‘order’ keyword. Doing this would be highly
inconvenient.

Otherwise we recommend simply learning to reverse the usual order of indices when accessing elements of an array.
Granted, it goes against the grain, but it is more in line with Python semantics and the natural order of the data.

1304 Chapter 7. NumPy internals



CHAPTER

EIGHT

NUMPY AND SWIG

8.0.1 Introduction

The Simple Wrapper and Interface Generator (or SWIG) is a powerful tool for generating wrapper code for interfacing
to a wide variety of scripting languages. SWIG can parse header files, and using only the code prototypes, create an
interface to the target language. But SWIG is not omnipotent. For example, it cannot know from the prototype:

double rms(double* seq, int n);

what exactly seq is. Is it a single value to be altered in-place? Is it an array, and if so what is its length? Is it
input-only? Output-only? Input-output? SWIG cannot determine these details, and does not attempt to do so.

If we designed rms, we probably made it a routine that takes an input-only array of length n of double values called
seq and returns the root mean square. The default behavior of SWIG, however, will be to create a wrapper function
that compiles, but is nearly impossible to use from the scripting language in the way the C routine was intended.

For Python, the preferred way of handling contiguous (or technically, strided) blocks of homogeneous data is with
NumPy, which provides full object-oriented access to multidimensial arrays of data. Therefore, the most logical
Python interface for the rms function would be (including doc string):

def rms(seq):
"""
rms: return the root mean square of a sequence
rms(numpy.ndarray) -> double
rms(list) -> double
rms(tuple) -> double
"""

where seq would be a NumPy array of double values, and its length n would be extracted from seq internally
before being passed to the C routine. Even better, since NumPy supports construction of arrays from arbitrary Python
sequences, seq itself could be a nearly arbitrary sequence (so long as each element can be converted to a double)
and the wrapper code would internally convert it to a NumPy array before extracting its data and length.

SWIG allows these types of conversions to be defined via a mechanism called typemaps. This document provides
information on how to use numpy.i, a SWIG interface file that defines a series of typemaps intended to make the
type of array-related conversions described above relatively simple to implement. For example, suppose that the rms
function prototype defined above was in a header file named rms.h. To obtain the Python interface discussed above,
your SWIG interface file would need the following:

%{
#define SWIG_FILE_WITH_INIT
#include "rms.h"
%}

(continues on next page)

1305

http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org


NumPy Reference, Release 1.15.1

(continued from previous page)

%include "numpy.i"

%init %{
import_array();
%}

%apply (double* IN_ARRAY1, int DIM1) {(double* seq, int n)};
%include "rms.h"

Typemaps are keyed off a list of one or more function arguments, either by type or by type and name. We will
refer to such lists as signatures. One of the many typemaps defined by numpy.i is used above and has the signature
(double* IN_ARRAY1, int DIM1). The argument names are intended to suggest that the double* argument
is an input array of one dimension and that the int represents the size of that dimension. This is precisely the pattern
in the rms prototype.

Most likely, no actual prototypes to be wrapped will have the argument names IN_ARRAY1 and DIM1. We use
the SWIG %apply directive to apply the typemap for one-dimensional input arrays of type double to the actual
prototype used by rms. Using numpy.i effectively, therefore, requires knowing what typemaps are available and
what they do.

A SWIG interface file that includes the SWIG directives given above will produce wrapper code that looks something
like:

1 PyObject *_wrap_rms(PyObject *args) {
2 PyObject *resultobj = 0;
3 double *arg1 = (double *) 0 ;
4 int arg2 ;
5 double result;
6 PyArrayObject *array1 = NULL ;
7 int is_new_object1 = 0 ;
8 PyObject * obj0 = 0 ;
9

10 if (!PyArg_ParseTuple(args,(char *)"O:rms",&obj0)) SWIG_fail;
11 {
12 array1 = obj_to_array_contiguous_allow_conversion(
13 obj0, NPY_DOUBLE, &is_new_object1);
14 npy_intp size[1] = {
15 -1
16 };
17 if (!array1 || !require_dimensions(array1, 1) ||
18 !require_size(array1, size, 1)) SWIG_fail;
19 arg1 = (double*) array1->data;
20 arg2 = (int) array1->dimensions[0];
21 }
22 result = (double)rms(arg1,arg2);
23 resultobj = SWIG_From_double((double)(result));
24 {
25 if (is_new_object1 && array1) Py_DECREF(array1);
26 }
27 return resultobj;
28 fail:
29 {
30 if (is_new_object1 && array1) Py_DECREF(array1);
31 }
32 return NULL;
33 }

1306 Chapter 8. NumPy and SWIG

http://www.swig.org
http://www.swig.org
http://www.swig.org


NumPy Reference, Release 1.15.1

The typemaps from numpy.i are responsible for the following lines of code: 12–20, 25 and 30. Line 10 parses
the input to the rms function. From the format string "O:rms", we can see that the argument list is expected to
be a single Python object (specified by the O before the colon) and whose pointer is stored in obj0. A number of
functions, supplied by numpy.i, are called to make and check the (possible) conversion from a generic Python object
to a NumPy array. These functions are explained in the section Helper Functions, but hopefully their names are self-
explanatory. At line 12 we use obj0 to construct a NumPy array. At line 17, we check the validity of the result: that
it is non-null and that it has a single dimension of arbitrary length. Once these states are verified, we extract the data
buffer and length in lines 19 and 20 so that we can call the underlying C function at line 22. Line 25 performs memory
management for the case where we have created a new array that is no longer needed.

This code has a significant amount of error handling. Note the SWIG_fail is a macro for goto fail, referring to
the label at line 28. If the user provides the wrong number of arguments, this will be caught at line 10. If construction
of the NumPy array fails or produces an array with the wrong number of dimensions, these errors are caught at line
17. And finally, if an error is detected, memory is still managed correctly at line 30.

Note that if the C function signature was in a different order:

double rms(int n, double* seq);

that SWIG would not match the typemap signature given above with the argument list for rms. Fortunately, numpy.i
has a set of typemaps with the data pointer given last:

%apply (int DIM1, double* IN_ARRAY1) {(int n, double* seq)};

This simply has the effect of switching the definitions of arg1 and arg2 in lines 3 and 4 of the generated code above,
and their assignments in lines 19 and 20.

8.0.2 Using numpy.i

The numpy.i file is currently located in the tools/swig sub-directory under the numpy installation directory.
Typically, you will want to copy it to the directory where you are developing your wrappers.

A simple module that only uses a single SWIG interface file should include the following:

%{
#define SWIG_FILE_WITH_INIT
%}
%include "numpy.i"
%init %{
import_array();
%}

Within a compiled Python module, import_array() should only get called once. This could be in a C/C++
file that you have written and is linked to the module. If this is the case, then none of your interface files should
#define SWIG_FILE_WITH_INIT or call import_array(). Or, this initialization call could be in a wrapper
file generated by SWIG from an interface file that has the %init block as above. If this is the case, and you have
more than one SWIG interface file, then only one interface file should #define SWIG_FILE_WITH_INIT and
call import_array().

8.0.3 Available Typemaps

The typemap directives provided by numpy.i for arrays of different data types, say double and int, and dimen-
sions of different types, say int or long, are identical to one another except for the C and NumPy type specifications.
The typemaps are therefore implemented (typically behind the scenes) via a macro:

1307

http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org


NumPy Reference, Release 1.15.1

%numpy_typemaps(DATA_TYPE, DATA_TYPECODE, DIM_TYPE)

that can be invoked for appropriate (DATA_TYPE, DATA_TYPECODE, DIM_TYPE) triplets. For example:

%numpy_typemaps(double, NPY_DOUBLE, int)
%numpy_typemaps(int, NPY_INT , int)

The numpy.i interface file uses the %numpy_typemaps macro to implement typemaps for the following C data
types and int dimension types:

• signed char

• unsigned char

• short

• unsigned short

• int

• unsigned int

• long

• unsigned long

• long long

• unsigned long long

• float

• double

In the following descriptions, we reference a generic DATA_TYPE, which could be any of the C data types listed
above, and DIM_TYPE which should be one of the many types of integers.

The typemap signatures are largely differentiated on the name given to the buffer pointer. Names with FARRAY are
for Fortran-ordered arrays, and names with ARRAY are for C-ordered (or 1D arrays).

Input Arrays

Input arrays are defined as arrays of data that are passed into a routine but are not altered in-place or returned to
the user. The Python input array is therefore allowed to be almost any Python sequence (such as a list) that can be
converted to the requested type of array. The input array signatures are

1D:

• ( DATA_TYPE IN_ARRAY1[ANY] )

• ( DATA_TYPE* IN_ARRAY1, int DIM1 )

• ( int DIM1, DATA_TYPE* IN_ARRAY1 )

2D:

• ( DATA_TYPE IN_ARRAY2[ANY][ANY] )

• ( DATA_TYPE* IN_ARRAY2, int DIM1, int DIM2 )

• ( int DIM1, int DIM2, DATA_TYPE* IN_ARRAY2 )

• ( DATA_TYPE* IN_FARRAY2, int DIM1, int DIM2 )

• ( int DIM1, int DIM2, DATA_TYPE* IN_FARRAY2 )

1308 Chapter 8. NumPy and SWIG



NumPy Reference, Release 1.15.1

3D:

• ( DATA_TYPE IN_ARRAY3[ANY][ANY][ANY] )

• ( DATA_TYPE* IN_ARRAY3, int DIM1, int DIM2, int DIM3 )

• ( int DIM1, int DIM2, int DIM3, DATA_TYPE* IN_ARRAY3 )

• ( DATA_TYPE* IN_FARRAY3, int DIM1, int DIM2, int DIM3 )

• ( int DIM1, int DIM2, int DIM3, DATA_TYPE* IN_FARRAY3 )

4D:

• (DATA_TYPE IN_ARRAY4[ANY][ANY][ANY][ANY])

• (DATA_TYPE* IN_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
DIM_TYPE DIM4)

• (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, , DIM_TYPE DIM4, DATA_TYPE*
IN_ARRAY4)

• (DATA_TYPE* IN_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
DIM_TYPE DIM4)

• (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE*
IN_FARRAY4)

The first signature listed, ( DATA_TYPE IN_ARRAY[ANY] ) is for one-dimensional arrays with hard-coded di-
mensions. Likewise, ( DATA_TYPE IN_ARRAY2[ANY][ANY] ) is for two-dimensional arrays with hard-coded
dimensions, and similarly for three-dimensional.

In-Place Arrays

In-place arrays are defined as arrays that are modified in-place. The input values may or may not be used, but the
values at the time the function returns are significant. The provided Python argument must therefore be a NumPy
array of the required type. The in-place signatures are

1D:

• ( DATA_TYPE INPLACE_ARRAY1[ANY] )

• ( DATA_TYPE* INPLACE_ARRAY1, int DIM1 )

• ( int DIM1, DATA_TYPE* INPLACE_ARRAY1 )

2D:

• ( DATA_TYPE INPLACE_ARRAY2[ANY][ANY] )

• ( DATA_TYPE* INPLACE_ARRAY2, int DIM1, int DIM2 )

• ( int DIM1, int DIM2, DATA_TYPE* INPLACE_ARRAY2 )

• ( DATA_TYPE* INPLACE_FARRAY2, int DIM1, int DIM2 )

• ( int DIM1, int DIM2, DATA_TYPE* INPLACE_FARRAY2 )

3D:

• ( DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY] )

• ( DATA_TYPE* INPLACE_ARRAY3, int DIM1, int DIM2, int DIM3 )

• ( int DIM1, int DIM2, int DIM3, DATA_TYPE* INPLACE_ARRAY3 )

• ( DATA_TYPE* INPLACE_FARRAY3, int DIM1, int DIM2, int DIM3 )

1309



NumPy Reference, Release 1.15.1

• ( int DIM1, int DIM2, int DIM3, DATA_TYPE* INPLACE_FARRAY3 )

4D:

• (DATA_TYPE INPLACE_ARRAY4[ANY][ANY][ANY][ANY])

• (DATA_TYPE* INPLACE_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
DIM_TYPE DIM4)

• (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, , DIM_TYPE DIM4, DATA_TYPE*
INPLACE_ARRAY4)

• (DATA_TYPE* INPLACE_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
DIM_TYPE DIM4)

• (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE*
INPLACE_FARRAY4)

These typemaps now check to make sure that the INPLACE_ARRAY arguments use native byte ordering. If not, an
exception is raised.

There is also a “flat” in-place array for situations in which you would like to modify or process each element, regardless
of the number of dimensions. One example is a “quantization” function that quantizes each element of an array in-
place, be it 1D, 2D or whatever. This form checks for continuity but allows either C or Fortran ordering.

ND:

• (DATA_TYPE* INPLACE_ARRAY_FLAT, DIM_TYPE DIM_FLAT)

Argout Arrays

Argout arrays are arrays that appear in the input arguments in C, but are in fact output arrays. This pattern occurs
often when there is more than one output variable and the single return argument is therefore not sufficient. In Python,
the conventional way to return multiple arguments is to pack them into a sequence (tuple, list, etc.) and return the
sequence. This is what the argout typemaps do. If a wrapped function that uses these argout typemaps has more than
one return argument, they are packed into a tuple or list, depending on the version of Python. The Python user does
not pass these arrays in, they simply get returned. For the case where a dimension is specified, the python user must
provide that dimension as an argument. The argout signatures are

1D:

• ( DATA_TYPE ARGOUT_ARRAY1[ANY] )

• ( DATA_TYPE* ARGOUT_ARRAY1, int DIM1 )

• ( int DIM1, DATA_TYPE* ARGOUT_ARRAY1 )

2D:

• ( DATA_TYPE ARGOUT_ARRAY2[ANY][ANY] )

3D:

• ( DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY] )

4D:

• ( DATA_TYPE ARGOUT_ARRAY4[ANY][ANY][ANY][ANY] )

These are typically used in situations where in C/C++, you would allocate a(n) array(s) on the heap, and call the
function to fill the array(s) values. In Python, the arrays are allocated for you and returned as new array objects.

1310 Chapter 8. NumPy and SWIG



NumPy Reference, Release 1.15.1

Note that we support DATA_TYPE* argout typemaps in 1D, but not 2D or 3D. This is because of a quirk with the
SWIG typemap syntax and cannot be avoided. Note that for these types of 1D typemaps, the Python function will take
a single argument representing DIM1.

Argout View Arrays

Argoutview arrays are for when your C code provides you with a view of its internal data and does not require any
memory to be allocated by the user. This can be dangerous. There is almost no way to guarantee that the internal data
from the C code will remain in existence for the entire lifetime of the NumPy array that encapsulates it. If the user
destroys the object that provides the view of the data before destroying the NumPy array, then using that array may
result in bad memory references or segmentation faults. Nevertheless, there are situations, working with large data
sets, where you simply have no other choice.

The C code to be wrapped for argoutview arrays are characterized by pointers: pointers to the dimensions and double
pointers to the data, so that these values can be passed back to the user. The argoutview typemap signatures are
therefore

1D:

• ( DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1 )

• ( DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEW_ARRAY1 )

2D:

• ( DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2 )

• ( DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_ARRAY2 )

• ( DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2 )

• ( DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_FARRAY2 )

3D:

• ( DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3)

• ( DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE**
ARGOUTVIEW_ARRAY3)

• ( DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2,
DIM_TYPE* DIM3)

• ( DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE**
ARGOUTVIEW_FARRAY3)

4D:

• (DATA_TYPE** ARGOUTVIEW_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3, DIM_TYPE* DIM4)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4,
DATA_TYPE** ARGOUTVIEW_ARRAY4)

• (DATA_TYPE** ARGOUTVIEW_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3, DIM_TYPE* DIM4)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4,
DATA_TYPE** ARGOUTVIEW_FARRAY4)

Note that arrays with hard-coded dimensions are not supported. These cannot follow the double pointer signatures of
these typemaps.

1311

http://www.swig.org


NumPy Reference, Release 1.15.1

Memory Managed Argout View Arrays

A recent addition to numpy.i are typemaps that permit argout arrays with views into memory that is managed. See
the discussion here.

1D:

• (DATA_TYPE** ARGOUTVIEWM_ARRAY1, DIM_TYPE* DIM1)

• (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEWM_ARRAY1)

2D:

• (DATA_TYPE** ARGOUTVIEWM_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEWM_ARRAY2)

• (DATA_TYPE** ARGOUTVIEWM_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEWM_FARRAY2)

3D:

• (DATA_TYPE** ARGOUTVIEWM_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE**
ARGOUTVIEWM_ARRAY3)

• (DATA_TYPE** ARGOUTVIEWM_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2,
DIM_TYPE* DIM3)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE**
ARGOUTVIEWM_FARRAY3)

4D:

• (DATA_TYPE** ARGOUTVIEWM_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3, DIM_TYPE* DIM4)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4,
DATA_TYPE** ARGOUTVIEWM_ARRAY4)

• (DATA_TYPE** ARGOUTVIEWM_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2,
DIM_TYPE* DIM3, DIM_TYPE* DIM4)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4,
DATA_TYPE** ARGOUTVIEWM_FARRAY4)

Output Arrays

The numpy.i interface file does not support typemaps for output arrays, for several reasons. First, C/C++ return
arguments are limited to a single value. This prevents obtaining dimension information in a general way. Second,
arrays with hard-coded lengths are not permitted as return arguments. In other words:

double[3] newVector(double x, double y, double z);

is not legal C/C++ syntax. Therefore, we cannot provide typemaps of the form:

%typemap(out) (TYPE[ANY]);

1312 Chapter 8. NumPy and SWIG

http://blog.enthought.com/python/numpy-arrays-with-pre-allocated-memory


NumPy Reference, Release 1.15.1

If you run into a situation where a function or method is returning a pointer to an array, your best bet is to write your
own version of the function to be wrapped, either with %extend for the case of class methods or %ignore and
%rename for the case of functions.

Other Common Types: bool

Note that C++ type bool is not supported in the list in the Available Typemaps section. NumPy bools are a single
byte, while the C++ bool is four bytes (at least on my system). Therefore:

%numpy_typemaps(bool, NPY_BOOL, int)

will result in typemaps that will produce code that reference improper data lengths. You can implement the following
macro expansion:

%numpy_typemaps(bool, NPY_UINT, int)

to fix the data length problem, and Input Arrays will work fine, but In-Place Arrays might fail type-checking.

Other Common Types: complex

Typemap conversions for complex floating-point types is also not supported automatically. This is because Python and
NumPy are written in C, which does not have native complex types. Both Python and NumPy implement their own
(essentially equivalent) struct definitions for complex variables:

/* Python */
typedef struct {double real; double imag;} Py_complex;

/* NumPy */
typedef struct {float real, imag;} npy_cfloat;
typedef struct {double real, imag;} npy_cdouble;

We could have implemented:

%numpy_typemaps(Py_complex , NPY_CDOUBLE, int)
%numpy_typemaps(npy_cfloat , NPY_CFLOAT , int)
%numpy_typemaps(npy_cdouble, NPY_CDOUBLE, int)

which would have provided automatic type conversions for arrays of type Py_complex, npy_cfloat and
npy_cdouble. However, it seemed unlikely that there would be any independent (non-Python, non-NumPy) ap-
plication code that people would be using SWIG to generate a Python interface to, that also used these definitions
for complex types. More likely, these application codes will define their own complex types, or in the case of
C++, use std::complex. Assuming these data structures are compatible with Python and NumPy complex types,
%numpy_typemap expansions as above (with the user’s complex type substituted for the first argument) should
work.

8.0.4 NumPy Array Scalars and SWIG

SWIG has sophisticated type checking for numerical types. For example, if your C/C++ routine expects an integer
as input, the code generated by SWIG will check for both Python integers and Python long integers, and raise an
overflow error if the provided Python integer is too big to cast down to a C integer. With the introduction of NumPy
scalar arrays into your Python code, you might conceivably extract an integer from a NumPy array and attempt to
pass this to a SWIG-wrapped C/C++ function that expects an int, but the SWIG type checking will not recognize
the NumPy array scalar as an integer. (Often, this does in fact work – it depends on whether NumPy recognizes the

1313

http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org


NumPy Reference, Release 1.15.1

integer type you are using as inheriting from the Python integer type on the platform you are using. Sometimes, this
means that code that works on a 32-bit machine will fail on a 64-bit machine.)

If you get a Python error that looks like the following:

TypeError: in method 'MyClass_MyMethod', argument 2 of type 'int'

and the argument you are passing is an integer extracted from a NumPy array, then you have stumbled upon this
problem. The solution is to modify the SWIG type conversion system to accept NumPy array scalars in addition to the
standard integer types. Fortunately, this capability has been provided for you. Simply copy the file:

pyfragments.swg

to the working build directory for you project, and this problem will be fixed. It is suggested that you do this anyway,
as it only increases the capabilities of your Python interface.

Why is There a Second File?

The SWIG type checking and conversion system is a complicated combination of C macros, SWIG macros, SWIG
typemaps and SWIG fragments. Fragments are a way to conditionally insert code into your wrapper file if it is needed,
and not insert it if not needed. If multiple typemaps require the same fragment, the fragment only gets inserted into
your wrapper code once.

There is a fragment for converting a Python integer to a C long. There is a different fragment that converts a Python
integer to a C int, that calls the routine defined in the long fragment. We can make the changes we want here by
changing the definition for the long fragment. SWIG determines the active definition for a fragment using a “first
come, first served” system. That is, we need to define the fragment for long conversions prior to SWIG doing it
internally. SWIG allows us to do this by putting our fragment definitions in the file pyfragments.swg. If we were
to put the new fragment definitions in numpy.i, they would be ignored.

8.0.5 Helper Functions

The numpy.i file contains several macros and routines that it uses internally to build its typemaps. However, these
functions may be useful elsewhere in your interface file. These macros and routines are implemented as fragments,
which are described briefly in the previous section. If you try to use one or more of the following macros or functions,
but your compiler complains that it does not recognize the symbol, then you need to force these fragments to appear
in your code using:

%fragment("NumPy_Fragments");

in your SWIG interface file.

Macros

is_array(a) Evaluates as true if a is non-NULL and can be cast to a PyArrayObject*.

array_type(a) Evaluates to the integer data type code of a, assuming a can be cast to a
PyArrayObject*.

array_numdims(a) Evaluates to the integer number of dimensions of a, assuming a can be cast to a
PyArrayObject*.

array_dimensions(a) Evaluates to an array of type npy_intp and length array_numdims(a), giv-
ing the lengths of all of the dimensions of a, assuming a can be cast to a PyArrayObject*.

1314 Chapter 8. NumPy and SWIG

http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org


NumPy Reference, Release 1.15.1

array_size(a,i) Evaluates to the i-th dimension size of a, assuming a can be cast to a
PyArrayObject*.

array_strides(a) Evaluates to an array of type npy_intp and length array_numdims(a), giving
the stridess of all of the dimensions of a, assuming a can be cast to a PyArrayObject*. A stride
is the distance in bytes between an element and its immediate neighbor along the same axis.

array_stride(a,i) Evaluates to the i-th stride of a, assuming a can be cast to a PyArrayObject*.

array_data(a) Evaluates to a pointer of type void* that points to the data buffer of a, assuming a can
be cast to a PyArrayObject*.

array_descr(a) Returns a borrowed reference to the dtype property (PyArray_Descr*) of a, assum-
ing a can be cast to a PyArrayObject*.

array_flags(a) Returns an integer representing the flags of a, assuming a can be cast to a
PyArrayObject*.

array_enableflags(a,f) Sets the flag represented by f of a, assuming a can be cast to a
PyArrayObject*.

array_is_contiguous(a) Evaluates as true if a is a contiguous array. Equivalent to
(PyArray_ISCONTIGUOUS(a)).

array_is_native(a) Evaluates as true if the data buffer of a uses native byte order. Equivalent to
(PyArray_ISNOTSWAPPED(a)).

array_is_fortran(a) Evaluates as true if a is FORTRAN ordered.

Routines

pytype_string()

Return type: const char*

Arguments:

• PyObject* py_obj, a general Python object.

Return a string describing the type of py_obj.

typecode_string()

Return type: const char*

Arguments:

• int typecode, a NumPy integer typecode.

Return a string describing the type corresponding to the NumPy typecode.

type_match()

Return type: int

Arguments:

• int actual_type, the NumPy typecode of a NumPy array.

• int desired_type, the desired NumPy typecode.

Make sure that actual_type is compatible with desired_type. For example, this al-
lows character and byte types, or int and long types, to match. This is now equivalent to
PyArray_EquivTypenums().

obj_to_array_no_conversion()

1315



NumPy Reference, Release 1.15.1

Return type: PyArrayObject*

Arguments:

• PyObject* input, a general Python object.

• int typecode, the desired NumPy typecode.

Cast input to a PyArrayObject* if legal, and ensure that it is of type typecode. If
input cannot be cast, or the typecode is wrong, set a Python error and return NULL.

obj_to_array_allow_conversion()

Return type: PyArrayObject*

Arguments:

• PyObject* input, a general Python object.

• int typecode, the desired NumPy typecode of the resulting array.

• int* is_new_object, returns a value of 0 if no conversion performed, else 1.

Convert input to a NumPy array with the given typecode. On success, return a valid
PyArrayObject* with the correct type. On failure, the Python error string will be set and
the routine returns NULL.

make_contiguous()

Return type: PyArrayObject*

Arguments:

• PyArrayObject* ary, a NumPy array.

• int* is_new_object, returns a value of 0 if no conversion performed, else 1.

• int min_dims, minimum allowable dimensions.

• int max_dims, maximum allowable dimensions.

Check to see if ary is contiguous. If so, return the input pointer and flag it as not a new object.
If it is not contiguous, create a new PyArrayObject* using the original data, flag it as a
new object and return the pointer.

make_fortran()

Return type: PyArrayObject*

Arguments

• PyArrayObject* ary, a NumPy array.

• int* is_new_object, returns a value of 0 if no conversion performed, else 1.

Check to see if ary is Fortran contiguous. If so, return the input pointer and flag it as not a
new object. If it is not Fortran contiguous, create a new PyArrayObject* using the original
data, flag it as a new object and return the pointer.

obj_to_array_contiguous_allow_conversion()

Return type: PyArrayObject*

Arguments:

• PyObject* input, a general Python object.

• int typecode, the desired NumPy typecode of the resulting array.

1316 Chapter 8. NumPy and SWIG



NumPy Reference, Release 1.15.1

• int* is_new_object, returns a value of 0 if no conversion performed, else 1.

Convert input to a contiguous PyArrayObject* of the specified type. If the input object
is not a contiguous PyArrayObject*, a new one will be created and the new object flag
will be set.

obj_to_array_fortran_allow_conversion()

Return type: PyArrayObject*

Arguments:

• PyObject* input, a general Python object.

• int typecode, the desired NumPy typecode of the resulting array.

• int* is_new_object, returns a value of 0 if no conversion performed, else 1.

Convert input to a Fortran contiguous PyArrayObject* of the specified type. If the input
object is not a Fortran contiguous PyArrayObject*, a new one will be created and the new
object flag will be set.

require_contiguous()

Return type: int

Arguments:

• PyArrayObject* ary, a NumPy array.

Test whether ary is contiguous. If so, return 1. Otherwise, set a Python error and return 0.

require_native()

Return type: int

Arguments:

• PyArray_Object* ary, a NumPy array.

Require that ary is not byte-swapped. If the array is not byte-swapped, return 1. Otherwise,
set a Python error and return 0.

require_dimensions()

Return type: int

Arguments:

• PyArrayObject* ary, a NumPy array.

• int exact_dimensions, the desired number of dimensions.

Require ary to have a specified number of dimensions. If the array has the specified number
of dimensions, return 1. Otherwise, set a Python error and return 0.

require_dimensions_n()

Return type: int

Arguments:

• PyArrayObject* ary, a NumPy array.

• int* exact_dimensions, an array of integers representing acceptable numbers of
dimensions.

• int n, the length of exact_dimensions.

1317



NumPy Reference, Release 1.15.1

Require ary to have one of a list of specified number of dimensions. If the array has one of
the specified number of dimensions, return 1. Otherwise, set the Python error string and return
0.

require_size()

Return type: int

Arguments:

• PyArrayObject* ary, a NumPy array.

• npy_int* size, an array representing the desired lengths of each dimension.

• int n, the length of size.

Require ary to have a specified shape. If the array has the specified shape, return 1. Otherwise,
set the Python error string and return 0.

require_fortran()

Return type: int

Arguments:

• PyArrayObject* ary, a NumPy array.

Require the given PyArrayObject to to be Fortran ordered. If the PyArrayObject is
already Fortran ordered, do nothing. Else, set the Fortran ordering flag and recompute the
strides.

8.0.6 Beyond the Provided Typemaps

There are many C or C++ array/NumPy array situations not covered by a simple %include "numpy.i" and
subsequent %apply directives.

A Common Example

Consider a reasonable prototype for a dot product function:

double dot(int len, double* vec1, double* vec2);

The Python interface that we want is:

def dot(vec1, vec2):
"""
dot(PyObject,PyObject) -> double
"""

The problem here is that there is one dimension argument and two array arguments, and our typemaps are set up for
dimensions that apply to a single array (in fact, SWIG does not provide a mechanism for associating len with vec2
that takes two Python input arguments). The recommended solution is the following:

%apply (int DIM1, double* IN_ARRAY1) {(int len1, double* vec1),
(int len2, double* vec2)}

%rename (dot) my_dot;
%exception my_dot {

$action
if (PyErr_Occurred()) SWIG_fail;

(continues on next page)

1318 Chapter 8. NumPy and SWIG

http://www.swig.org


NumPy Reference, Release 1.15.1

(continued from previous page)

}
%inline %{
double my_dot(int len1, double* vec1, int len2, double* vec2) {

if (len1 != len2) {
PyErr_Format(PyExc_ValueError,

"Arrays of lengths (%d,%d) given",
len1, len2);

return 0.0;
}
return dot(len1, vec1, vec2);

}
%}

If the header file that contains the prototype for double dot() also contains other prototypes that you want to
wrap, so that you need to %include this header file, then you will also need a %ignore dot; directive, placed
after the %rename and before the %include directives. Or, if the function in question is a class method, you will
want to use %extend rather than %inline in addition to %ignore.

A note on error handling: Note that my_dot returns a double but that it can also raise a Python error. The resulting
wrapper function will return a Python float representation of 0.0 when the vector lengths do not match. Since this is
not NULL, the Python interpreter will not know to check for an error. For this reason, we add the %exception
directive above for my_dot to get the behavior we want (note that $action is a macro that gets expanded to a valid
call to my_dot). In general, you will probably want to write a SWIG macro to perform this task.

Other Situations

There are other wrapping situations in which numpy.i may be helpful when you encounter them.

• In some situations, it is possible that you could use the %numpy_typemaps macro to implement typemaps for
your own types. See the Other Common Types: bool or Other Common Types: complex sections for examples.
Another situation is if your dimensions are of a type other than int (say long for example):

%numpy_typemaps(double, NPY_DOUBLE, long)

• You can use the code in numpy.i to write your own typemaps. For example, if you had a five-dimensional
array as a function argument, you could cut-and-paste the appropriate four-dimensional typemaps into your
interface file. The modifications for the fourth dimension would be trivial.

• Sometimes, the best approach is to use the %extend directive to define new methods for your classes (or
overload existing ones) that take a PyObject* (that either is or can be converted to a PyArrayObject*)
instead of a pointer to a buffer. In this case, the helper routines in numpy.i can be very useful.

• Writing typemaps can be a bit nonintuitive. If you have specific questions about writing SWIG typemaps for
NumPy, the developers of numpy.i do monitor the Numpy-discussion and Swig-user mail lists.

A Final Note

When you use the %apply directive, as is usually necessary to use numpy.i, it will remain in effect until you tell
SWIG that it shouldn’t be. If the arguments to the functions or methods that you are wrapping have common names,
such as length or vector, these typemaps may get applied in situations you do not expect or want. Therefore, it is
always a good idea to add a %clear directive after you are done with a specific typemap:

%apply (double* IN_ARRAY1, int DIM1) {(double* vector, int length)}
%include "my_header.h"
%clear (double* vector, int length);

1319

http://www.swig.org
http://www.swig.org
mailto:Numpy-discussion@python.org
mailto:Swig-user@lists.sourceforge.net
http://www.swig.org


NumPy Reference, Release 1.15.1

In general, you should target these typemap signatures specifically where you want them, and then clear them after
you are done.

8.0.7 Summary

Out of the box, numpy.i provides typemaps that support conversion between NumPy arrays and C arrays:

• That can be one of 12 different scalar types: signed char, unsigned char, short, unsigned
short, int, unsigned int, long, unsigned long, long long, unsigned long long,
float and double.

• That support 74 different argument signatures for each data type, including:

– One-dimensional, two-dimensional, three-dimensional and four-dimensional arrays.

– Input-only, in-place, argout, argoutview, and memory managed argoutview behavior.

– Hard-coded dimensions, data-buffer-then-dimensions specification, and dimensions-then-data-buffer spec-
ification.

– Both C-ordering (“last dimension fastest”) or Fortran-ordering (“first dimension fastest”) support for 2D,
3D and 4D arrays.

The numpy.i interface file also provides additional tools for wrapper developers, including:

• A SWIG macro (%numpy_typemaps) with three arguments for implementing the 74 argument signatures for
the user’s choice of (1) C data type, (2) NumPy data type (assuming they match), and (3) dimension type.

• Fourteen C macros and fifteen C functions that can be used to write specialized typemaps, extensions, or inlined
functions that handle cases not covered by the provided typemaps. Note that the macros and functions are coded
specifically to work with the NumPy C/API regardless of NumPy version number, both before and after the
deprecation of some aspects of the API after version 1.6.

8.1 Testing the numpy.i Typemaps

8.1.1 Introduction

Writing tests for the numpy.i SWIG interface file is a combinatorial headache. At present, 12 different data types
are supported, each with 74 different argument signatures, for a total of 888 typemaps supported “out of the box”.
Each of these typemaps, in turn, might require several unit tests in order to verify expected behavior for both proper
and improper inputs. Currently, this results in more than 1,000 individual unit tests executed when make test is
run in the numpy/tools/swig subdirectory.

To facilitate this many similar unit tests, some high-level programming techniques are employed, including C and
SWIG macros, as well as Python inheritance. The purpose of this document is to describe the testing infrastructure
employed to verify that the numpy.i typemaps are working as expected.

8.1.2 Testing Organization

There are three independent testing frameworks supported, for one-, two-, and three-dimensional arrays respectively.
For one-dimensional arrays, there are two C++ files, a header and a source, named:

Vector.h
Vector.cxx

1320 Chapter 8. NumPy and SWIG

http://www.swig.org
http://www.swig.org
http://www.swig.org


NumPy Reference, Release 1.15.1

that contain prototypes and code for a variety of functions that have one-dimensional arrays as function arguments.
The file:

Vector.i

is a SWIG interface file that defines a python module Vector that wraps the functions in Vector.h while utilizing
the typemaps in numpy.i to correctly handle the C arrays.

The Makefile calls swig to generate Vector.py and Vector_wrap.cxx, and also executes the setup.py
script that compiles Vector_wrap.cxx and links together the extension module _Vector.so or _Vector.
dylib, depending on the platform. This extension module and the proxy file Vector.py are both placed in a
subdirectory under the build directory.

The actual testing takes place with a Python script named:

testVector.py

that uses the standard Python library module unittest, which performs several tests of each function defined in
Vector.h for each data type supported.

Two-dimensional arrays are tested in exactly the same manner. The above description applies, but with Matrix
substituted for Vector. For three-dimensional tests, substitute Tensor for Vector. For four-dimensional tests,
substitute SuperTensor for Vector. For flat in-place array tests, substitute Flat for Vector. For the descrip-
tions that follow, we will reference the Vector tests, but the same information applies to Matrix, Tensor and
SuperTensor tests.

The command make test will ensure that all of the test software is built and then run all three test scripts.

8.1.3 Testing Header Files

Vector.h is a C++ header file that defines a C macro called TEST_FUNC_PROTOS that takes two arguments:
TYPE, which is a data type name such as unsigned int; and SNAME, which is a short name for the same data type
with no spaces, e.g. uint. This macro defines several function prototypes that have the prefix SNAME and have at
least one argument that is an array of type TYPE. Those functions that have return arguments return a TYPE value.

TEST_FUNC_PROTOS is then implemented for all of the data types supported by numpy.i:

• signed char

• unsigned char

• short

• unsigned short

• int

• unsigned int

• long

• unsigned long

• long long

• unsigned long long

• float

• double

8.1. Testing the numpy.i Typemaps 1321

http://www.swig.org


NumPy Reference, Release 1.15.1

8.1.4 Testing Source Files

Vector.cxx is a C++ source file that implements compilable code for each of the function prototypes specified
in Vector.h. It defines a C macro TEST_FUNCS that has the same arguments and works in the same way as
TEST_FUNC_PROTOS does in Vector.h. TEST_FUNCS is implemented for each of the 12 data types as above.

8.1.5 Testing SWIG Interface Files

Vector.i is a SWIG interface file that defines python module Vector. It follows the conventions for using
numpy.i as described in this chapter. It defines a SWIG macro %apply_numpy_typemaps that has a single
argument TYPE. It uses the SWIG directive %apply to apply the provided typemaps to the argument signatures
found in Vector.h. This macro is then implemented for all of the data types supported by numpy.i. It then does
a %include "Vector.h" to wrap all of the function prototypes in Vector.h using the typemaps in numpy.i.

8.1.6 Testing Python Scripts

After make is used to build the testing extension modules, testVector.py can be run to execute the tests. As
with other scripts that use unittest to facilitate unit testing, testVector.py defines a class that inherits from
unittest.TestCase:

class VectorTestCase(unittest.TestCase):

However, this class is not run directly. Rather, it serves as a base class to several other python classes, each one specific
to a particular data type. The VectorTestCase class stores two strings for typing information:

self.typeStr A string that matches one of the SNAME prefixes used in Vector.h and Vector.cxx.
For example, "double".

self.typeCode A short (typically single-character) string that represents a data type in numpy and cor-
responds to self.typeStr. For example, if self.typeStr is "double", then self.
typeCode should be "d".

Each test defined by the VectorTestCase class extracts the python function it is trying to test by accessing the
Vector module’s dictionary:

length = Vector.__dict__[self.typeStr + "Length"]

In the case of double precision tests, this will return the python function Vector.doubleLength.

We then define a new test case class for each supported data type with a short definition such as:

class doubleTestCase(VectorTestCase):
def __init__(self, methodName="runTest"):

VectorTestCase.__init__(self, methodName)
self.typeStr = "double"
self.typeCode = "d"

Each of these 12 classes is collected into a unittest.TestSuite, which is then executed. Errors and failures are
summed together and returned as the exit argument. Any non-zero result indicates that at least one test did not pass.

1322 Chapter 8. NumPy and SWIG

http://www.swig.org
http://www.swig.org
http://www.swig.org


CHAPTER

NINE

ACKNOWLEDGEMENTS

Large parts of this manual originate from Travis E. Oliphant’s book Guide to NumPy (which generously entered Public
Domain in August 2008). The reference documentation for many of the functions are written by numerous contributors
and developers of NumPy.

1323

https://archive.org/details/NumPyBook


NumPy Reference, Release 1.15.1

1324 Chapter 9. Acknowledgements



BIBLIOGRAPHY

[1] : G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Baltimore, MD, Johns Hopkins University Press,
1996, pg. 8.

[1] : G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Baltimore, MD, Johns Hopkins University Press,
1996, pg. 8.

[1] Wikipedia, “Curve fitting”, http://en.wikipedia.org/wiki/Curve_fitting

[2] Wikipedia, “Polynomial interpolation”, http://en.wikipedia.org/wiki/Polynomial_interpolation

[1] http://en.wikipedia.org/wiki/IEEE_754

[1] Wikipedia, “Two’s complement”, http://en.wikipedia.org/wiki/Two’s_complement

[1] Wikipedia, “Two’s complement”, http://en.wikipedia.org/wiki/Two’s_complement

[1] Press, Teukolsky, Vetterling and Flannery, “Numerical Recipes in C++,” 2nd ed, Cambridge University Press,
2002, p. 31.

[CT] Cooley, James W., and John W. Tukey, 1965, “An algorithm for the machine calculation of complex Fourier
series,” Math. Comput. 19: 297-301.

[Rfb1dc64dd6a5-CT] Cooley, James W., and John W. Tukey, 1965, “An algorithm for the machine calculation of
complex Fourier series,” Math. Comput. 19: 297-301.

[Rfb1dc64dd6a5-NR] Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P., 2007, Numerical Recipes: The
Art of Scientific Computing, ch. 12-13. Cambridge Univ. Press, Cambridge, UK.

[WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Appli-
cations (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-
Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA.
[ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt

[WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Appli-
cations (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-
Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA.
[ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt

[G] L. J. Gitman, “Principles of Managerial Finance, Brief,” 3rd ed., Addison-Wesley, 2003, pg. 346.

[WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Ap-
plications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA,
USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php ?wg_abbrev=office-
formulaOpenDocument-formula-20090508.odt

1325

http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Polynomial_interpolation
http://en.wikipedia.org/wiki/IEEE_754
http://en.wikipedia.org/wiki/Two's_complement
http://en.wikipedia.org/wiki/Two's_complement
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
http://www.oasis-open.org/committees/documents.php


NumPy Reference, Release 1.15.1

[G] L. J. Gitman, “Principles of Managerial Finance, Brief,” 3rd ed., Addison-Wesley, 2003, pg. 348.

[1] NumPy Reference, section Generalized Universal Function API.

[1] Format Specification Mini-Language, Python Documentation.

[1] NumPy User Guide, section I/O with NumPy.

[1] Cormen, “Introduction to Algorithms”, Chapter 15.2, p. 370-378

[2] http://en.wikipedia.org/wiki/Matrix_chain_multiplication

[1] : G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Baltimore, MD, Johns Hopkins University Press,
1996, pg. 8.

[1] G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 222.

[1] G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, MD, Johns Hopkins University Press, 1985,
pg. 15

[1] G. Strang, Linear Algebra and Its Applications, Orlando, FL, Academic Press, Inc., 1980, pg. 285.

[1] MATLAB reference documention, “Rank” http://www.mathworks.com/help/techdoc/ref/rank.html

[2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical Recipes (3rd edition)”, Cambridge
University Press, 2007, page 795.

[1] G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 22.

[1] G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pp. 139-142.

[1] ISO/IEC standard 9899:1999, “Programming language C.”

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83.
http://www.math.sfu.ca/~cbm/aands/

[2] Wikipedia, “Hyperbolic function”, http://en.wikipedia.org/wiki/Hyperbolic_function

[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. http://www.
math.sfu.ca/~cbm/aands/

[2] Wikipedia, “Inverse hyperbolic function”, http://en.wikipedia.org/wiki/Arcsinh

[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. http://www.
math.sfu.ca/~cbm/aands/

[2] Wikipedia, “Inverse hyperbolic function”, http://en.wikipedia.org/wiki/Arccosh

[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. http://www.
math.sfu.ca/~cbm/aands/

[2] Wikipedia, “Inverse hyperbolic function”, http://en.wikipedia.org/wiki/Arctanh

[1] “Lecture Notes on the Status of IEEE 754”, William Kahan, http://www.cs.berkeley.edu/~wkahan/ieee754status/
IEEE754.PDF

[2] “How Futile are Mindless Assessments of Roundoff in Floating-Point Computation?”, William Kahan, http://
www.cs.berkeley.edu/~wkahan/Mindless.pdf

[1] Quarteroni A., Sacco R., Saleri F. (2007) Numerical Mathematics (Texts in Applied Mathematics). New York:
Springer.

[2] Durran D. R. (1999) Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. New York:
Springer.

[3] Fornberg B. (1988) Generation of Finite Difference Formulas on Arbitrarily Spaced Grids, Mathematics of Com-
putation 51, no. 184 : 699-706. PDF.

1326 Bibliography

http://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html
http://docs.python.org/library/string.html#format-specification-mini-language
http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html
http://en.wikipedia.org/wiki/Matrix_chain_multiplication
http://www.mathworks.com/help/techdoc/ref/rank.html
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Hyperbolic_function
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Arcsinh
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Arccosh
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Arctanh
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://www.cs.berkeley.edu/~wkahan/Mindless.pdf
http://www.cs.berkeley.edu/~wkahan/Mindless.pdf
http://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf


NumPy Reference, Release 1.15.1

[1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule

[2] Illustration image: http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png

[1] Wikipedia, “Exponential function”, http://en.wikipedia.org/wiki/Exponential_function

[2] M. Abramovitz and I. A. Stegun, “Handbook of Mathematical Functions with Formulas, Graphs, and Mathemati-
cal Tables,” Dover, 1964, p. 69, http://www.math.sfu.ca/~cbm/aands/page_69.htm

[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67. http://www.
math.sfu.ca/~cbm/aands/

[2] Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67. http://www.
math.sfu.ca/~cbm/aands/

[2] Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67. http://www.
math.sfu.ca/~cbm/aands/

[2] Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

[1] C. W. Clenshaw, “Chebyshev series for mathematical functions”, in National Physical Laboratory Mathematical
Tables, vol. 5, London: Her Majesty’s Stationery Office, 1962.

[2] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 10th printing, New York: Dover, 1964,
pp. 379. http://www.math.sfu.ca/~cbm/aands/page_379.htm

[3] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html

[1] Weisstein, Eric W. “Sinc Function.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/
SincFunction.html

[2] Wikipedia, “Sinc function”, http://en.wikipedia.org/wiki/Sinc_function

[1] Wikipedia, “Convolution”, http://en.wikipedia.org/wiki/Convolution.

[1] Wikipedia, “Curve fitting”, http://en.wikipedia.org/wiki/Curve_fitting

[1] Wikipedia, “Curve fitting”, http://en.wikipedia.org/wiki/Curve_fitting

[1] Wikipedia, “Curve fitting”, http://en.wikipedia.org/wiki/Curve_fitting

[1] Wikipedia, “Curve fitting”, http://en.wikipedia.org/wiki/Curve_fitting

[1] Wikipedia, “Curve fitting”, http://en.wikipedia.org/wiki/Curve_fitting

[1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng. trans. Ed.), Handbook of Mathematics, New York,
Van Nostrand Reinhold Co., 1985, pg. 720.

[1] M. Sullivan and M. Sullivan, III, “Algebra and Trignometry, Enhanced With Graphing Utilities,” Prentice-Hall,
pg. 318, 1996.

[2] G. Strang, “Linear Algebra and Its Applications, 2nd Edition,” Academic Press, pg. 182, 1980.

[1] R. A. Horn & C. R. Johnson, Matrix Analysis. Cambridge, UK: Cambridge University Press, 1999, pp. 146-7.

[1] Wikipedia, “Curve fitting”, http://en.wikipedia.org/wiki/Curve_fitting

[2] Wikipedia, “Polynomial interpolation”, http://en.wikipedia.org/wiki/Polynomial_interpolation

[1] Dalgaard, Peter, “Introductory Statistics with R”, Springer-Verlag, 2002.

[2] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.

[3] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.

Bibliography 1327

http://en.wikipedia.org/wiki/Trapezoidal_rule
http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png
http://en.wikipedia.org/wiki/Exponential_function
http://www.math.sfu.ca/~cbm/aands/page_69.htm
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Logarithm
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Logarithm
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Logarithm
http://www.math.sfu.ca/~cbm/aands/page_379.htm
http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html
http://mathworld.wolfram.com/SincFunction.html
http://mathworld.wolfram.com/SincFunction.html
http://en.wikipedia.org/wiki/Sinc_function
http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Polynomial_interpolation


NumPy Reference, Release 1.15.1

[4] Weisstein, Eric W. “Binomial Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/BinomialDistribution.html

[5] Wikipedia, “Binomial distribution”, http://en.wikipedia.org/wiki/Binomial_distribution

[1] NIST “Engineering Statistics Handbook” http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

[1] David McKay, “Information Theory, Inference and Learning Algorithms,” chapter 23, http://www.inference.phy.
cam.ac.uk/mackay/

[2] Wikipedia, “Dirichlet distribution”, http://en.wikipedia.org/wiki/Dirichlet_distribution

[1] Peyton Z. Peebles Jr., “Probability, Random Variables and Random Signal Principles”, 4th ed, 2001, p. 57.

[2] Wikipedia, “Poisson process”, http://en.wikipedia.org/wiki/Poisson_process

[3] Wikipedia, “Exponential distribution”, http://en.wikipedia.org/wiki/Exponential_distribution

[1] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.

[2] Wikipedia, “F-distribution”, http://en.wikipedia.org/wiki/F-distribution

[1] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/GammaDistribution.html

[2] Wikipedia, “Gamma distribution”, http://en.wikipedia.org/wiki/Gamma_distribution

[1] Gumbel, E. J., “Statistics of Extremes,” New York: Columbia University Press, 1958.

[2] Reiss, R.-D. and Thomas, M., “Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and
Other Fields,” Basel: Birkhauser Verlag, 2001.

[1] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.

[2] Weisstein, Eric W. “Hypergeometric Distribution.” From MathWorld–A Wolfram Web Resource. http://
mathworld.wolfram.com/HypergeometricDistribution.html

[3] Wikipedia, “Hypergeometric distribution”, http://en.wikipedia.org/wiki/Hypergeometric_distribution

[1] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing,” New York: Dover, 1972.

[2] Kotz, Samuel, et. al. “The Laplace Distribution and Generalizations, ” Birkhauser, 2001.

[3] Weisstein, Eric W. “Laplace Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/LaplaceDistribution.html

[4] Wikipedia, “Laplace distribution”, http://en.wikipedia.org/wiki/Laplace_distribution

[1] Reiss, R.-D. and Thomas M. (2001), “Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology
and Other Fields,” Birkhauser Verlag, Basel, pp 132-133.

[2] Weisstein, Eric W. “Logistic Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/LogisticDistribution.html

[3] Wikipedia, “Logistic-distribution”, http://en.wikipedia.org/wiki/Logistic_distribution

[1] Limpert, E., Stahel, W. A., and Abbt, M., “Log-normal Distributions across the Sciences: Keys and Clues,”
BioScience, Vol. 51, No. 5, May, 2001. http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf

[2] Reiss, R.D. and Thomas, M., “Statistical Analysis of Extreme Values,” Basel: Birkhauser Verlag, 2001, pp. 31-32.

[1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution
of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999
, pp. 187-195(9).

1328 Bibliography

http://mathworld.wolfram.com/BinomialDistribution.html
http://mathworld.wolfram.com/BinomialDistribution.html
http://en.wikipedia.org/wiki/Binomial_distribution
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
http://www.inference.phy.cam.ac.uk/mackay/
http://www.inference.phy.cam.ac.uk/mackay/
http://en.wikipedia.org/wiki/Dirichlet_distribution
http://en.wikipedia.org/wiki/Poisson_process
http://en.wikipedia.org/wiki/Exponential_distribution
http://en.wikipedia.org/wiki/F-distribution
http://mathworld.wolfram.com/GammaDistribution.html
http://mathworld.wolfram.com/GammaDistribution.html
http://en.wikipedia.org/wiki/Gamma_distribution
http://mathworld.wolfram.com/HypergeometricDistribution.html
http://mathworld.wolfram.com/HypergeometricDistribution.html
http://en.wikipedia.org/wiki/Hypergeometric_distribution
http://mathworld.wolfram.com/LaplaceDistribution.html
http://mathworld.wolfram.com/LaplaceDistribution.html
http://en.wikipedia.org/wiki/Laplace_distribution
http://mathworld.wolfram.com/LogisticDistribution.html
http://mathworld.wolfram.com/LogisticDistribution.html
http://en.wikipedia.org/wiki/Logistic_distribution
http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf


NumPy Reference, Release 1.15.1

[2] Fisher, R.A„ A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number
of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58.

[3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994.

[4] Wikipedia, “Logarithmic distribution”, http://en.wikipedia.org/wiki/Logarithmic_distribution

[1] Papoulis, A., “Probability, Random Variables, and Stochastic Processes,” 3rd ed., New York: McGraw-Hill, 1991.

[2] Duda, R. O., Hart, P. E., and Stork, D. G., “Pattern Classification,” 2nd ed., New York: Wiley, 2001.

[1] Weisstein, Eric W. “Negative Binomial Distribution.” From MathWorld–A Wolfram Web Resource. http://
mathworld.wolfram.com/NegativeBinomialDistribution.html

[2] Wikipedia, “Negative binomial distribution”, http://en.wikipedia.org/wiki/Negative_binomial_distribution

[1] Delhi, M.S. Holla, “On a noncentral chi-square distribution in the analysis of weapon systems effectiveness”,
Metrika, Volume 15, Number 1 / December, 1970.

[2] Wikipedia, “Noncentral chi-square distribution” http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution

[1] Weisstein, Eric W. “Noncentral F-Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/NoncentralF-Distribution.html

[2] Wikipedia, “Noncentral F-distribution”, http://en.wikipedia.org/wiki/Noncentral_F-distribution

[1] Wikipedia, “Normal distribution”, http://en.wikipedia.org/wiki/Normal_distribution

[2] P. R. Peebles Jr., “Central Limit Theorem” in “Probability, Random Variables and Random Signal Principles”, 4th
ed., 2001, pp. 51, 51, 125.

[1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects.

[2] Pareto, V. (1896). Course of Political Economy. Lausanne.

[3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30.

[4] Wikipedia, “Pareto distribution”, http://en.wikipedia.org/wiki/Pareto_distribution

[1] Weisstein, Eric W. “Poisson Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/PoissonDistribution.html

[2] Wikipedia, “Poisson distribution”, http://en.wikipedia.org/wiki/Poisson_distribution

[1] Christian Kleiber, Samuel Kotz, “Statistical size distributions in economics and actuarial sciences”, Wiley, 2003.

[2] Heckert, N. A. and Filliben, James J. “NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Sub-
commands and Library Functions”, National Institute of Standards and Technology Handbook Series, June 2003.
http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

[1] Brighton Webs Ltd., “Rayleigh Distribution,” http://www.brighton-webs.co.uk/distributions/rayleigh.asp

[2] Wikipedia, “Rayleigh distribution” http://en.wikipedia.org/wiki/Rayleigh_distribution

[1] NIST/SEMATECH e-Handbook of Statistical Methods, “Cauchy Distribution”, http://www.itl.nist.gov/div898/
handbook/eda/section3/eda3663.htm

[2] Weisstein, Eric W. “Cauchy Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/CauchyDistribution.html

[3] Wikipedia, “Cauchy distribution” http://en.wikipedia.org/wiki/Cauchy_distribution

[1] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/GammaDistribution.html

[2] Wikipedia, “Gamma distribution”, http://en.wikipedia.org/wiki/Gamma_distribution

[1] Dalgaard, Peter, “Introductory Statistics With R”, Springer, 2002.

Bibliography 1329

http://en.wikipedia.org/wiki/Logarithmic_distribution
http://mathworld.wolfram.com/NegativeBinomialDistribution.html
http://mathworld.wolfram.com/NegativeBinomialDistribution.html
http://en.wikipedia.org/wiki/Negative_binomial_distribution
http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution
http://mathworld.wolfram.com/NoncentralF-Distribution.html
http://mathworld.wolfram.com/NoncentralF-Distribution.html
http://en.wikipedia.org/wiki/Noncentral_F-distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Pareto_distribution
http://mathworld.wolfram.com/PoissonDistribution.html
http://mathworld.wolfram.com/PoissonDistribution.html
http://en.wikipedia.org/wiki/Poisson_distribution
http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf
http://www.brighton-webs.co.uk/distributions/rayleigh.asp
http://en.wikipedia.org/wiki/Rayleigh_distribution
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
http://mathworld.wolfram.com/CauchyDistribution.html
http://mathworld.wolfram.com/CauchyDistribution.html
http://en.wikipedia.org/wiki/Cauchy_distribution
http://mathworld.wolfram.com/GammaDistribution.html
http://mathworld.wolfram.com/GammaDistribution.html
http://en.wikipedia.org/wiki/Gamma_distribution


NumPy Reference, Release 1.15.1

[2] Wikipedia, “Student’s t-distribution” http://en.wikipedia.org/wiki/Student’s_t-distribution

[1] Wikipedia, “Triangular distribution” http://en.wikipedia.org/wiki/Triangular_distribution

[1] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing,” New York: Dover, 1972.

[2] von Mises, R., “Mathematical Theory of Probability and Statistics”, New York: Academic Press, 1964.

[1] Brighton Webs Ltd., Wald Distribution, http://www.brighton-webs.co.uk/distributions/wald.asp

[2] Chhikara, Raj S., and Folks, J. Leroy, “The Inverse Gaussian Distribution: Theory : Methodology, and Applica-
tions”, CRC Press, 1988.

[3] Wikipedia, “Wald distribution” http://en.wikipedia.org/wiki/Wald_distribution

[1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 “A Statistical Theory Of The Strength Of Ma-
terials”, Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag,
Stockholm.

[2] Waloddi Weibull, “A Statistical Distribution Function of Wide Applicability”, Journal Of Applied Mechanics
ASME Paper 1951.

[3] Wikipedia, “Weibull distribution”, http://en.wikipedia.org/wiki/Weibull_distribution

[1] Zipf, G. K., “Selected Studies of the Principle of Relative Frequency in Language,” Cambridge, MA: Harvard
Univ. Press, 1932.

[1] Dalgaard, Peter, “Introductory Statistics with R”, Springer-Verlag, 2002.

[2] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.

[3] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.

[4] Weisstein, Eric W. “Binomial Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/BinomialDistribution.html

[5] Wikipedia, “Binomial distribution”, http://en.wikipedia.org/wiki/Binomial_distribution

[1] NIST “Engineering Statistics Handbook” http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

[1] David McKay, “Information Theory, Inference and Learning Algorithms,” chapter 23, http://www.inference.phy.
cam.ac.uk/mackay/

[2] Wikipedia, “Dirichlet distribution”, http://en.wikipedia.org/wiki/Dirichlet_distribution

[1] Peyton Z. Peebles Jr., “Probability, Random Variables and Random Signal Principles”, 4th ed, 2001, p. 57.

[2] Wikipedia, “Poisson process”, http://en.wikipedia.org/wiki/Poisson_process

[3] Wikipedia, “Exponential distribution”, http://en.wikipedia.org/wiki/Exponential_distribution

[1] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.

[2] Wikipedia, “F-distribution”, http://en.wikipedia.org/wiki/F-distribution

[1] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/GammaDistribution.html

[2] Wikipedia, “Gamma distribution”, http://en.wikipedia.org/wiki/Gamma_distribution

[1] Gumbel, E. J., “Statistics of Extremes,” New York: Columbia University Press, 1958.

[2] Reiss, R.-D. and Thomas, M., “Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and
Other Fields,” Basel: Birkhauser Verlag, 2001.

[1] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.

1330 Bibliography

http://en.wikipedia.org/wiki/Student's_t-distribution
http://en.wikipedia.org/wiki/Triangular_distribution
http://www.brighton-webs.co.uk/distributions/wald.asp
http://en.wikipedia.org/wiki/Wald_distribution
http://en.wikipedia.org/wiki/Weibull_distribution
http://mathworld.wolfram.com/BinomialDistribution.html
http://mathworld.wolfram.com/BinomialDistribution.html
http://en.wikipedia.org/wiki/Binomial_distribution
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
http://www.inference.phy.cam.ac.uk/mackay/
http://www.inference.phy.cam.ac.uk/mackay/
http://en.wikipedia.org/wiki/Dirichlet_distribution
http://en.wikipedia.org/wiki/Poisson_process
http://en.wikipedia.org/wiki/Exponential_distribution
http://en.wikipedia.org/wiki/F-distribution
http://mathworld.wolfram.com/GammaDistribution.html
http://mathworld.wolfram.com/GammaDistribution.html
http://en.wikipedia.org/wiki/Gamma_distribution


NumPy Reference, Release 1.15.1

[2] Weisstein, Eric W. “Hypergeometric Distribution.” From MathWorld–A Wolfram Web Resource. http://
mathworld.wolfram.com/HypergeometricDistribution.html

[3] Wikipedia, “Hypergeometric distribution”, http://en.wikipedia.org/wiki/Hypergeometric_distribution

[1] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing,” New York: Dover, 1972.

[2] Kotz, Samuel, et. al. “The Laplace Distribution and Generalizations, ” Birkhauser, 2001.

[3] Weisstein, Eric W. “Laplace Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/LaplaceDistribution.html

[4] Wikipedia, “Laplace distribution”, http://en.wikipedia.org/wiki/Laplace_distribution

[1] Reiss, R.-D. and Thomas M. (2001), “Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology
and Other Fields,” Birkhauser Verlag, Basel, pp 132-133.

[2] Weisstein, Eric W. “Logistic Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/LogisticDistribution.html

[3] Wikipedia, “Logistic-distribution”, http://en.wikipedia.org/wiki/Logistic_distribution

[1] Limpert, E., Stahel, W. A., and Abbt, M., “Log-normal Distributions across the Sciences: Keys and Clues,”
BioScience, Vol. 51, No. 5, May, 2001. http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf

[2] Reiss, R.D. and Thomas, M., “Statistical Analysis of Extreme Values,” Basel: Birkhauser Verlag, 2001, pp. 31-32.

[1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution
of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999
, pp. 187-195(9).

[2] Fisher, R.A„ A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number
of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58.

[3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994.

[4] Wikipedia, “Logarithmic distribution”, http://en.wikipedia.org/wiki/Logarithmic_distribution

[1] Papoulis, A., “Probability, Random Variables, and Stochastic Processes,” 3rd ed., New York: McGraw-Hill, 1991.

[2] Duda, R. O., Hart, P. E., and Stork, D. G., “Pattern Classification,” 2nd ed., New York: Wiley, 2001.

[1] Weisstein, Eric W. “Negative Binomial Distribution.” From MathWorld–A Wolfram Web Resource. http://
mathworld.wolfram.com/NegativeBinomialDistribution.html

[2] Wikipedia, “Negative binomial distribution”, http://en.wikipedia.org/wiki/Negative_binomial_distribution

[1] Delhi, M.S. Holla, “On a noncentral chi-square distribution in the analysis of weapon systems effectiveness”,
Metrika, Volume 15, Number 1 / December, 1970.

[2] Wikipedia, “Noncentral chi-square distribution” http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution

[1] Weisstein, Eric W. “Noncentral F-Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/NoncentralF-Distribution.html

[2] Wikipedia, “Noncentral F-distribution”, http://en.wikipedia.org/wiki/Noncentral_F-distribution

[1] Wikipedia, “Normal distribution”, http://en.wikipedia.org/wiki/Normal_distribution

[2] P. R. Peebles Jr., “Central Limit Theorem” in “Probability, Random Variables and Random Signal Principles”, 4th
ed., 2001, pp. 51, 51, 125.

[1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects.

[2] Pareto, V. (1896). Course of Political Economy. Lausanne.

Bibliography 1331

http://mathworld.wolfram.com/HypergeometricDistribution.html
http://mathworld.wolfram.com/HypergeometricDistribution.html
http://en.wikipedia.org/wiki/Hypergeometric_distribution
http://mathworld.wolfram.com/LaplaceDistribution.html
http://mathworld.wolfram.com/LaplaceDistribution.html
http://en.wikipedia.org/wiki/Laplace_distribution
http://mathworld.wolfram.com/LogisticDistribution.html
http://mathworld.wolfram.com/LogisticDistribution.html
http://en.wikipedia.org/wiki/Logistic_distribution
http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
http://en.wikipedia.org/wiki/Logarithmic_distribution
http://mathworld.wolfram.com/NegativeBinomialDistribution.html
http://mathworld.wolfram.com/NegativeBinomialDistribution.html
http://en.wikipedia.org/wiki/Negative_binomial_distribution
http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution
http://mathworld.wolfram.com/NoncentralF-Distribution.html
http://mathworld.wolfram.com/NoncentralF-Distribution.html
http://en.wikipedia.org/wiki/Noncentral_F-distribution
http://en.wikipedia.org/wiki/Normal_distribution


NumPy Reference, Release 1.15.1

[3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30.

[4] Wikipedia, “Pareto distribution”, http://en.wikipedia.org/wiki/Pareto_distribution

[1] Weisstein, Eric W. “Poisson Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/PoissonDistribution.html

[2] Wikipedia, “Poisson distribution”, http://en.wikipedia.org/wiki/Poisson_distribution

[1] Christian Kleiber, Samuel Kotz, “Statistical size distributions in economics and actuarial sciences”, Wiley, 2003.

[2] Heckert, N. A. and Filliben, James J. “NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Sub-
commands and Library Functions”, National Institute of Standards and Technology Handbook Series, June 2003.
http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

[1] Brighton Webs Ltd., “Rayleigh Distribution,” http://www.brighton-webs.co.uk/distributions/rayleigh.asp

[2] Wikipedia, “Rayleigh distribution” http://en.wikipedia.org/wiki/Rayleigh_distribution

[1] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudoran-
dom number generator,” ACM Trans. on Modeling and Computer Simulation, Vol. 8, No. 1, pp. 3-30, Jan. 1998.

[1] NIST/SEMATECH e-Handbook of Statistical Methods, “Cauchy Distribution”, http://www.itl.nist.gov/div898/
handbook/eda/section3/eda3663.htm

[2] Weisstein, Eric W. “Cauchy Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/CauchyDistribution.html

[3] Wikipedia, “Cauchy distribution” http://en.wikipedia.org/wiki/Cauchy_distribution

[1] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/GammaDistribution.html

[2] Wikipedia, “Gamma distribution”, http://en.wikipedia.org/wiki/Gamma_distribution

[1] Dalgaard, Peter, “Introductory Statistics With R”, Springer, 2002.

[2] Wikipedia, “Student’s t-distribution” http://en.wikipedia.org/wiki/Student’s_t-distribution

[1] Wikipedia, “Triangular distribution” http://en.wikipedia.org/wiki/Triangular_distribution

[1] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing,” New York: Dover, 1972.

[2] von Mises, R., “Mathematical Theory of Probability and Statistics”, New York: Academic Press, 1964.

[1] Brighton Webs Ltd., Wald Distribution, http://www.brighton-webs.co.uk/distributions/wald.asp

[2] Chhikara, Raj S., and Folks, J. Leroy, “The Inverse Gaussian Distribution: Theory : Methodology, and Applica-
tions”, CRC Press, 1988.

[3] Wikipedia, “Wald distribution” http://en.wikipedia.org/wiki/Wald_distribution

[1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 “A Statistical Theory Of The Strength Of Ma-
terials”, Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag,
Stockholm.

[2] Waloddi Weibull, “A Statistical Distribution Function of Wide Applicability”, Journal Of Applied Mechanics
ASME Paper 1951.

[3] Wikipedia, “Weibull distribution”, http://en.wikipedia.org/wiki/Weibull_distribution

[1] Zipf, G. K., “Selected Studies of the Principle of Relative Frequency in Language,” Cambridge, MA: Harvard
Univ. Press, 1932.

[1] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudoran-
dom number generator,” ACM Trans. on Modeling and Computer Simulation, Vol. 8, No. 1, pp. 3-30, Jan. 1998.

1332 Bibliography

http://en.wikipedia.org/wiki/Pareto_distribution
http://mathworld.wolfram.com/PoissonDistribution.html
http://mathworld.wolfram.com/PoissonDistribution.html
http://en.wikipedia.org/wiki/Poisson_distribution
http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf
http://www.brighton-webs.co.uk/distributions/rayleigh.asp
http://en.wikipedia.org/wiki/Rayleigh_distribution
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
http://mathworld.wolfram.com/CauchyDistribution.html
http://mathworld.wolfram.com/CauchyDistribution.html
http://en.wikipedia.org/wiki/Cauchy_distribution
http://mathworld.wolfram.com/GammaDistribution.html
http://mathworld.wolfram.com/GammaDistribution.html
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Student's_t-distribution
http://en.wikipedia.org/wiki/Triangular_distribution
http://www.brighton-webs.co.uk/distributions/wald.asp
http://en.wikipedia.org/wiki/Wald_distribution
http://en.wikipedia.org/wiki/Weibull_distribution


NumPy Reference, Release 1.15.1

[1] M.S. Bartlett, “Periodogram Analysis and Continuous Spectra”, Biometrika 37, 1-16, 1950.

[2] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 109-110.

[3] A.V. Oppenheim and R.W. Schafer, “Discrete-Time Signal Processing”, Prentice-Hall, 1999, pp. 468-471.

[4] Wikipedia, “Window function”, http://en.wikipedia.org/wiki/Window_function

[5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University
Press, 1986, page 429.

[1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.

[2] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 109-110.

[3] Wikipedia, “Window function”, http://en.wikipedia.org/wiki/Window_function

[4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University
Press, 1986, page 425.

[1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.

[2] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 106-108.

[3] Wikipedia, “Window function”, http://en.wikipedia.org/wiki/Window_function

[4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University
Press, 1986, page 425.

[1] J. F. Kaiser, “Digital Filters” - Ch 7 in “Systems analysis by digital computer”, Editors: F.F. Kuo and J.F. Kaiser,
p 218-285. John Wiley and Sons, New York, (1966).

[2] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 177-178.

[3] Wikipedia, “Window function”, http://en.wikipedia.org/wiki/Window_function

Bibliography 1333

http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function


NumPy Reference, Release 1.15.1

1334 Bibliography



PYTHON MODULE INDEX

n
numpy, 1
numpy.distutils, 1187
numpy.distutils.exec_command, 1196
numpy.distutils.misc_util, 1187
numpy.doc.constants, 363
numpy.doc.internals, 1302
numpy.dual, 540
numpy.fft, 546
numpy.lib.format, 647
numpy.lib.scimath, 541
numpy.polynomial.polyutils, 969

1335



NumPy Reference, Release 1.15.1

1336 Python Module Index



INDEX

Symbols
__abs__ (numpy.ma.MaskedArray attribute), 256
__abs__ (numpy.ndarray attribute), 42
__add__ (numpy.ndarray attribute), 43
__add__() (numpy.ma.MaskedArray method), 256
__and__ (numpy.ma.MaskedArray attribute), 257
__and__ (numpy.ndarray attribute), 43
__array__() (numpy.class method), 100
__array__() (numpy.generic method), 61
__array__() (numpy.ma.MaskedArray method), 260
__array__() (numpy.ndarray method), 45
__array_finalize__() (numpy.class method), 99
__array_interface__ (built-in variable), 349
__array_interface__ (numpy.generic attribute), 51
__array_prepare__() (numpy.class method), 99
__array_priority__ (numpy.class attribute), 100
__array_priority__ (numpy.generic attribute), 51
__array_priority__ (numpy.ma.MaskedArray attribute),

227
__array_struct__ (C variable), 351
__array_struct__ (numpy.generic attribute), 51
__array_ufunc__() (numpy.class method), 98
__array_wrap__() (numpy.class method), 99
__array_wrap__() (numpy.generic method), 51
__array_wrap__() (numpy.ma.MaskedArray method),

260
__array_wrap__() (numpy.ndarray method), 46
__call__() (numpy.poly1d method), 976
__call__() (numpy.polynomial.chebyshev.Chebyshev

method), 843
__call__() (numpy.polynomial.hermite.Hermite method),

919
__call__() (numpy.polynomial.hermite_e.HermiteE

method), 944
__call__() (numpy.polynomial.laguerre.Laguerre

method), 894
__call__() (numpy.polynomial.legendre.Legendre

method), 869
__call__() (numpy.polynomial.polynomial.Polynomial

method), 819
__call__() (numpy.testing.suppress_warnings method),

1172

__call__() (numpy.vectorize method), 582
__contains__ (numpy.ma.MaskedArray attribute), 261
__contains__ (numpy.ndarray attribute), 46
__copy__() (numpy.ma.MaskedArray method), 260
__copy__() (numpy.ndarray method), 45
__deepcopy__() (numpy.ma.MaskedArray method), 260
__deepcopy__() (numpy.ndarray method), 45
__delitem__ (numpy.ma.MaskedArray attribute), 261
__div__() (numpy.ma.MaskedArray method), 256
__divmod__ (numpy.ma.MaskedArray attribute), 257
__divmod__ (numpy.ndarray attribute), 43
__eq__ (numpy.ndarray attribute), 42
__eq__() (numpy.ma.MaskedArray method), 255
__float__ (numpy.ndarray attribute), 46
__float__() (numpy.ma.MaskedArray method), 227
__floordiv__ (numpy.ndarray attribute), 43
__floordiv__() (numpy.ma.MaskedArray method), 256
__ge__ (numpy.ma.MaskedArray attribute), 255
__ge__ (numpy.ndarray attribute), 42
__getitem__ (numpy.ndarray attribute), 46
__getitem__() (numpy.ma.MaskedArray method), 261
__getstate__() (numpy.ma.MaskedArray method), 260
__gt__ (numpy.ma.MaskedArray attribute), 255
__gt__ (numpy.ndarray attribute), 42
__iadd__ (numpy.ndarray attribute), 44
__iadd__() (numpy.ma.MaskedArray method), 258
__iand__ (numpy.ma.MaskedArray attribute), 258
__iand__ (numpy.ndarray attribute), 44
__idiv__() (numpy.ma.MaskedArray method), 258
__ifloordiv__ (numpy.ndarray attribute), 44
__ifloordiv__() (numpy.ma.MaskedArray method), 258
__ilshift__ (numpy.ma.MaskedArray attribute), 258
__ilshift__ (numpy.ndarray attribute), 44
__imod__ (numpy.ma.MaskedArray attribute), 258
__imod__ (numpy.ndarray attribute), 44
__imul__ (numpy.ndarray attribute), 44
__imul__() (numpy.ma.MaskedArray method), 258
__int__ (numpy.ndarray attribute), 46
__int__() (numpy.ma.MaskedArray method), 227
__invert__ (numpy.ndarray attribute), 42
__ior__ (numpy.ma.MaskedArray attribute), 258
__ior__ (numpy.ndarray attribute), 44

1337



NumPy Reference, Release 1.15.1

__ipow__ (numpy.ndarray attribute), 44
__ipow__() (numpy.ma.MaskedArray method), 258
__irshift__ (numpy.ma.MaskedArray attribute), 258
__irshift__ (numpy.ndarray attribute), 44
__isub__ (numpy.ndarray attribute), 44
__isub__() (numpy.ma.MaskedArray method), 258
__itruediv__ (numpy.ndarray attribute), 44
__itruediv__() (numpy.ma.MaskedArray method), 258
__ixor__ (numpy.ma.MaskedArray attribute), 258
__ixor__ (numpy.ndarray attribute), 44
__le__ (numpy.ma.MaskedArray attribute), 255
__le__ (numpy.ndarray attribute), 42
__len__ (numpy.ma.MaskedArray attribute), 261
__len__ (numpy.ndarray attribute), 46
__long__() (numpy.ma.MaskedArray method), 227
__lshift__ (numpy.ma.MaskedArray attribute), 257
__lshift__ (numpy.ndarray attribute), 43
__lt__ (numpy.ma.MaskedArray attribute), 255
__lt__ (numpy.ndarray attribute), 41
__matmul__ (numpy.ndarray attribute), 45
__mod__ (numpy.ma.MaskedArray attribute), 257
__mod__ (numpy.ndarray attribute), 43
__mul__ (numpy.ndarray attribute), 43
__mul__() (numpy.ma.MaskedArray method), 256
__ne__ (numpy.ndarray attribute), 42
__ne__() (numpy.ma.MaskedArray method), 255
__neg__ (numpy.ndarray attribute), 42
__new__() (numpy.ma.MaskedArray static method), 260
__new__() (numpy.ndarray method), 45
__or__ (numpy.ma.MaskedArray attribute), 257
__or__ (numpy.ndarray attribute), 43
__pos__ (numpy.ndarray attribute), 42
__pow__ (numpy.ndarray attribute), 43
__pow__() (numpy.ma.MaskedArray method), 257
__radd__() (numpy.ma.MaskedArray method), 256
__rand__ (numpy.ma.MaskedArray attribute), 257
__rdivmod__ (numpy.ma.MaskedArray attribute), 257
__reduce__() (numpy.dtype method), 77
__reduce__() (numpy.generic method), 61
__reduce__() (numpy.ma.MaskedArray method), 260
__reduce__() (numpy.ndarray method), 45
__repr__ (numpy.ndarray attribute), 46
__repr__() (numpy.ma.MaskedArray method), 258
__rfloordiv__() (numpy.ma.MaskedArray method), 256
__rlshift__ (numpy.ma.MaskedArray attribute), 257
__rmod__ (numpy.ma.MaskedArray attribute), 257
__rmul__() (numpy.ma.MaskedArray method), 256
__ror__ (numpy.ma.MaskedArray attribute), 257
__rpow__() (numpy.ma.MaskedArray method), 257
__rrshift__ (numpy.ma.MaskedArray attribute), 257
__rshift__ (numpy.ma.MaskedArray attribute), 257
__rshift__ (numpy.ndarray attribute), 43
__rsub__() (numpy.ma.MaskedArray method), 256
__rtruediv__() (numpy.ma.MaskedArray method), 256

__rxor__ (numpy.ma.MaskedArray attribute), 257
__setitem__ (numpy.ndarray attribute), 46
__setitem__() (numpy.ma.MaskedArray method), 261
__setmask__() (numpy.ma.MaskedArray method), 261
__setstate__() (numpy.dtype method), 77
__setstate__() (numpy.generic method), 62
__setstate__() (numpy.ma.MaskedArray method), 260
__setstate__() (numpy.ndarray method), 45
__str__ (numpy.ndarray attribute), 46
__str__() (numpy.ma.MaskedArray method), 258
__sub__ (numpy.ndarray attribute), 43
__sub__() (numpy.ma.MaskedArray method), 256
__truediv__ (numpy.ndarray attribute), 43
__truediv__() (numpy.ma.MaskedArray method), 256
__xor__ (numpy.ma.MaskedArray attribute), 257
__xor__ (numpy.ndarray attribute), 43

A
A (numpy.matrix attribute), 102
absolute (in module numpy), 788
abspath() (numpy.DataSource method), 646
accumulate

ufunc methods, 1301
accumulate() (numpy.ufunc method), 385
add (in module numpy), 769
add() (in module numpy.core.defchararray), 479
add_data_dir() (numpy.distutils.misc_util.Configuration

method), 1190
add_data_files() (numpy.distutils.misc_util.Configuration

method), 1189
add_extension() (numpy.distutils.misc_util.Configuration

method), 1192
add_headers() (numpy.distutils.misc_util.Configuration

method), 1191
add_include_dirs() (numpy.distutils.misc_util.Configuration

method), 1191
add_installed_library() (numpy.distutils.misc_util.Configuration

method), 1193
add_library() (numpy.distutils.misc_util.Configuration

method), 1193
add_npy_pkg_config() (numpy.distutils.misc_util.Configuration

method), 1194
add_scripts() (numpy.distutils.misc_util.Configuration

method), 1193
add_subpackage() (numpy.distutils.misc_util.Configuration

method), 1189
aligned, 29
alignment (numpy.dtype attribute), 77
all (in module numpy.ma), 272
all() (in module numpy), 693
all() (numpy.generic method), 54
all() (numpy.ma.MaskedArray method), 248
all() (numpy.matrix method), 106
all() (numpy.ndarray method), 8

1338 Index



NumPy Reference, Release 1.15.1

all() (numpy.recarray method), 166
all() (numpy.record method), 188
all_strings() (in module numpy.distutils.misc_util), 1188
allclose() (in module numpy), 707
allclose() (in module numpy.ma), 342
allequal() (in module numpy.ma), 342
allpath() (in module numpy.distutils.misc_util), 1188
amax() (in module numpy), 1119
amin() (in module numpy), 1118
angle() (in module numpy), 782
anom (in module numpy.ma), 316
anom() (numpy.ma.MaskedArray method), 248
anomalies (in module numpy.ma), 316
any (in module numpy.ma), 273
any() (in module numpy), 694
any() (numpy.generic method), 54
any() (numpy.ma.MaskedArray method), 248
any() (numpy.matrix method), 106
any() (numpy.ndarray method), 8
any() (numpy.recarray method), 166
any() (numpy.record method), 188
append() (in module numpy), 461
append() (in module numpy.ma), 296
appendpath() (in module numpy.distutils.misc_util), 1188
apply_along_axis() (in module numpy), 577
apply_along_axis() (in module numpy.ma), 344
apply_over_axes() (in module numpy), 579
arange (in module numpy.ma), 345
arange() (in module numpy), 416
arccos (in module numpy), 718
arccosh (in module numpy), 730
arcsin (in module numpy), 717
arcsinh (in module numpy), 730
arctan (in module numpy), 719
arctan2 (in module numpy), 722
arctanh (in module numpy), 731
argmax (in module numpy.ma), 325
argmax() (in module numpy), 1111
argmax() (numpy.generic method), 54
argmax() (numpy.ma.MaskedArray method), 238
argmax() (numpy.matrix method), 107
argmax() (numpy.ndarray method), 8
argmax() (numpy.recarray method), 166
argmax() (numpy.record method), 188
argmin (in module numpy.ma), 325
argmin() (in module numpy), 1112
argmin() (numpy.generic method), 54
argmin() (numpy.ma.MaskedArray method), 238
argmin() (numpy.matrix method), 107
argmin() (numpy.ndarray method), 8
argmin() (numpy.recarray method), 166
argmin() (numpy.record method), 188
argpartition() (in module numpy), 1109
argpartition() (numpy.matrix method), 108

argpartition() (numpy.ndarray method), 8
argpartition() (numpy.recarray method), 166
argsort() (in module numpy), 1106
argsort() (in module numpy.ma), 327
argsort() (numpy.chararray method), 144
argsort() (numpy.core.defchararray.chararray method),

501
argsort() (numpy.generic method), 54
argsort() (numpy.ma.MaskedArray method), 239
argsort() (numpy.matrix method), 108
argsort() (numpy.ndarray method), 8
argsort() (numpy.recarray method), 167
argsort() (numpy.record method), 188
argwhere() (in module numpy), 1114
arithmetic, 41, 254
around (in module numpy.ma), 340
around() (in module numpy), 732
array

C-API, 1221
interface, 348
protocol, 348

array iterator, 196, 1296
array scalars, 1297
array() (in module numpy), 403
array() (in module numpy.core.defchararray), 161
array() (in module numpy.core.records), 414
array() (in module numpy.ma), 202
array2string() (in module numpy), 635
array_equal() (in module numpy), 709
array_equiv() (in module numpy), 709
array_repr() (in module numpy), 637
array_split() (in module numpy), 454
array_str() (in module numpy), 638
Arrayterator (class in numpy.lib), 623
as_array() (in module numpy.ctypeslib), 518
as_ctypes() (in module numpy.ctypeslib), 518
as_series() (in module numpy.polynomial.polyutils), 970
as_strided() (in module numpy.lib.stride_tricks), 609
asanyarray() (in module numpy), 406
asanyarray() (in module numpy.ma), 204
asarray() (in module numpy), 405
asarray() (in module numpy.core.defchararray), 415
asarray() (in module numpy.ma), 203
asarray_chkfinite() (in module numpy), 443
ascontiguousarray() (in module numpy), 407
asfarray() (in module numpy), 442
asfortranarray() (in module numpy), 442
asmatrix() (in module numpy), 134
asscalar() (in module numpy), 444
assert_allclose() (in module numpy.testing), 1161
assert_almost_equal() (in module numpy.testing), 1158
assert_approx_equal() (in module numpy.testing), 1159
assert_array_almost_equal() (in module numpy.testing),

1160

Index 1339



NumPy Reference, Release 1.15.1

assert_array_almost_equal_nulp() (in module
numpy.testing), 1162

assert_array_equal() (in module numpy.testing), 1163
assert_array_less() (in module numpy.testing), 1164
assert_array_max_ulp() (in module numpy.testing), 1162
assert_equal() (in module numpy.testing), 1165
assert_raises() (in module numpy.testing), 1165
assert_raises_regex() (in module numpy.testing), 1166
assert_string_equal() (in module numpy.testing), 1166
assert_warns() (in module numpy.testing), 1166
astype() (numpy.chararray method), 143
astype() (numpy.core.defchararray.chararray method),

500
astype() (numpy.generic method), 54
astype() (numpy.ma.MaskedArray method), 229
astype() (numpy.matrix method), 108
astype() (numpy.ndarray method), 8
astype() (numpy.recarray method), 167
astype() (numpy.record method), 189
at() (numpy.ufunc method), 388
atleast_1d (in module numpy.ma), 285
atleast_1d() (in module numpy), 437
atleast_2d (in module numpy.ma), 286
atleast_2d() (in module numpy), 437
atleast_3d (in module numpy.ma), 286
atleast_3d() (in module numpy), 438
attributes

ufunc, 379
average() (in module numpy), 1133
average() (in module numpy.ma), 316
axis, 40

B
bartlett() (in module numpy), 1178
base, 3
base (numpy.generic attribute), 51
base (numpy.ma.MaskedArray attribute), 221
base (numpy.ndarray attribute), 34
base_repr() (in module numpy), 645
baseclass (numpy.ma.MaskedArray attribute), 220
basis() (numpy.polynomial.chebyshev.Chebyshev class

method), 843
basis() (numpy.polynomial.hermite.Hermite class

method), 919
basis() (numpy.polynomial.hermite_e.HermiteE class

method), 944
basis() (numpy.polynomial.laguerre.Laguerre class

method), 894
basis() (numpy.polynomial.legendre.Legendre class

method), 869
basis() (numpy.polynomial.polynomial.Polynomial class

method), 819
beta() (in module numpy.random), 997
beta() (numpy.random.RandomState method), 1043

binary_repr() (in module numpy), 477
bincount() (in module numpy), 1152
binomial() (in module numpy.random), 998
binomial() (numpy.random.RandomState method), 1044
bitwise_and (in module numpy), 470
bitwise_or (in module numpy), 471
bitwise_xor (in module numpy), 472
blackman() (in module numpy), 1180
block() (in module numpy), 450
blue_text() (in module numpy.distutils.misc_util), 1188
bmat() (in module numpy), 134
broadcast (class in numpy), 198
broadcast_arrays() (in module numpy), 439
broadcast_to() (in module numpy), 438
broadcastable, 371
broadcasting, 371, 1296
buffers, 372
busday_count() (in module numpy), 525
busday_offset() (in module numpy), 523
busdaycalendar (class in numpy), 522
byteorder (numpy.dtype attribute), 74
bytes() (in module numpy.random), 995
bytes() (numpy.random.RandomState method), 1045
byteswap() (numpy.generic method), 54
byteswap() (numpy.ma.MaskedArray method), 230
byteswap() (numpy.matrix method), 109
byteswap() (numpy.ndarray method), 9
byteswap() (numpy.recarray method), 168
byteswap() (numpy.record method), 189

C
C-API

array, 1221
iterator, 1262, 1278
ndarray, 1221, 1262
ufunc, 1279, 1284

C-order, 28
c_ (in module numpy), 587
can_cast() (in module numpy), 526
capitalize() (in module numpy.core.defchararray), 480
cast() (numpy.polynomial.chebyshev.Chebyshev class

method), 844
cast() (numpy.polynomial.hermite.Hermite class

method), 920
cast() (numpy.polynomial.hermite_e.HermiteE class

method), 945
cast() (numpy.polynomial.laguerre.Laguerre class

method), 894
cast() (numpy.polynomial.legendre.Legendre class

method), 869
cast() (numpy.polynomial.polynomial.Polynomial class

method), 820
casting rules

ufunc, 375

1340 Index



NumPy Reference, Release 1.15.1

cbrt (in module numpy), 787
ceil (in module numpy), 735
center() (in module numpy.core.defchararray), 481
char (numpy.dtype attribute), 73
character arrays, 139
chararray (class in numpy), 139
chararray (class in numpy.core.defchararray), 497
cheb2poly() (in module numpy.polynomial.chebyshev),

866
chebadd() (in module numpy.polynomial.chebyshev), 861
chebcompanion() (in module

numpy.polynomial.chebyshev), 865
chebder() (in module numpy.polynomial.chebyshev), 859
chebdiv() (in module numpy.polynomial.chebyshev), 863
chebdomain (in module numpy.polynomial.chebyshev),

865
chebfit() (in module numpy.polynomial.chebyshev), 855
chebfromroots() (in module

numpy.polynomial.chebyshev), 854
chebgauss() (in module numpy.polynomial.chebyshev),

864
chebgrid2d() (in module numpy.polynomial.chebyshev),

852
chebgrid3d() (in module numpy.polynomial.chebyshev),

853
chebint() (in module numpy.polynomial.chebyshev), 859
chebline() (in module numpy.polynomial.chebyshev), 866
chebmul() (in module numpy.polynomial.chebyshev),

862
chebmulx() (in module numpy.polynomial.chebyshev),

863
chebone (in module numpy.polynomial.chebyshev), 865
chebpow() (in module numpy.polynomial.chebyshev),

864
chebroots() (in module numpy.polynomial.chebyshev),

853
chebsub() (in module numpy.polynomial.chebyshev), 861
chebtrim() (in module numpy.polynomial.chebyshev),

865
chebval() (in module numpy.polynomial.chebyshev), 850
chebval2d() (in module numpy.polynomial.chebyshev),

851
chebval3d() (in module numpy.polynomial.chebyshev),

851
chebvander() (in module numpy.polynomial.chebyshev),

856
chebvander2d() (in module

numpy.polynomial.chebyshev), 857
chebvander3d() (in module

numpy.polynomial.chebyshev), 858
chebweight() (in module numpy.polynomial.chebyshev),

865
chebx (in module numpy.polynomial.chebyshev), 865
Chebyshev (class in numpy.polynomial.chebyshev), 842

chebzero (in module numpy.polynomial.chebyshev), 865
chisquare() (in module numpy.random), 999
chisquare() (numpy.random.RandomState method), 1045
choice() (in module numpy.random), 994
choice() (numpy.random.RandomState method), 1046
cholesky() (in module numpy.linalg), 667
choose() (in module numpy), 604
choose() (in module numpy.ma), 346
choose() (numpy.generic method), 55
choose() (numpy.ma.MaskedArray method), 240
choose() (numpy.matrix method), 110
choose() (numpy.ndarray method), 10
choose() (numpy.recarray method), 168
choose() (numpy.record method), 189
clip() (in module numpy), 785
clip() (in module numpy.ma), 341
clip() (numpy.generic method), 55
clip() (numpy.ma.MaskedArray method), 249
clip() (numpy.matrix method), 110
clip() (numpy.ndarray method), 10
clip() (numpy.recarray method), 168
clip() (numpy.record method), 189
close() (numpy.nditer method), 620
clump_masked() (in module numpy.ma), 303
clump_unmasked() (in module numpy.ma), 304
code generation, 1199
column-major, 28
column_stack (in module numpy.ma), 290
column_stack() (in module numpy), 448
common_fill_value() (in module numpy.ma), 312
common_type() (in module numpy), 530
comparison, 41, 254
compress() (in module numpy), 606
compress() (numpy.generic method), 55
compress() (numpy.ma.MaskedArray method), 240
compress() (numpy.matrix method), 110
compress() (numpy.ndarray method), 10
compress() (numpy.recarray method), 168
compress() (numpy.record method), 189
compress_cols() (in module numpy.ma), 309
compress_rowcols() (in module numpy.ma), 309
compress_rows() (in module numpy.ma), 310
compressed() (in module numpy.ma), 310
compressed() (numpy.ma.MaskedArray method), 231
concatenate() (in module numpy), 445
concatenate() (in module numpy.ma), 290
cond() (in module numpy.linalg), 680
Configuration (class in numpy.distutils.misc_util), 1188
conj (in module numpy), 783
conj() (numpy.ma.MaskedArray method), 249
conj() (numpy.matrix method), 110
conj() (numpy.ndarray method), 10
conj() (numpy.recarray method), 169
conjugate (in module numpy.ma), 317

Index 1341



NumPy Reference, Release 1.15.1

conjugate() (numpy.generic method), 55
conjugate() (numpy.ma.MaskedArray method), 249
conjugate() (numpy.matrix method), 110
conjugate() (numpy.ndarray method), 11
conjugate() (numpy.recarray method), 169
conjugate() (numpy.record method), 189
construction

from dict, dtype, 71
from dtype, dtype, 68
from list, dtype, 71
from None, dtype, 68
from string, dtype, 69
from tuple, dtype, 70
from type, dtype, 68

container (class in numpy.lib.user_array), 196
container class, 196
contiguous, 29
convert() (numpy.polynomial.chebyshev.Chebyshev

method), 844
convert() (numpy.polynomial.hermite.Hermite method),

920
convert() (numpy.polynomial.hermite_e.HermiteE

method), 945
convert() (numpy.polynomial.laguerre.Laguerre method),

895
convert() (numpy.polynomial.legendre.Legendre

method), 870
convert() (numpy.polynomial.polynomial.Polynomial

method), 820
convolve() (in module numpy), 784
copy (in module numpy.ma), 265
copy() (in module numpy), 407
copy() (numpy.chararray method), 144
copy() (numpy.core.defchararray.chararray method), 502
copy() (numpy.flatiter method), 623
copy() (numpy.generic method), 55
copy() (numpy.ma.MaskedArray method), 246
copy() (numpy.matrix method), 111
copy() (numpy.ndarray method), 11
copy() (numpy.nditer method), 620
copy() (numpy.polynomial.chebyshev.Chebyshev

method), 845
copy() (numpy.polynomial.hermite.Hermite method), 920
copy() (numpy.polynomial.hermite_e.HermiteE method),

946
copy() (numpy.polynomial.laguerre.Laguerre method),

895
copy() (numpy.polynomial.legendre.Legendre method),

870
copy() (numpy.polynomial.polynomial.Polynomial

method), 821
copy() (numpy.recarray method), 169
copy() (numpy.record method), 189
copysign (in module numpy), 764

copyto() (in module numpy), 430
corrcoef() (in module numpy), 1144
corrcoef() (in module numpy.ma), 318
correlate() (in module numpy), 1144
cos (in module numpy), 715
cosh (in module numpy), 728
count (in module numpy.ma), 273
count() (in module numpy.core.defchararray), 492
count() (numpy.chararray method), 145
count() (numpy.core.defchararray.chararray method), 502
count() (numpy.ma.MaskedArray method), 263
count_masked() (in module numpy.ma), 274
count_nonzero() (in module numpy), 1117
cov() (in module numpy), 1145
cov() (in module numpy.ma), 319
cpu (in module numpy.distutils.cpuinfo), 1196
cross() (in module numpy), 750
ctypes (numpy.ma.MaskedArray attribute), 221
ctypes (numpy.ndarray attribute), 37
ctypes_load_library() (in module numpy.ctypeslib), 518
cumprod (in module numpy.ma), 320
cumprod() (in module numpy), 742
cumprod() (numpy.generic method), 55
cumprod() (numpy.ma.MaskedArray method), 249
cumprod() (numpy.matrix method), 111
cumprod() (numpy.ndarray method), 11
cumprod() (numpy.recarray method), 170
cumprod() (numpy.record method), 190
cumsum (in module numpy.ma), 319
cumsum() (in module numpy), 743
cumsum() (numpy.generic method), 55
cumsum() (numpy.ma.MaskedArray method), 249
cumsum() (numpy.matrix method), 111
cumsum() (numpy.ndarray method), 11
cumsum() (numpy.recarray method), 170
cumsum() (numpy.record method), 190
cutdeg() (numpy.polynomial.chebyshev.Chebyshev

method), 845
cutdeg() (numpy.polynomial.hermite.Hermite method),

921
cutdeg() (numpy.polynomial.hermite_e.HermiteE

method), 946
cutdeg() (numpy.polynomial.laguerre.Laguerre method),

895
cutdeg() (numpy.polynomial.legendre.Legendre method),

870
cutdeg() (numpy.polynomial.polynomial.Polynomial

method), 821
cyan_text() (in module numpy.distutils.misc_util), 1188
cyg2win32() (in module numpy.distutils.misc_util), 1188

D
data (numpy.generic attribute), 51
data (numpy.ma.MaskedArray attribute), 219, 281

1342 Index



NumPy Reference, Release 1.15.1

data (numpy.ndarray attribute), 33
DataSource (class in numpy), 645
datetime_as_string() (in module numpy), 520
datetime_data() (in module numpy), 521
debug_print() (numpy.nditer method), 620
decode() (in module numpy.core.defchararray), 481
decode() (numpy.chararray method), 145
decode() (numpy.core.defchararray.chararray method),

502
decorate_methods() (in module numpy.testing), 1169
default_fill_value() (in module numpy.ma), 312
deg2rad (in module numpy), 725
degree() (numpy.polynomial.chebyshev.Chebyshev

method), 845
degree() (numpy.polynomial.hermite.Hermite method),

921
degree() (numpy.polynomial.hermite_e.HermiteE

method), 946
degree() (numpy.polynomial.laguerre.Laguerre method),

896
degree() (numpy.polynomial.legendre.Legendre method),

870
degree() (numpy.polynomial.polynomial.Polynomial

method), 821
degrees (in module numpy), 723
delete() (in module numpy), 459
deprecated() (in module numpy.testing.decorators), 1167
deriv() (numpy.poly1d method), 976
deriv() (numpy.polynomial.chebyshev.Chebyshev

method), 845
deriv() (numpy.polynomial.hermite.Hermite method),

921
deriv() (numpy.polynomial.hermite_e.HermiteE method),

946
deriv() (numpy.polynomial.laguerre.Laguerre method),

896
deriv() (numpy.polynomial.legendre.Legendre method),

871
deriv() (numpy.polynomial.polynomial.Polynomial

method), 821
descr (numpy.dtype attribute), 76
det() (in module numpy.linalg), 682
diag() (in module numpy), 425
diag() (in module numpy.ma), 329
diag_indices() (in module numpy), 595
diag_indices_from() (in module numpy), 596
diagflat() (in module numpy), 426
diagonal() (in module numpy), 607
diagonal() (numpy.generic method), 56
diagonal() (numpy.ma.MaskedArray method), 241
diagonal() (numpy.matrix method), 111
diagonal() (numpy.ndarray method), 12
diagonal() (numpy.recarray method), 170
diagonal() (numpy.record method), 190

dict_append() (in module numpy.distutils.misc_util),
1188

diff() (in module numpy), 746
digitize() (in module numpy), 1156
dirichlet() (in module numpy.random), 1000
dirichlet() (numpy.random.RandomState method), 1047
distutils, 1187
divide (in module numpy), 772
divmod (in module numpy), 781
dot() (in module numpy), 650
dot() (in module numpy.ma), 330
dot() (numpy.matrix method), 112
dot() (numpy.ndarray method), 12
dot() (numpy.recarray method), 170
dot_join() (in module numpy.distutils.misc_util), 1188
dsplit() (in module numpy), 455
dstack (in module numpy.ma), 291
dstack() (in module numpy), 448
dtype, 1295

construction from dict, 71
construction from dtype, 68
construction from list, 71
construction from None, 68
construction from string, 69
construction from tuple, 70
construction from type, 68
field, 62
scalar, 62
sub-array, 62, 70

dtype (class in numpy), 63
dtype (numpy.generic attribute), 51
dtype (numpy.ma.MaskedArray attribute), 222
dtype (numpy.ndarray attribute), 34
dump() (in module numpy.ma), 311
dump() (numpy.chararray method), 145
dump() (numpy.core.defchararray.chararray method), 502
dump() (numpy.generic method), 56
dump() (numpy.ma.MaskedArray method), 247
dump() (numpy.matrix method), 112
dump() (numpy.ndarray method), 12
dump() (numpy.recarray method), 170
dump() (numpy.record method), 190
dumps() (in module numpy.ma), 311
dumps() (numpy.chararray method), 145
dumps() (numpy.core.defchararray.chararray method),

502
dumps() (numpy.generic method), 56
dumps() (numpy.ma.MaskedArray method), 247
dumps() (numpy.matrix method), 112
dumps() (numpy.ndarray method), 12
dumps() (numpy.recarray method), 171
dumps() (numpy.record method), 190

Index 1343



NumPy Reference, Release 1.15.1

E
e (in module numpy), 366
ediff1d() (in module numpy), 747
ediff1d() (in module numpy.ma), 347
eig() (in module numpy.linalg), 672
eigh() (in module numpy.linalg), 674
eigvals() (in module numpy.linalg), 676
eigvalsh() (in module numpy.linalg), 677
einsum() (in module numpy), 659
einsum_path() (in module numpy), 663
ellipsis, 77
empty (in module numpy.ma), 267
empty() (in module numpy), 395
empty() (in module numpy.matlib), 800
empty_like (in module numpy.ma), 268
empty_like() (in module numpy), 396
enable_external_loop() (numpy.nditer method), 620
encode() (in module numpy.core.defchararray), 482
encode() (numpy.chararray method), 146
encode() (numpy.core.defchararray.chararray method),

503
endswith() (numpy.chararray method), 146
endswith() (numpy.core.defchararray.chararray method),

503
equal (in module numpy), 712
equal() (in module numpy.core.defchararray), 490
error handling, 373
errstate (class in numpy), 543
euler_gamma (in module numpy), 366
exists() (numpy.DataSource method), 647
exp (in module numpy), 753
exp2 (in module numpy), 755
expand_dims() (in module numpy), 440
expand_dims() (in module numpy.ma), 287
expandtabs() (numpy.chararray method), 146
expandtabs() (numpy.core.defchararray.chararray

method), 503
expm1 (in module numpy), 754
exponential() (in module numpy.random), 1001
exponential() (numpy.random.RandomState method),

1048
extract() (in module numpy), 1116
eye() (in module numpy), 397
eye() (in module numpy.matlib), 802

F
f() (in module numpy.random), 1001
f() (numpy.random.RandomState method), 1049
fabs (in module numpy), 789
fft() (in module numpy.fft), 547
fft2() (in module numpy.fft), 550
fftfreq() (in module numpy.fft), 564
fftn() (in module numpy.fft), 552
fftshift() (in module numpy.fft), 565

field
dtype, 62

fields (numpy.dtype attribute), 74
fill() (numpy.chararray method), 146
fill() (numpy.core.defchararray.chararray method), 503
fill() (numpy.generic method), 56
fill() (numpy.ma.MaskedArray method), 241
fill() (numpy.matrix method), 112
fill() (numpy.ndarray method), 12
fill() (numpy.recarray method), 171
fill() (numpy.record method), 190
fill_diagonal() (in module numpy), 613
fill_value (numpy.ma.MaskedArray attribute), 220, 315
filled() (in module numpy.ma), 310
filled() (numpy.ma.MaskedArray method), 231
filter() (numpy.testing.suppress_warnings method), 1172
filter_sources() (in module numpy.distutils.misc_util),

1188
find() (in module numpy.core.defchararray), 493
find() (numpy.chararray method), 146
find() (numpy.core.defchararray.chararray method), 503
find_common_type() (in module numpy), 537
finfo (class in numpy), 533
fit() (numpy.polynomial.chebyshev.Chebyshev class

method), 845
fit() (numpy.polynomial.hermite.Hermite class method),

921
fit() (numpy.polynomial.hermite_e.HermiteE class

method), 946
fit() (numpy.polynomial.laguerre.Laguerre class method),

896
fit() (numpy.polynomial.legendre.Legendre class

method), 871
fit() (numpy.polynomial.polynomial.Polynomial class

method), 821
fix() (in module numpy), 734
fix_invalid() (in module numpy.ma), 205
flags (numpy.dtype attribute), 76
flags (numpy.generic attribute), 50
flags (numpy.ma.MaskedArray attribute), 223
flags (numpy.ndarray attribute), 30
flat (numpy.generic attribute), 51
flat (numpy.ma.MaskedArray attribute), 227
flat (numpy.ndarray attribute), 36
flatiter (class in numpy), 622
flatnonzero() (in module numpy), 1114
flatnotmasked_contiguous() (in module numpy.ma), 300
flatnotmasked_edges() (in module numpy.ma), 301
flatten() (numpy.chararray method), 146
flatten() (numpy.core.defchararray.chararray method),

503
flatten() (numpy.generic method), 56
flatten() (numpy.ma.MaskedArray method), 234
flatten() (numpy.matrix method), 113

1344 Index



NumPy Reference, Release 1.15.1

flatten() (numpy.ndarray method), 13
flatten() (numpy.recarray method), 171
flatten() (numpy.record method), 191
flip() (in module numpy), 465
fliplr() (in module numpy), 466
flipud() (in module numpy), 467
float_power (in module numpy), 776
floor (in module numpy), 734
floor_divide (in module numpy), 775
flush() (numpy.memmap method), 139
fmax (in module numpy), 794
fmin (in module numpy), 795
fmod (in module numpy), 777
format_float_positional() (in module numpy), 638
format_float_scientific() (in module numpy), 639
format_parser (class in numpy), 532
Fortran-order, 28
frexp (in module numpy), 764
from dict

dtype construction, 71
from dtype

dtype construction, 68
from list

dtype construction, 71
from None

dtype construction, 68
from string

dtype construction, 69
from tuple

dtype construction, 70
from type

dtype construction, 68
fromarrays() (in module numpy.core.records), 414
frombuffer (in module numpy.ma), 265
frombuffer() (in module numpy), 408
fromfile() (in module numpy), 409
fromfile() (in module numpy.core.records), 414
fromfunction (in module numpy.ma), 266
fromfunction() (in module numpy), 410
fromiter() (in module numpy), 411
frompyfunc() (in module numpy), 582
fromrecords() (in module numpy.core.records), 414
fromregex() (in module numpy), 634
fromroots() (numpy.polynomial.chebyshev.Chebyshev

class method), 846
fromroots() (numpy.polynomial.hermite.Hermite class

method), 922
fromroots() (numpy.polynomial.hermite_e.HermiteE

class method), 947
fromroots() (numpy.polynomial.laguerre.Laguerre class

method), 897
fromroots() (numpy.polynomial.legendre.Legendre class

method), 872

fromroots() (numpy.polynomial.polynomial.Polynomial
class method), 822

fromstring() (in module numpy), 411
fromstring() (in module numpy.core.records), 414
full() (in module numpy), 401
full_like() (in module numpy), 402
fv() (in module numpy), 569

G
gamma() (in module numpy.random), 1002
gamma() (numpy.random.RandomState method), 1050
gcd (in module numpy), 768
generate_config_py() (in module

numpy.distutils.misc_util), 1188
generic (class in numpy), 52
genfromtxt() (in module numpy), 631
geometric() (in module numpy.random), 1003
geometric() (numpy.random.RandomState method), 1051
geomspace() (in module numpy), 419
get_build_temp_dir() (numpy.distutils.misc_util.Configuration

method), 1195
get_cmd() (in module numpy.distutils.misc_util), 1188
get_config_cmd() (numpy.distutils.misc_util.Configuration

method), 1195
get_dependencies() (in module

numpy.distutils.misc_util), 1188
get_distribution() (numpy.distutils.misc_util.Configuration

method), 1189
get_ext_source_files() (in module

numpy.distutils.misc_util), 1188
get_fill_value() (numpy.ma.MaskedArray method), 262
get_info() (in module numpy.distutils.system_info), 1196
get_info() (numpy.distutils.misc_util.Configuration

method), 1196
get_numpy_include_dirs() (in module

numpy.distutils.misc_util), 1188
get_printoptions() (in module numpy), 643
get_script_files() (in module numpy.distutils.misc_util),

1188
get_standard_file() (in module

numpy.distutils.system_info), 1196
get_state() (in module numpy.random), 1096
get_state() (numpy.random.RandomState method), 1052
get_subpackage() (numpy.distutils.misc_util.Configuration

method), 1189
get_version() (numpy.distutils.misc_util.Configuration

method), 1195
getA() (numpy.matrix method), 113
getA1() (numpy.matrix method), 114
getbufsize() (in module numpy), 805
getdata() (in module numpy.ma), 276
getdomain() (in module numpy.polynomial.polyutils),

972
geterr() (in module numpy), 542

Index 1345



NumPy Reference, Release 1.15.1

geterrcall() (in module numpy), 542
geterrobj() (in module numpy), 545
getfield() (numpy.chararray method), 147
getfield() (numpy.core.defchararray.chararray method),

504
getfield() (numpy.generic method), 56
getfield() (numpy.matrix method), 115
getfield() (numpy.ndarray method), 13
getfield() (numpy.recarray method), 171
getfield() (numpy.record method), 191
getH() (numpy.matrix method), 114
getI() (numpy.matrix method), 114
getitem

ndarray special methods, 77
getmask() (in module numpy.ma), 275
getmaskarray() (in module numpy.ma), 276
getT() (numpy.matrix method), 115
gradient() (in module numpy), 748
greater (in module numpy), 710
greater() (in module numpy.core.defchararray), 491
greater_equal (in module numpy), 711
greater_equal() (in module numpy.core.defchararray),

490
green_text() (in module numpy.distutils.misc_util), 1188
gumbel() (in module numpy.random), 1004
gumbel() (numpy.random.RandomState method), 1052

H
H (numpy.matrix attribute), 101
hamming() (in module numpy), 1181
hanning() (in module numpy), 1182
harden_mask (in module numpy.ma), 307
harden_mask() (numpy.ma.MaskedArray method), 261
hardmask (numpy.ma.MaskedArray attribute), 220
has_cxx_sources() (in module numpy.distutils.misc_util),

1188
has_f_sources() (in module numpy.distutils.misc_util),

1188
has_samecoef() (numpy.polynomial.chebyshev.Chebyshev

method), 846
has_samecoef() (numpy.polynomial.hermite.Hermite

method), 922
has_samecoef() (numpy.polynomial.hermite_e.HermiteE

method), 948
has_samecoef() (numpy.polynomial.laguerre.Laguerre

method), 897
has_samecoef() (numpy.polynomial.legendre.Legendre

method), 872
has_samecoef() (numpy.polynomial.polynomial.Polynomial

method), 823
has_samedomain() (numpy.polynomial.chebyshev.Chebyshev

method), 847
has_samedomain() (numpy.polynomial.hermite.Hermite

method), 923

has_samedomain() (numpy.polynomial.hermite_e.HermiteE
method), 948

has_samedomain() (numpy.polynomial.laguerre.Laguerre
method), 897

has_samedomain() (numpy.polynomial.legendre.Legendre
method), 872

has_samedomain() (numpy.polynomial.polynomial.Polynomial
method), 823

has_sametype() (numpy.polynomial.chebyshev.Chebyshev
method), 847

has_sametype() (numpy.polynomial.hermite.Hermite
method), 923

has_sametype() (numpy.polynomial.hermite_e.HermiteE
method), 948

has_sametype() (numpy.polynomial.laguerre.Laguerre
method), 897

has_sametype() (numpy.polynomial.legendre.Legendre
method), 872

has_sametype() (numpy.polynomial.polynomial.Polynomial
method), 823

has_samewindow() (numpy.polynomial.chebyshev.Chebyshev
method), 847

has_samewindow() (numpy.polynomial.hermite.Hermite
method), 923

has_samewindow() (numpy.polynomial.hermite_e.HermiteE
method), 948

has_samewindow() (numpy.polynomial.laguerre.Laguerre
method), 898

has_samewindow() (numpy.polynomial.legendre.Legendre
method), 873

has_samewindow() (numpy.polynomial.polynomial.Polynomial
method), 823

hasobject (numpy.dtype attribute), 76
have_f77c() (numpy.distutils.misc_util.Configuration

method), 1195
have_f90c() (numpy.distutils.misc_util.Configuration

method), 1195
heaviside (in module numpy), 791
herm2poly() (in module numpy.polynomial.hermite), 942
hermadd() (in module numpy.polynomial.hermite), 937
hermcompanion() (in module

numpy.polynomial.hermite), 941
hermder() (in module numpy.polynomial.hermite), 934
hermdiv() (in module numpy.polynomial.hermite), 939
hermdomain (in module numpy.polynomial.hermite), 941
herme2poly() (in module numpy.polynomial.hermite_e),

968
hermeadd() (in module numpy.polynomial.hermite_e),

962
hermecompanion() (in module

numpy.polynomial.hermite_e), 966
hermeder() (in module numpy.polynomial.hermite_e),

960
hermediv() (in module numpy.polynomial.hermite_e),

1346 Index



NumPy Reference, Release 1.15.1

964
hermedomain (in module numpy.polynomial.hermite_e),

967
hermefit() (in module numpy.polynomial.hermite_e), 956
hermefromroots() (in module

numpy.polynomial.hermite_e), 955
hermegauss() (in module numpy.polynomial.hermite_e),

965
hermegrid2d() (in module numpy.polynomial.hermite_e),

953
hermegrid3d() (in module numpy.polynomial.hermite_e),

954
hermeint() (in module numpy.polynomial.hermite_e), 961
hermeline() (in module numpy.polynomial.hermite_e),

967
hermemul() (in module numpy.polynomial.hermite_e),

963
hermemulx() (in module numpy.polynomial.hermite_e),

964
hermeone (in module numpy.polynomial.hermite_e), 967
hermepow() (in module numpy.polynomial.hermite_e),

965
hermeroots() (in module numpy.polynomial.hermite_e),

954
hermesub() (in module numpy.polynomial.hermite_e),

963
hermetrim() (in module numpy.polynomial.hermite_e),

967
hermeval() (in module numpy.polynomial.hermite_e),

951
hermeval2d() (in module numpy.polynomial.hermite_e),

952
hermeval3d() (in module numpy.polynomial.hermite_e),

952
hermevander() (in module numpy.polynomial.hermite_e),

958
hermevander2d() (in module

numpy.polynomial.hermite_e), 958
hermevander3d() (in module

numpy.polynomial.hermite_e), 959
hermeweight() (in module numpy.polynomial.hermite_e),

966
hermex (in module numpy.polynomial.hermite_e), 967
hermezero (in module numpy.polynomial.hermite_e), 967
hermfit() (in module numpy.polynomial.hermite), 931
hermfromroots() (in module numpy.polynomial.hermite),

930
hermgauss() (in module numpy.polynomial.hermite), 940
hermgrid2d() (in module numpy.polynomial.hermite),

928
hermgrid3d() (in module numpy.polynomial.hermite),

928
hermint() (in module numpy.polynomial.hermite), 935
Hermite (class in numpy.polynomial.hermite), 918

HermiteE (class in numpy.polynomial.hermite_e), 944
hermline() (in module numpy.polynomial.hermite), 942
hermmul() (in module numpy.polynomial.hermite), 938
hermmulx() (in module numpy.polynomial.hermite), 938
hermone (in module numpy.polynomial.hermite), 941
hermpow() (in module numpy.polynomial.hermite), 939
hermroots() (in module numpy.polynomial.hermite), 929
hermsub() (in module numpy.polynomial.hermite), 937
hermtrim() (in module numpy.polynomial.hermite), 941
hermval() (in module numpy.polynomial.hermite), 925
hermval2d() (in module numpy.polynomial.hermite), 926
hermval3d() (in module numpy.polynomial.hermite), 927
hermvander() (in module numpy.polynomial.hermite),

932
hermvander2d() (in module numpy.polynomial.hermite),

933
hermvander3d() (in module numpy.polynomial.hermite),

934
hermweight() (in module numpy.polynomial.hermite),

940
hermx (in module numpy.polynomial.hermite), 941
hermzero (in module numpy.polynomial.hermite), 941
hfft() (in module numpy.fft), 562
histogram() (in module numpy), 1147
histogram2d() (in module numpy), 1149
histogram_bin_edges() (in module numpy), 1153
histogramdd() (in module numpy), 1151
hsplit (in module numpy.ma), 293
hsplit() (in module numpy), 455
hstack (in module numpy.ma), 292
hstack() (in module numpy), 449
hypergeometric() (in module numpy.random), 1006
hypergeometric() (numpy.random.RandomState method),

1054
hypot (in module numpy), 721

I
I (numpy.matrix attribute), 101
i0() (in module numpy), 761
identity (in module numpy.ma), 330
identity (numpy.ufunc attribute), 381
identity() (in module numpy), 398
identity() (in module numpy.matlib), 802
identity() (numpy.polynomial.chebyshev.Chebyshev class

method), 847
identity() (numpy.polynomial.hermite.Hermite class

method), 923
identity() (numpy.polynomial.hermite_e.HermiteE class

method), 948
identity() (numpy.polynomial.laguerre.Laguerre class

method), 898
identity() (numpy.polynomial.legendre.Legendre class

method), 873

Index 1347



NumPy Reference, Release 1.15.1

identity() (numpy.polynomial.polynomial.Polynomial
class method), 823

ids() (numpy.ma.MaskedArray method), 258
ifft() (in module numpy.fft), 548
ifft2() (in module numpy.fft), 551
ifftn() (in module numpy.fft), 554
ifftshift() (in module numpy.fft), 566
ihfft() (in module numpy.fft), 563
iinfo (class in numpy), 533
imag (numpy.generic attribute), 51
imag (numpy.ma.MaskedArray attribute), 227
imag (numpy.ndarray attribute), 36
imag() (in module numpy), 783
import_array (C function), 1255
import_ufunc (C function), 1283
in1d() (in module numpy), 1098
index() (in module numpy.core.defchararray), 493
index() (numpy.chararray method), 147
index() (numpy.core.defchararray.chararray method), 504
indexing, 77, 85, 1297
indices() (in module numpy), 592
indices() (in module numpy.ma), 347
Inf (in module numpy), 363
inf (in module numpy), 366
Infinity (in module numpy), 363
info() (in module numpy), 585
infty (in module numpy), 367
inner() (in module numpy), 653
inner() (in module numpy.ma), 331
innerproduct() (in module numpy.ma), 332
insert() (in module numpy), 460
integ() (numpy.poly1d method), 976
integ() (numpy.polynomial.chebyshev.Chebyshev

method), 847
integ() (numpy.polynomial.hermite.Hermite method),

923
integ() (numpy.polynomial.hermite_e.HermiteE method),

949
integ() (numpy.polynomial.laguerre.Laguerre method),

898
integ() (numpy.polynomial.legendre.Legendre method),

873
integ() (numpy.polynomial.polynomial.Polynomial

method), 824
interface

array, 348
interp() (in module numpy), 797
interpolate() (numpy.polynomial.chebyshev.Chebyshev

class method), 848
intersect1d() (in module numpy), 1099
inv() (in module numpy.linalg), 688
invert (in module numpy), 473
ipmt() (in module numpy), 573
irfft() (in module numpy.fft), 557

irfft2() (in module numpy.fft), 559
irfftn() (in module numpy.fft), 561
irr() (in module numpy), 574
is_busday() (in module numpy), 522
is_local_src_dir() (in module numpy.distutils.misc_util),

1188
is_mask() (in module numpy.ma), 280
is_masked() (in module numpy.ma), 280
isalnum() (numpy.chararray method), 147
isalnum() (numpy.core.defchararray.chararray method),

504
isalpha() (in module numpy.core.defchararray), 493
isalpha() (numpy.chararray method), 147
isalpha() (numpy.core.defchararray.chararray method),

505
isbuiltin (numpy.dtype attribute), 76
isclose() (in module numpy), 708
iscomplex() (in module numpy), 700
iscomplexobj() (in module numpy), 701
iscontiguous() (numpy.ma.MaskedArray method), 259
isdecimal() (in module numpy.core.defchararray), 493
isdecimal() (numpy.chararray method), 148
isdecimal() (numpy.core.defchararray.chararray method),

505
isdigit() (in module numpy.core.defchararray), 494
isdigit() (numpy.chararray method), 148
isdigit() (numpy.core.defchararray.chararray method),

505
isfinite (in module numpy), 695
isfortran() (in module numpy), 701
isin() (in module numpy), 1100
isinf (in module numpy), 696
islower() (in module numpy.core.defchararray), 494
islower() (numpy.chararray method), 148
islower() (numpy.core.defchararray.chararray method),

505
isnan (in module numpy), 697
isnat (in module numpy), 698
isnative (numpy.dtype attribute), 76
isneginf() (in module numpy), 698
isnumeric() (in module numpy.core.defchararray), 494
isnumeric() (numpy.chararray method), 148
isnumeric() (numpy.core.defchararray.chararray method),

505
isposinf() (in module numpy), 699
isreal() (in module numpy), 702
isrealobj() (in module numpy), 702
isscalar() (in module numpy), 703
issctype() (in module numpy), 536
isspace() (in module numpy.core.defchararray), 495
isspace() (numpy.chararray method), 148
isspace() (numpy.core.defchararray.chararray method),

505
issubclass_() (in module numpy), 537

1348 Index



NumPy Reference, Release 1.15.1

issubdtype() (in module numpy), 536
issubsctype() (in module numpy), 536
istitle() (in module numpy.core.defchararray), 495
istitle() (numpy.chararray method), 148
istitle() (numpy.core.defchararray.chararray method), 505
isupper() (in module numpy.core.defchararray), 495
isupper() (numpy.chararray method), 148
isupper() (numpy.core.defchararray.chararray method),

505
item() (numpy.chararray method), 148
item() (numpy.core.defchararray.chararray method), 506
item() (numpy.generic method), 57
item() (numpy.ma.MaskedArray method), 241
item() (numpy.matrix method), 116
item() (numpy.ndarray method), 14
item() (numpy.recarray method), 172
item() (numpy.record method), 191
itemset() (numpy.generic method), 57
itemset() (numpy.matrix method), 117
itemset() (numpy.ndarray method), 15
itemset() (numpy.recarray method), 173
itemset() (numpy.record method), 191
itemsize (numpy.dtype attribute), 73
itemsize (numpy.generic attribute), 51
itemsize (numpy.ma.MaskedArray attribute), 224
itemsize (numpy.ndarray attribute), 33
iterator

C-API, 1262, 1278
iternext() (numpy.nditer method), 620
ix_() (in module numpy), 593

J
join() (in module numpy.core.defchararray), 482
join() (numpy.chararray method), 149
join() (numpy.core.defchararray.chararray method), 506

K
kaiser() (in module numpy), 1184
keyword arguments

ufunc, 377
kind (numpy.dtype attribute), 73
knownfailureif() (in module numpy.testing.decorators),

1167
kron() (in module numpy), 666

L
lag2poly() (in module numpy.polynomial.laguerre), 917
lagadd() (in module numpy.polynomial.laguerre), 911
lagcompanion() (in module numpy.polynomial.laguerre),

916
lagder() (in module numpy.polynomial.laguerre), 909
lagdiv() (in module numpy.polynomial.laguerre), 913
lagdomain (in module numpy.polynomial.laguerre), 916
lagfit() (in module numpy.polynomial.laguerre), 905

lagfromroots() (in module numpy.polynomial.laguerre),
904

laggauss() (in module numpy.polynomial.laguerre), 915
laggrid2d() (in module numpy.polynomial.laguerre), 902
laggrid3d() (in module numpy.polynomial.laguerre), 903
lagint() (in module numpy.polynomial.laguerre), 910
lagline() (in module numpy.polynomial.laguerre), 917
lagmul() (in module numpy.polynomial.laguerre), 912
lagmulx() (in module numpy.polynomial.laguerre), 913
lagone (in module numpy.polynomial.laguerre), 916
lagpow() (in module numpy.polynomial.laguerre), 914
lagroots() (in module numpy.polynomial.laguerre), 904
lagsub() (in module numpy.polynomial.laguerre), 912
lagtrim() (in module numpy.polynomial.laguerre), 916
Laguerre (class in numpy.polynomial.laguerre), 893
lagval() (in module numpy.polynomial.laguerre), 900
lagval2d() (in module numpy.polynomial.laguerre), 901
lagval3d() (in module numpy.polynomial.laguerre), 902
lagvander() (in module numpy.polynomial.laguerre), 907
lagvander2d() (in module numpy.polynomial.laguerre),

908
lagvander3d() (in module numpy.polynomial.laguerre),

908
lagweight() (in module numpy.polynomial.laguerre), 915
lagx (in module numpy.polynomial.laguerre), 916
lagzero (in module numpy.polynomial.laguerre), 916
laplace() (in module numpy.random), 1008
laplace() (numpy.random.RandomState method), 1056
lcm (in module numpy), 767
ldexp (in module numpy), 765
left_shift (in module numpy), 474
leg2poly() (in module numpy.polynomial.legendre), 892
legadd() (in module numpy.polynomial.legendre), 886
legcompanion() (in module numpy.polynomial.legendre),

890
legder() (in module numpy.polynomial.legendre), 884
legdiv() (in module numpy.polynomial.legendre), 888
legdomain (in module numpy.polynomial.legendre), 891
Legendre (class in numpy.polynomial.legendre), 868
legfit() (in module numpy.polynomial.legendre), 880
legfromroots() (in module numpy.polynomial.legendre),

879
leggauss() (in module numpy.polynomial.legendre), 889
leggrid2d() (in module numpy.polynomial.legendre), 877
leggrid3d() (in module numpy.polynomial.legendre), 878
legint() (in module numpy.polynomial.legendre), 884
legline() (in module numpy.polynomial.legendre), 891
legmul() (in module numpy.polynomial.legendre), 887
legmulx() (in module numpy.polynomial.legendre), 888
legone (in module numpy.polynomial.legendre), 891
legpow() (in module numpy.polynomial.legendre), 889
legroots() (in module numpy.polynomial.legendre), 878
legsub() (in module numpy.polynomial.legendre), 886
legtrim() (in module numpy.polynomial.legendre), 891

Index 1349



NumPy Reference, Release 1.15.1

legval() (in module numpy.polynomial.legendre), 875
legval2d() (in module numpy.polynomial.legendre), 876
legval3d() (in module numpy.polynomial.legendre), 876
legvander() (in module numpy.polynomial.legendre), 882
legvander2d() (in module numpy.polynomial.legendre),

882
legvander3d() (in module numpy.polynomial.legendre),

883
legweight() (in module numpy.polynomial.legendre), 890
legx (in module numpy.polynomial.legendre), 891
legzero (in module numpy.polynomial.legendre), 891
less (in module numpy), 711
less() (in module numpy.core.defchararray), 491
less_equal (in module numpy), 712
less_equal() (in module numpy.core.defchararray), 490
lexsort() (in module numpy), 1105
LinAlgError, 692
linspace() (in module numpy), 417
linspace() (numpy.polynomial.chebyshev.Chebyshev

method), 848
linspace() (numpy.polynomial.hermite.Hermite method),

924
linspace() (numpy.polynomial.hermite_e.HermiteE

method), 949
linspace() (numpy.polynomial.laguerre.Laguerre

method), 898
linspace() (numpy.polynomial.legendre.Legendre

method), 873
linspace() (numpy.polynomial.polynomial.Polynomial

method), 824
ljust() (in module numpy.core.defchararray), 482
ljust() (numpy.chararray method), 149
ljust() (numpy.core.defchararray.chararray method), 506
load() (in module numpy), 625
load() (in module numpy.ma), 311
load_library() (in module numpy.ctypeslib), 518
loads() (in module numpy.ma), 311
loadtxt() (in module numpy), 412
log (in module numpy), 756
log10 (in module numpy), 756
log1p (in module numpy), 758
log2 (in module numpy), 757
logaddexp (in module numpy), 759
logaddexp2 (in module numpy), 760
logical_and (in module numpy), 704
logical_not (in module numpy), 705
logical_or (in module numpy), 704
logical_xor (in module numpy), 706
logistic() (in module numpy.random), 1009
logistic() (numpy.random.RandomState method), 1057
lognormal() (in module numpy.random), 1010
lognormal() (numpy.random.RandomState method), 1058
logseries() (in module numpy.random), 1012
logseries() (numpy.random.RandomState method), 1060

logspace() (in module numpy), 418
lookfor() (in module numpy), 584
lower() (in module numpy.core.defchararray), 483
lower() (numpy.chararray method), 149
lower() (numpy.core.defchararray.chararray method), 507
lstrip() (in module numpy.core.defchararray), 483
lstrip() (numpy.chararray method), 150
lstrip() (numpy.core.defchararray.chararray method), 507
lstsq() (in module numpy.linalg), 687

M
MachAr (class in numpy), 534
make_config_py() (numpy.distutils.misc_util.Configuration

method), 1196
make_mask() (in module numpy.ma), 297
make_mask_descr() (in module numpy.ma), 299
make_mask_none() (in module numpy.ma), 298
make_svn_version_py() (numpy.distutils.misc_util.Configuration

method), 1196
mapdomain() (in module numpy.polynomial.polyutils),

972
mapparms() (in module numpy.polynomial.polyutils),

973
mapparms() (numpy.polynomial.chebyshev.Chebyshev

method), 849
mapparms() (numpy.polynomial.hermite.Hermite

method), 924
mapparms() (numpy.polynomial.hermite_e.HermiteE

method), 949
mapparms() (numpy.polynomial.laguerre.Laguerre

method), 899
mapparms() (numpy.polynomial.legendre.Legendre

method), 874
mapparms() (numpy.polynomial.polynomial.Polynomial

method), 824
mask (numpy.ma.masked_array attribute), 300
mask (numpy.ma.MaskedArray attribute), 219, 281
mask_cols() (in module numpy.ma), 305
mask_indices() (in module numpy), 597
mask_or() (in module numpy.ma), 299
mask_rowcols() (in module numpy.ma), 305
mask_rows() (in module numpy.ma), 307
masked (in module numpy.ma), 218
masked arrays, 201
masked_all() (in module numpy.ma), 269
masked_all_like() (in module numpy.ma), 269
masked_array (in module numpy.ma), 203
masked_equal() (in module numpy.ma), 206
masked_greater() (in module numpy.ma), 206
masked_greater_equal() (in module numpy.ma), 206
masked_inside() (in module numpy.ma), 207
masked_invalid() (in module numpy.ma), 207
masked_less() (in module numpy.ma), 208
masked_less_equal() (in module numpy.ma), 208

1350 Index



NumPy Reference, Release 1.15.1

masked_not_equal() (in module numpy.ma), 208
masked_object() (in module numpy.ma), 209
masked_outside() (in module numpy.ma), 210
masked_print_options (in module numpy.ma), 219
masked_values() (in module numpy.ma), 210
masked_where() (in module numpy.ma), 211
MaskedArray (class in numpy.ma), 219
MaskType (in module numpy.ma), 264
mat() (in module numpy), 429
matmul() (in module numpy), 655
matrix, 41, 100
matrix (class in numpy), 103
matrix_power() (in module numpy.linalg), 665
matrix_rank() (in module numpy.linalg), 682
max() (in module numpy.ma), 326
max() (numpy.generic method), 57
max() (numpy.ma.MaskedArray method), 250
max() (numpy.matrix method), 117
max() (numpy.ndarray method), 15
max() (numpy.recarray method), 173
max() (numpy.record method), 191
maximum (in module numpy), 792
maximum_fill_value() (in module numpy.ma), 313
may_share_memory() (in module numpy), 806
mean (in module numpy.ma), 320
mean() (in module numpy), 1134
mean() (numpy.generic method), 57
mean() (numpy.ma.MaskedArray method), 250
mean() (numpy.matrix method), 118
mean() (numpy.ndarray method), 15
mean() (numpy.recarray method), 174
mean() (numpy.record method), 191
median() (in module numpy), 1132
median() (in module numpy.ma), 321
memmap (class in numpy), 136
memory maps, 136
memory model

ndarray, 1295
meshgrid() (in module numpy), 421
methods

accumulate, ufunc, 1301
reduce, ufunc, 1301
reduceat, ufunc, 1301
ufunc, 383

mgrid (in module numpy), 423
min() (in module numpy.ma), 326
min() (numpy.generic method), 57
min() (numpy.ma.MaskedArray method), 251
min() (numpy.matrix method), 118
min() (numpy.ndarray method), 16
min() (numpy.recarray method), 174
min() (numpy.record method), 191
min_scalar_type() (in module numpy), 529
minimum (in module numpy), 793

mintypecode() (in module numpy), 540
mirr() (in module numpy), 575
mod (in module numpy), 778
mod() (in module numpy.core.defchararray), 480
modf (in module numpy), 779
moveaxis() (in module numpy), 433
mr_ (in module numpy.ma), 294
msort() (in module numpy), 1107
multi_dot() (in module numpy.linalg), 651
multinomial() (in module numpy.random), 1013
multinomial() (numpy.random.RandomState method),

1062
multiply (in module numpy), 771
multiply() (in module numpy.core.defchararray), 480
multivariate_normal() (in module numpy.random), 1014
multivariate_normal() (numpy.random.RandomState

method), 1063

N
name (numpy.dtype attribute), 73
names (numpy.dtype attribute), 75
NAN (in module numpy), 363
NaN (in module numpy), 365
nan (in module numpy), 367
nan_to_num() (in module numpy), 796
nanargmax() (in module numpy), 1112
nanargmin() (in module numpy), 1113
nancumprod() (in module numpy), 744
nancumsum() (in module numpy), 745
nanmax() (in module numpy), 1122
nanmean() (in module numpy), 1140
nanmedian() (in module numpy), 1138
nanmin() (in module numpy), 1121
nanpercentile() (in module numpy), 1126
nanprod() (in module numpy), 740
nanquantile() (in module numpy), 1130
nanstd() (in module numpy), 1141
nansum() (in module numpy), 741
nanvar() (in module numpy), 1142
nargs (numpy.ufunc attribute), 380
nbytes (numpy.ma.MaskedArray attribute), 224
nbytes (numpy.ndarray attribute), 33
ndarray, 85

C-API, 1221, 1262
memory model, 1295
special methods getitem, 77
special methods setitem, 77
view, 79

ndarray (class in numpy), 4
NDArrayOperatorsMixin (class in numpy.lib.mixins), 806
ndenumerate (class in numpy), 198
ndim (numpy.generic attribute), 51
ndim (numpy.ma.MaskedArray attribute), 224
ndim (numpy.ndarray attribute), 33

Index 1351



NumPy Reference, Release 1.15.1

ndincr() (numpy.ndindex method), 621
ndindex (class in numpy), 620
nditer (class in numpy), 615
ndpointer() (in module numpy.ctypeslib), 519
negative (in module numpy), 770
negative_binomial() (in module numpy.random), 1016
negative_binomial() (numpy.random.RandomState

method), 1064
nested_iters() (in module numpy), 621
newaxis, 77
newaxis (in module numpy), 79, 368
newbyteorder() (numpy.dtype method), 66
newbyteorder() (numpy.generic method), 57
newbyteorder() (numpy.matrix method), 119
newbyteorder() (numpy.ndarray method), 16
newbyteorder() (numpy.recarray method), 174
newbyteorder() (numpy.record method), 192
next() (numpy.ndenumerate method), 198
next() (numpy.ndindex method), 621
nextafter (in module numpy), 766
nin (numpy.ufunc attribute), 379
NINF (in module numpy), 363
NO_IMPORT_ARRAY (C macro), 1255
NO_IMPORT_UFUNC (C variable), 1283
nomask (in module numpy.ma), 219
non-contiguous, 29
noncentral_chisquare() (in module numpy.random), 1017
noncentral_chisquare() (numpy.random.RandomState

method), 1065
noncentral_f() (in module numpy.random), 1019
noncentral_f() (numpy.random.RandomState method),

1067
nonzero (in module numpy.ma), 277
nonzero() (in module numpy), 590
nonzero() (numpy.chararray method), 150
nonzero() (numpy.core.defchararray.chararray method),

507
nonzero() (numpy.generic method), 58
nonzero() (numpy.ma.MaskedArray method), 242
nonzero() (numpy.matrix method), 120
nonzero() (numpy.ndarray method), 16
nonzero() (numpy.recarray method), 174
nonzero() (numpy.record method), 192
norm() (in module numpy.linalg), 678
normal() (in module numpy.random), 1020
normal() (numpy.random.RandomState method), 1068
not_equal (in module numpy), 713
not_equal() (in module numpy.core.defchararray), 490
notmasked_contiguous() (in module numpy.ma), 302
notmasked_edges() (in module numpy.ma), 303
nout (numpy.ufunc attribute), 380
nper() (in module numpy), 576
npv() (in module numpy), 571
NPY_1_PI (C variable), 1288

NPY_2_PI (C variable), 1288
NPY_ALLOW_C_API (C macro), 1259
NPY_ALLOW_C_API_DEF (C macro), 1259
NPY_ANYORDER (C variable), 1261
NPY_ARRAY_ALIGNED (C variable), 1226, 1237
NPY_ARRAY_BEHAVED (C variable), 1226, 1238
NPY_ARRAY_BEHAVED_NS (C variable), 1228, 1238
NPY_ARRAY_C_CONTIGUOUS (C variable), 1226,

1237
NPY_ARRAY_CARRAY (C variable), 1226, 1238
NPY_ARRAY_CARRAY_RO (C variable), 1226, 1238
NPY_ARRAY_DEFAULT (C variable), 1227, 1238
NPY_ARRAY_ELEMENTSTRIDES (C variable), 1228
NPY_ARRAY_ENSUREARRAY (C variable), 1226,

1238
NPY_ARRAY_ENSURECOPY (C variable), 1226, 1238
NPY_ARRAY_F_CONTIGUOUS (C variable), 1226,

1237
NPY_ARRAY_FARRAY (C variable), 1226, 1238
NPY_ARRAY_FARRAY_RO (C variable), 1226, 1238
NPY_ARRAY_FORCECAST (C variable), 1226, 1238
NPY_ARRAY_IN_ARRAY (C variable), 1227
NPY_ARRAY_IN_FARRAY (C variable), 1227
NPY_ARRAY_INOUT_ARRAY (C variable), 1227
NPY_ARRAY_INOUT_FARRAY (C variable), 1227
NPY_ARRAY_NOTSWAPPED (C variable), 1228, 1238
NPY_ARRAY_OUT_FARRAY (C variable), 1227
NPY_ARRAY_OWNDATA (C variable), 1237
NPY_ARRAY_UPDATE_ALL (C variable), 1238
NPY_ARRAY_UPDATEIFCOPY (C variable), 1226,

1238
NPY_ARRAY_WRITEABLE (C variable), 1226, 1237
NPY_ARRAY_WRITEBACKIFCOPY (C variable),

1226, 1237
NPY_AUXDATA_CLONE (C function), 1248
NPY_AUXDATA_FREE (C function), 1248
NPY_BEGIN_ALLOW_THREADS (C macro), 1258
NPY_BEGIN_THREADS (C macro), 1258
NPY_BEGIN_THREADS_DEF (C macro), 1258
NPY_BEGIN_THREADS_DESCR (C function), 1258
NPY_BEGIN_THREADS_THRESHOLDED (C func-

tion), 1259
NPY_BIG_ENDIAN (C variable), 1216
npy_bool (C type), 1220
NPY_BOOL (C variable), 1217
NPY_BUFSIZE (C variable), 1259
NPY_BYTE (C variable), 1217
NPY_BYTE_ORDER (C variable), 1216
NPY_CASTING (C type), 1261
NPY_CDOUBLE (C variable), 1218
NPY_CFLOAT (C variable), 1218
npy_clear_floatstatus (C function), 1289
npy_clear_floatstatus_barrier (C function), 1289
NPY_CLIP (C variable), 1242, 1261

1352 Index



NumPy Reference, Release 1.15.1

NPY_CLIPMODE (C type), 1261
NPY_CLONGDOUBLE (C variable), 1218
NPY_COMPLEX128 (C variable), 1218
NPY_COMPLEX64 (C variable), 1218
npy_copysign (C function), 1287
NPY_CORDER (C variable), 1261
NPY_CPU_AMD64 (C variable), 1216
NPY_CPU_IA64 (C variable), 1216
NPY_CPU_PARISC (C variable), 1216
NPY_CPU_PPC (C variable), 1216
NPY_CPU_PPC64 (C variable), 1216
NPY_CPU_S390 (C variable), 1216
NPY_CPU_SPARC (C variable), 1216
NPY_CPU_SPARC64 (C variable), 1216
NPY_CPU_X86 (C variable), 1216
NPY_DATETIME (C variable), 1218
NPY_DEFAULT_TYPE (C variable), 1219
NPY_DISABLE_C_API (C macro), 1259
NPY_DOUBLE (C variable), 1218
npy_double_to_half (C function), 1291
npy_doublebits_to_halfbits (C function), 1292
NPY_E (C variable), 1287
NPY_END_ALLOW_THREADS (C macro), 1258
NPY_END_THREADS (C macro), 1258
NPY_END_THREADS_DESCR (C function), 1258
NPY_EQUIV_CASTING (C variable), 1262
NPY_EULER (C variable), 1288
NPY_FAIL (C variable), 1260
NPY_FALSE (C variable), 1260
NPY_FLOAT (C variable), 1218
NPY_FLOAT16 (C variable), 1218
NPY_FLOAT32 (C variable), 1218
NPY_FLOAT64 (C variable), 1218
npy_float_to_half (C function), 1291
npy_floatbits_to_halfbits (C function), 1292
NPY_FORTRANORDER (C variable), 1261
NPY_FROM_FIELDS (C variable), 1204
npy_get_floatstatus (C function), 1288
npy_get_floatstatus_barrier (C function), 1289
NPY_HALF (C variable), 1218
npy_half_copysign (C function), 1291
npy_half_eq (C function), 1291
npy_half_eq_nonan (C function), 1291
npy_half_ge (C function), 1291
npy_half_gt (C function), 1291
npy_half_isfinite (C function), 1291
npy_half_isinf (C function), 1291
npy_half_isnan (C function), 1291
npy_half_iszero (C function), 1291
npy_half_le (C function), 1291
npy_half_le_nonan (C function), 1291
npy_half_lt (C function), 1291
npy_half_lt_nonan (C function), 1291
NPY_HALF_NAN (C variable), 1290

npy_half_ne (C function), 1291
NPY_HALF_NEGONE (C variable), 1290
npy_half_nextafter (C function), 1292
NPY_HALF_NINF (C variable), 1290
NPY_HALF_NZERO (C variable), 1290
NPY_HALF_ONE (C variable), 1290
NPY_HALF_PINF (C variable), 1290
NPY_HALF_PZERO (C variable), 1290
npy_half_signbit (C function), 1291
npy_half_spacing (C function), 1291
npy_half_to_double (C function), 1290
npy_half_to_float (C function), 1290
NPY_HALF_ZERO (C variable), 1290
npy_halfbits_to_doublebits (C function), 1292
npy_halfbits_to_floatbits (C function), 1292
NPY_INFINITY (C variable), 1287
NPY_INT (C variable), 1217
NPY_INT16 (C variable), 1217
NPY_INT32 (C variable), 1217
NPY_INT64 (C variable), 1217
NPY_INT8 (C variable), 1217
NPY_INTP (C variable), 1219
npy_isfinite (C function), 1287
npy_isinf (C function), 1287
npy_isnan (C function), 1287
NPY_ITEM_HASOBJECT (C variable), 1204
NPY_ITEM_IS_POINTER (C variable), 1204
NPY_ITEM_REFCOUNT (C variable), 1204
NPY_ITER_ALIGNED (C variable), 1269
NPY_ITER_ALLOCATE (C variable), 1269
NPY_ITER_ARRAYMASK (C variable), 1270
NPY_ITER_BUFFERED (C variable), 1268
NPY_ITER_C_INDEX (C variable), 1267
NPY_ITER_COMMON_DTYPE (C variable), 1267
NPY_ITER_CONTIG (C variable), 1269
NPY_ITER_COPY (C variable), 1269
NPY_ITER_COPY_IF_OVERLAP (C variable), 1268
NPY_ITER_DELAY_BUFALLOC (C variable), 1268
NPY_ITER_DONT_NEGATE_STRIDES (C variable),

1267
NPY_ITER_EXTERNAL_LOOP (C variable), 1267
NPY_ITER_F_INDEX (C variable), 1267
NPY_ITER_GROWINNER (C variable), 1268
NPY_ITER_MULTI_INDEX (C variable), 1267
NPY_ITER_NBO (C variable), 1269
NPY_ITER_NO_BROADCAST (C variable), 1269
NPY_ITER_NO_SUBTYPE (C variable), 1269
NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE

(C variable), 1270
NPY_ITER_RANGED (C variable), 1268
NPY_ITER_READONLY (C variable), 1269
NPY_ITER_READWRITE (C variable), 1269
NPY_ITER_REDUCE_OK (C variable), 1267
NPY_ITER_REFS_OK (C variable), 1267

Index 1353



NumPy Reference, Release 1.15.1

NPY_ITER_UPDATEIFCOPY (C variable), 1269
NPY_ITER_WRITEMASKED (C variable), 1270
NPY_ITER_WRITEONLY (C variable), 1269
NPY_ITER_ZEROSIZE_OK (C variable), 1267
NPY_KEEPORDER (C variable), 1261
NPY_LIST_PICKLE (C variable), 1204
NPY_LITTLE_ENDIAN (C variable), 1216
NPY_LOG10E (C variable), 1287
NPY_LOG2E (C variable), 1287
NPY_LOGE10 (C variable), 1287
NPY_LOGE2 (C variable), 1287
NPY_LONG (C variable), 1217
NPY_LONGDOUBLE (C variable), 1218
NPY_LONGLONG (C variable), 1217
NPY_LOOP_BEGIN_THREADS (C macro), 1279
NPY_LOOP_END_THREADS (C macro), 1279
NPY_MASK (C variable), 1219
NPY_MAX_BUFSIZE (C variable), 1259
NPY_MAXDIMS (C variable), 1260
NPY_MIN_BUFSIZE (C variable), 1259
NPY_NAN (C variable), 1287
NPY_NEEDS_INIT (C variable), 1204
NPY_NEEDS_PYAPI (C variable), 1204
npy_nextafter (C function), 1288
NPY_NO_CASTING (C variable), 1261
NPY_NOTYPE (C variable), 1219
NPY_NSCALARKINDS (C variable), 1261
NPY_NSORTS (C variable), 1261
NPY_NTYPES (C variable), 1219
NPY_NUM_FLOATTYPE (C variable), 1260
NPY_NZERO (C variable), 1287
NPY_OBJECT (C variable), 1218
NPY_OBJECT_DTYPE_FLAGS (C variable), 1204
NPY_ORDER (C type), 1261
NPY_OUT_ARRAY (C variable), 1227
NPY_PI (C variable), 1287
NPY_PI_2 (C variable), 1288
NPY_PI_4 (C variable), 1288
NPY_PRIORITY (C variable), 1259
NPY_PZERO (C variable), 1287
NPY_RAISE (C variable), 1242, 1261
NPY_SAFE_CASTING (C variable), 1262
NPY_SAME_KIND_CASTING (C variable), 1262
NPY_SCALAR_PRIORITY (C variable), 1259
NPY_SCALARKIND (C type), 1261
npy_set_floatstatus_divbyzero (C function), 1288
npy_set_floatstatus_invalid (C function), 1288
npy_set_floatstatus_overflow (C function), 1288
npy_set_floatstatus_underflow (C function), 1288
NPY_SHORT (C variable), 1217
npy_signbit (C function), 1287
NPY_SIZEOF_DOUBLE (C variable), 1216
NPY_SIZEOF_FLOAT (C variable), 1216
NPY_SIZEOF_INT (C variable), 1216

NPY_SIZEOF_LONG (C variable), 1216
NPY_SIZEOF_LONG_DOUBLE (C variable), 1216
NPY_SIZEOF_LONGLONG (C variable), 1216
NPY_SIZEOF_PY_INTPTR_T (C variable), 1216
NPY_SIZEOF_PY_LONG_LONG (C variable), 1216
NPY_SIZEOF_SHORT (C variable), 1216
NPY_SORTKIND (C type), 1261
npy_spacing (C function), 1288
NPY_STRING (C variable), 1218
NPY_SUBTYPE_PRIORITY (C variable), 1259
NPY_SUCCEED (C variable), 1260
NPY_TIMEDELTA (C variable), 1218
NPY_TRUE (C variable), 1260
NPY_UBYTE (C variable), 1217
NPY_UINT (C variable), 1218
NPY_UINT16 (C variable), 1217
NPY_UINT32 (C variable), 1218
NPY_UINT64 (C variable), 1218
NPY_UINT8 (C variable), 1217
NPY_UINTP (C variable), 1219
NPY_ULONG (C variable), 1218
NPY_ULONGLONG (C variable), 1218
NPY_UNICODE (C variable), 1218
NPY_UNSAFE_CASTING (C variable), 1262
NPY_USE_GETITEM (C variable), 1204
NPY_USE_SETITEM (C variable), 1204
NPY_USERDEF (C variable), 1219
NPY_USHORT (C variable), 1217
NPY_VERSION (C variable), 1260
NPY_VOID (C variable), 1219
NPY_WRAP (C variable), 1242, 1261
NpyAuxData (C type), 1247
NpyAuxData_CloneFunc (C type), 1248
NpyAuxData_FreeFunc (C type), 1248
NpyIter (C type), 1265
NpyIter_AdvancedNew (C function), 1270
NpyIter_Copy (C function), 1271
NpyIter_CreateCompatibleStrides (C function), 1275
NpyIter_Deallocate (C function), 1272
NpyIter_EnableExternalLoop (C function), 1272
NpyIter_GetAxisStrideArray (C function), 1274
NpyIter_GetBufferSize (C function), 1274
NpyIter_GetDataPtrArray (C function), 1277
NpyIter_GetDescrArray (C function), 1275
NpyIter_GetFirstMaskNAOp (C function), 1274
NpyIter_GetGetMultiIndex (C function), 1277
NpyIter_GetIndexPtr (C function), 1278
NpyIter_GetInitialDataPtrArray (C function), 1278
NpyIter_GetInnerFixedStrideArray (C function), 1278
NpyIter_GetInnerLoopSizePtr (C function), 1278
NpyIter_GetInnerStrideArray (C function), 1278
NpyIter_GetIterIndex (C function), 1273
NpyIter_GetIterIndexRange (C function), 1273
NpyIter_GetIterNext (C function), 1276

1354 Index



NumPy Reference, Release 1.15.1

NpyIter_GetIterSize (C function), 1273
NpyIter_GetIterView (C function), 1275
NpyIter_GetMaskNAIndexArray (C function), 1275
NpyIter_GetMultiIndexFunc (C type), 1265
NpyIter_GetNDim (C function), 1274
NpyIter_GetNOp (C function), 1274
NpyIter_GetOperandArray (C function), 1275
NpyIter_GetReadFlags (C function), 1275
NpyIter_GetShape (C function), 1275
NpyIter_GetWriteFlags (C function), 1275
NpyIter_GotoIndex (C function), 1273
NpyIter_GotoIterIndex (C function), 1274
NpyIter_GotoMultiIndex (C function), 1273
NpyIter_HasDelayedBufAlloc (C function), 1274
NpyIter_HasExternalLoop (C function), 1274
NpyIter_HasIndex (C function), 1274
NpyIter_HasMultiIndex (C function), 1274
NpyIter_IsBuffered (C function), 1274
NpyIter_IsFirstVisit (C function), 1275
NpyIter_IsGrowInner (C function), 1274
NpyIter_IterNextFunc (C type), 1265
NpyIter_MultiNew (C function), 1266
NpyIter_New (C function), 1266
NpyIter_RemoveMultiIndex (C function), 1271
NpyIter_RequiresBuffering (C function), 1274
NpyIter_Reset (C function), 1272
NpyIter_ResetBasePointers (C function), 1272
NpyIter_ResetToIterIndexRange (C function), 1272
NpyIter_Type (C type), 1265
ntypes (numpy.ufunc attribute), 380
num (numpy.dtype attribute), 73
numpy (module), 1
numpy.distutils (module), 1187
numpy.distutils.exec_command (module), 1196
numpy.distutils.misc_util (module), 1187
numpy.doc.constants (module), 363
numpy.doc.internals (module), 1302
numpy.dual (module), 540
numpy.fft (module), 546
numpy.lib.format (module), 647
numpy.lib.scimath (module), 541
numpy.polynomial.polyutils (module), 969
NumpyVersion (class in numpy.lib), 808
NZERO (in module numpy), 364

O
obj2sctype() (in module numpy), 531
offset, 28
ogrid (in module numpy), 424
ones (in module numpy.ma), 270
ones() (in module numpy), 398
ones() (in module numpy.matlib), 801
ones_like() (in module numpy), 399
open() (numpy.DataSource method), 647

operation, 41, 254
operator, 41, 254
outer() (in module numpy), 654
outer() (in module numpy.ma), 333
outer() (numpy.ufunc method), 387
outerproduct() (in module numpy.ma), 335

P
packbits() (in module numpy), 476
pad() (in module numpy), 808
pareto() (in module numpy.random), 1021
pareto() (numpy.random.RandomState method), 1070
partition() (in module numpy), 1108
partition() (in module numpy.core.defchararray), 484
partition() (numpy.matrix method), 120
partition() (numpy.ndarray method), 16
partition() (numpy.recarray method), 175
paths() (numpy.distutils.misc_util.Configuration method),

1195
percentile() (in module numpy), 1124
permutation() (in module numpy.random), 996
permutation() (numpy.random.RandomState method),

1071
pi (in module numpy), 369
piecewise() (in module numpy), 583
PINF (in module numpy), 365
pinv() (in module numpy.linalg), 690
place() (in module numpy), 610
pmt() (in module numpy), 572
poisson() (in module numpy.random), 1023
poisson() (numpy.random.RandomState method), 1072
poly() (in module numpy), 977
poly1d (class in numpy), 974
poly2cheb() (in module numpy.polynomial.chebyshev),

867
poly2herm() (in module numpy.polynomial.hermite), 943
poly2herme() (in module numpy.polynomial.hermite_e),

968
poly2lag() (in module numpy.polynomial.laguerre), 918
poly2leg() (in module numpy.polynomial.legendre), 892
polyadd() (in module numpy), 984
polyadd() (in module numpy.polynomial.polynomial),

838
PolyBase (class in numpy.polynomial.polyutils), 970
polycompanion() (in module

numpy.polynomial.polynomial), 841
polyder() (in module numpy), 982
polyder() (in module numpy.polynomial.polynomial),

836
polydiv() (in module numpy), 985
polydiv() (in module numpy.polynomial.polynomial), 840
polydomain (in module numpy.polynomial.polynomial),

841
PolyDomainError, 969

Index 1355



NumPy Reference, Release 1.15.1

PolyError, 969
polyfit() (in module numpy), 980
polyfit() (in module numpy.ma), 337
polyfit() (in module numpy.polynomial.polynomial), 832
polyfromroots() (in module

numpy.polynomial.polynomial), 830
polygrid2d() (in module numpy.polynomial.polynomial),

828
polygrid3d() (in module numpy.polynomial.polynomial),

829
polyint() (in module numpy), 983
polyint() (in module numpy.polynomial.polynomial), 837
polyline() (in module numpy.polynomial.polynomial),

842
polymul() (in module numpy), 986
polymul() (in module numpy.polynomial.polynomial),

839
polymulx() (in module numpy.polynomial.polynomial),

839
Polynomial (class in numpy.polynomial.polynomial), 819
polyone (in module numpy.polynomial.polynomial), 841
polypow() (in module numpy.polynomial.polynomial),

840
polyroots() (in module numpy.polynomial.polynomial),

829
polysub() (in module numpy), 986
polysub() (in module numpy.polynomial.polynomial),

838
polytrim() (in module numpy.polynomial.polynomial),

841
polyval() (in module numpy), 976
polyval() (in module numpy.polynomial.polynomial), 826
polyval2d() (in module numpy.polynomial.polynomial),

827
polyval3d() (in module numpy.polynomial.polynomial),

827
polyvalfromroots() (in module

numpy.polynomial.polynomial), 831
polyvander() (in module numpy.polynomial.polynomial),

834
polyvander2d() (in module

numpy.polynomial.polynomial), 835
polyvander3d() (in module

numpy.polynomial.polynomial), 835
polyx (in module numpy.polynomial.polynomial), 841
polyzero (in module numpy.polynomial.polynomial), 841
positive (in module numpy), 770
power (in module numpy), 773
power() (in module numpy.ma), 322
power() (in module numpy.random), 1024
power() (numpy.random.RandomState method), 1073
ppmt() (in module numpy), 573
pprint() (numpy.record method), 192
printoptions() (in module numpy), 644

prod (in module numpy.ma), 322
prod() (in module numpy), 737
prod() (numpy.generic method), 58
prod() (numpy.ma.MaskedArray method), 251
prod() (numpy.matrix method), 121
prod() (numpy.ndarray method), 17
prod() (numpy.recarray method), 175
prod() (numpy.record method), 192
product() (numpy.ma.MaskedArray method), 251
promote_types() (in module numpy), 528
protocol

array, 348
ptp() (in module numpy), 1123
ptp() (in module numpy.ma), 327
ptp() (numpy.generic method), 58
ptp() (numpy.ma.MaskedArray method), 252
ptp() (numpy.matrix method), 121
ptp() (numpy.ndarray method), 17
ptp() (numpy.recarray method), 176
ptp() (numpy.record method), 192
put() (in module numpy), 611
put() (numpy.chararray method), 150
put() (numpy.core.defchararray.chararray method), 507
put() (numpy.generic method), 58
put() (numpy.ma.MaskedArray method), 244
put() (numpy.matrix method), 122
put() (numpy.ndarray method), 17
put() (numpy.recarray method), 176
put() (numpy.record method), 192
put_along_axis() (in module numpy), 611
putmask() (in module numpy), 613
pv() (in module numpy), 570
PY_ARRAY_UNIQUE_SYMBOL (C macro), 1255
PY_UFUNC_UNIQUE_SYMBOL (C variable), 1283
PyArray_All (C function), 1245
PyArray_Any (C function), 1245
PyArray_Arange (C function), 1225
PyArray_ArangeObj (C function), 1225
PyArray_ArgMax (C function), 1243
PyArray_ArgMin (C function), 1244
PyArray_ArgPartition (C function), 1243
PyArray_ArgSort (C function), 1242
PyArray_ArrayDescr.base (C member), 1205
PyArray_ArrayDescr.shape (C member), 1205
PyArray_ArrayType (C function), 1234
PyArray_ArrFuncs (C type), 1205
PyArray_ArrFuncs.argmax (C member), 1207
PyArray_ArrFuncs.argmin (C member), 1208
PyArray_ArrFuncs.argsort (C member), 1207
PyArray_ArrFuncs.cancastscalarkindto (C member),

1208
PyArray_ArrFuncs.cancastto (C member), 1208
PyArray_ArrFuncs.cast (C member), 1206
PyArray_ArrFuncs.castdict (C member), 1207

1356 Index



NumPy Reference, Release 1.15.1

PyArray_ArrFuncs.compare (C member), 1206
PyArray_ArrFuncs.copyswap (C member), 1206
PyArray_ArrFuncs.copyswapn (C member), 1206
PyArray_ArrFuncs.dotfunc (C member), 1207
PyArray_ArrFuncs.fastclip (C member), 1208
PyArray_ArrFuncs.fastputmask (C member), 1208
PyArray_ArrFuncs.fasttake (C member), 1208
PyArray_ArrFuncs.fill (C member), 1207
PyArray_ArrFuncs.fillwithscalar (C member), 1207
PyArray_ArrFuncs.fromstr (C member), 1207
PyArray_ArrFuncs.getitem (C member), 1206
PyArray_ArrFuncs.nonzero (C member), 1207
PyArray_ArrFuncs.scalarkind (C member), 1207
PyArray_ArrFuncs.scanfunc (C member), 1207
PyArray_ArrFuncs.setitem (C member), 1206
PyArray_ArrFuncs.sort (C member), 1207
PyArray_AsCArray (C function), 1245
PyArray_AxisConverter (C function), 1254
PyArray_BASE (C function), 1222
PyArray_BoolConverter (C function), 1254
PyArray_Broadcast (C function), 1250
PyArray_BroadcastToShape (C function), 1249
PyArray_BufferConverter (C function), 1254
PyArray_ByteorderConverter (C function), 1254
PyArray_BYTES (C function), 1222
PyArray_Byteswap (C function), 1240
PyArray_CanCastArrayTo (C function), 1234
PyArray_CanCastSafely (C function), 1233
PyArray_CanCastTo (C function), 1233
PyArray_CanCastTypeTo (C function), 1233
PyArray_CanCoerceScalar (C function), 1252
PyArray_Cast (C function), 1233
PyArray_CastingConverter (C function), 1255
PyArray_CastScalarToCtype (C function), 1252
PyArray_CastTo (C function), 1233
PyArray_CastToType (C function), 1233
PyArray_CEQ (C function), 1260
PyArray_CGE (C function), 1260
PyArray_CGT (C function), 1260
PyArray_Check (C function), 1230
PyArray_CheckAnyScalar (C function), 1231
PyArray_CheckAxis (C function), 1230
PyArray_CheckExact (C function), 1230
PyArray_CheckFromAny (C function), 1228
PyArray_CheckScalar (C function), 1231
PyArray_CheckStrides (C function), 1247
PyArray_CHKFLAGS (C function), 1238
PyArray_Choose (C function), 1242
PyArray_Chunk (C type), 1213
PyArray_Chunk.PyArray_Chunk.base (C member), 1214
PyArray_Chunk.PyArray_Chunk.flags (C member), 1214
PyArray_Chunk.PyArray_Chunk.len (C member), 1214
PyArray_Chunk.PyArray_Chunk.ptr (C member), 1214
PyArray_CLE (C function), 1260

PyArray_CLEARFLAGS (C function), 1222
PyArray_Clip (C function), 1244
PyArray_ClipmodeConverter (C function), 1255
PyArray_CLT (C function), 1260
PyArray_CNE (C function), 1260
PyArray_CompareLists (C function), 1247
PyArray_Compress (C function), 1243
PyArray_Concatenate (C function), 1246
PyArray_Conjugate (C function), 1244
PyArray_ContiguousFromAny (C function), 1229
PyArray_ConvertClipmodeSequence (C function), 1255
PyArray_Converter (C function), 1254
PyArray_ConvertToCommonType (C function), 1235
PyArray_CopyAndTranspose (C function), 1246
PyArray_CopyInto (C function), 1229
PyArray_Correlate (C function), 1246
PyArray_Correlate2 (C function), 1246
PyArray_CountNonzero (C function), 1243
PyArray_CumProd (C function), 1245
PyArray_CumSum (C function), 1245
PyArray_DATA (C function), 1222
PyArray_DESCR (C function), 1222
PyArray_Descr (C type), 1203
PyArray_Descr.alignment (C member), 1205
PyArray_Descr.byteorder (C member), 1204
PyArray_Descr.elsize (C member), 1205
PyArray_Descr.f (C member), 1205
PyArray_Descr.fields (C member), 1205
PyArray_Descr.flags (C member), 1204
PyArray_Descr.kind (C member), 1204
PyArray_Descr.subarray (C member), 1205
PyArray_Descr.type (C member), 1204
PyArray_Descr.type_num (C member), 1204
PyArray_Descr.typeobj (C member), 1203
Pyarray_DescrAlignConverter (C function), 1253
Pyarray_DescrAlignConverter2 (C function), 1253
PyArray_DescrCheck (C function), 1253
PyArray_DescrConverter (C function), 1253
PyArray_DescrConverter2 (C function), 1253
PyArray_DescrFromObject (C function), 1253
PyArray_DescrFromScalar (C function), 1253
PyArray_DescrFromType (C function), 1253
PyArray_DescrNew (C function), 1253
PyArray_DescrNewByteorder (C function), 1253
PyArray_DescrNewFromType (C function), 1253
PyArray_Diagonal (C function), 1243
PyArray_DIM (C function), 1222
PyArray_DIMS (C function), 1222
PyArray_Dims (C type), 1213
PyArray_Dims.PyArray_Dims.len (C member), 1213
PyArray_Dims.PyArray_Dims.ptr (C member), 1213
PyArray_DiscardWritebackIfCopy (C function), 1260
PyArray_DTYPE (C function), 1222
PyArray_Dump (C function), 1240

Index 1357



NumPy Reference, Release 1.15.1

PyArray_Dumps (C function), 1240
PyArray_EinsteinSum (C function), 1246
PyArray_EMPTY (C function), 1225
PyArray_Empty (C function), 1225
PyArray_ENABLEFLAGS (C function), 1222
PyArray_EnsureArray (C function), 1229
PyArray_EquivArrTypes (C function), 1233
PyArray_EquivByteorders (C function), 1233
PyArray_EquivTypenums (C function), 1233
PyArray_EquivTypes (C function), 1233
PyArray_FieldNames (C function), 1253
PyArray_FillObjectArray (C function), 1236
PyArray_FILLWBYTE (C function), 1225
PyArray_FillWithScalar (C function), 1240
PyArray_FLAGS (C function), 1223
PyArray_Flatten (C function), 1241
PyArray_Free (C function), 1246
PyArray_free (C function), 1258
PyArray_FROM_O (C function), 1229
PyArray_FROM_OF (C function), 1230
PyArray_FROM_OT (C function), 1230
PyArray_FROM_OTF (C function), 1230
PyArray_FROMANY (C function), 1230
PyArray_FromAny (C function), 1225
PyArray_FromArray (C function), 1228
PyArray_FromArrayAttr (C function), 1228
PyArray_FromBuffer (C function), 1229
PyArray_FromFile (C function), 1229
PyArray_FromInterface (C function), 1228
PyArray_FromObject (C function), 1229
PyArray_FromScalar (C function), 1252
PyArray_FromString (C function), 1229
PyArray_FromStructInterface (C function), 1228
PyArray_GetArrayParamsFromObject (C function), 1227
PyArray_GetCastFunc (C function), 1233
PyArray_GETCONTIGUOUS (C function), 1229
PyArray_GetEndianness (C function), 1217
PyArray_GetField (C function), 1240
PyArray_GETITEM (C function), 1223
PyArray_GetNDArrayCFeatureVersion (C function),

1257
PyArray_GetNDArrayCVersion (C function), 1256
PyArray_GetNumericOps (C function), 1257
PyArray_GetPriority (C function), 1259
PyArray_GetPtr (C function), 1223
PyArray_GETPTR1 (C function), 1223
PyArray_GETPTR2 (C function), 1223
PyArray_GETPTR3 (C function), 1223
PyArray_GETPTR4 (C function), 1223
PyArray_HasArrayInterface (C function), 1230
PyArray_HasArrayInterfaceType (C function), 1230
PyArray_HASFIELDS (C function), 1232
PyArray_INCREF (C function), 1236
PyArray_InitArrFuncs (C function), 1235

PyArray_InnerProduct (C function), 1246
PyArray_IntpConverter (C function), 1254
PyArray_IntpFromSequence (C function), 1255
PyArray_IS_C_CONTIGUOUS (C function), 1239
PyArray_IS_F_CONTIGUOUS (C function), 1239
PyArray_ISALIGNED (C function), 1239
PyArray_IsAnyScalar (C function), 1231
PyArray_ISBEHAVED (C function), 1239
PyArray_ISBEHAVED_RO (C function), 1239
PyArray_ISBOOL (C function), 1232
PyArray_ISBYTESWAPPED (C function), 1232
PyArray_ISCARRAY (C function), 1239
PyArray_ISCARRAY_RO (C function), 1239
PyArray_ISCOMPLEX (C function), 1231
PyArray_ISEXTENDED (C function), 1232
PyArray_ISFARRAY (C function), 1239
PyArray_ISFARRAY_RO (C function), 1239
PyArray_ISFLEXIBLE (C function), 1232
PyArray_ISFLOAT (C function), 1231
PyArray_ISFORTRAN (C function), 1239
PyArray_ISINTEGER (C function), 1231
PyArray_ISNOTSWAPPED (C function), 1232
PyArray_ISNUMBER (C function), 1232
PyArray_ISOBJECT (C function), 1232
PyArray_ISONESEGMENT (C function), 1239
PyArray_ISPYTHON (C function), 1232
PyArray_IsPythonNumber (C function), 1231
PyArray_IsPythonScalar (C function), 1231
PyArray_IsScalar (C function), 1230
PyArray_ISSIGNED (C function), 1231
PyArray_ISSTRING (C function), 1232
PyArray_ISUNSIGNED (C function), 1231
PyArray_ISUSERDEF (C function), 1232
PyArray_ISWRITEABLE (C function), 1239
PyArray_IsZeroDim (C function), 1230
PyArray_Item_INCREF (C function), 1236
PyArray_Item_XDECREF (C function), 1236
PyArray_ITEMSIZE (C function), 1223
PyArray_ITER_DATA (C function), 1249
PyArray_ITER_GOTO (C function), 1249
PyArray_ITER_GOTO1D (C function), 1249
PyArray_ITER_NEXT (C function), 1249
PyArray_ITER_NOTDONE (C function), 1249
PyArray_ITER_RESET (C function), 1249
PyArray_IterAllButAxis (C function), 1249
PyArray_IterNew (C function), 1249
PyArray_LexSort (C function), 1242
PyArray_malloc (C function), 1257
PyArray_MatrixProduct (C function), 1246
PyArray_MatrixProduct2 (C function), 1246
PyArray_MAX (C function), 1260
PyArray_Max (C function), 1244
PyArray_Mean (C function), 1244
PyArray_MIN (C function), 1260

1358 Index



NumPy Reference, Release 1.15.1

PyArray_Min (C function), 1244
PyArray_MinScalarType (C function), 1234
PyArray_MoveInto (C function), 1229
PyArray_MultiIter_DATA (C function), 1249
PyArray_MultiIter_GOTO (C function), 1250
PyArray_MultiIter_GOTO1D (C function), 1250
PyArray_MultiIter_NEXT (C function), 1249
PyArray_MultiIter_NEXTi (C function), 1250
PyArray_MultiIter_NOTDONE (C function), 1250
PyArray_MultiIter_RESET (C function), 1249
PyArray_MultiIterNew (C function), 1249
PyArray_MultiplyIntList (C function), 1247
PyArray_MultiplyList (C function), 1247
PyArray_NBYTES (C function), 1223
PyArray_NDIM (C function), 1222
PyArray_NeighborhoodIterNew (C function), 1250
PyArray_New (C function), 1224
PyArray_NewCopy (C function), 1240
PyArray_NewFromDescr (C function), 1224
PyArray_NewLikeArray (C function), 1224
PyArray_Newshape (C function), 1241
PyArray_Nonzero (C function), 1243
PyArray_ObjectType (C function), 1234
PyArray_One (C function), 1235
PyArray_OrderConverter (C function), 1255
PyArray_OutputConverter (C function), 1254
PyArray_Partition (C function), 1243
PyArray_Prod (C function), 1245
PyArray_PromoteTypes (C function), 1234
PyArray_Ptp (C function), 1244
PyArray_PutMask (C function), 1242
PyArray_PutTo (C function), 1242
PyArray_PyIntAsInt (C function), 1255
PyArray_PyIntAsIntp (C function), 1255
PyArray_Ravel (C function), 1241
PyArray_realloc (C function), 1258
PyArray_REFCOUNT (C function), 1260
PyArray_RegisterCanCast (C function), 1236
PyArray_RegisterCastFunc (C function), 1235
PyArray_RegisterDataType (C function), 1235
PyArray_RemoveSmallest (C function), 1250
PyArray_Repeat (C function), 1242
PyArray_Reshape (C function), 1241
PyArray_Resize (C function), 1241
PyArray_ResolveWritebackIfCopy (C function), 1258
PyArray_ResultType (C function), 1234
PyArray_Return (C function), 1251
PyArray_Round (C function), 1244
PyArray_SAMESHAPE (C function), 1260
PyArray_Scalar (C function), 1251
PyArray_ScalarAsCtype (C function), 1252
PyArray_ScalarKind (C function), 1252
PyArray_SearchsideConverter (C function), 1254
PyArray_SearchSorted (C function), 1243

PyArray_SetBaseObject (C function), 1225
PyArray_SetField (C function), 1240
PyArray_SETITEM (C function), 1223
PyArray_SetNumericOps (C function), 1257
PyArray_SetStringFunction (C function), 1257
PyArray_SetUpdateIfCopyBase (C function), 1236
PyArray_SetWritebackIfCopyBase (C function), 1236
PyArray_SHAPE (C function), 1222
PyArray_SimpleNew (C function), 1224
PyArray_SimpleNewFromData (C function), 1224
PyArray_SimpleNewFromDescr (C function), 1225
PyArray_SIZE (C function), 1223
PyArray_Size (C function), 1223
PyArray_Sort (C function), 1242
PyArray_SortkindConverter (C function), 1254
PyArray_Squeeze (C function), 1241
PyArray_Std (C function), 1244
PyArray_STRIDE (C function), 1222
PyArray_STRIDES (C function), 1222
PyArray_Sum (C function), 1245
PyArray_SwapAxes (C function), 1241
PyArray_TakeFrom (C function), 1242
PyArray_ToFile (C function), 1240
PyArray_ToList (C function), 1240
PyArray_ToScalar (C function), 1252
PyArray_ToString (C function), 1240
PyArray_Trace (C function), 1244
PyArray_Transpose (C function), 1241
PyArray_TYPE (C function), 1223
PyArray_Type (C variable), 1202
PyArray_TypeObjectFromType (C function), 1252
PyArray_TypestrConvert (C function), 1255
PyArray_UpdateFlags (C function), 1239
PyArray_ValidType (C function), 1235
PyArray_View (C function), 1240
PyArray_Where (C function), 1247
PyArray_XDECREF (C function), 1236
PyArray_XDECREF_ERR (C function), 1260
PyArray_Zero (C function), 1235
PyArray_ZEROS (C function), 1225
PyArray_Zeros (C function), 1225
PyArrayDescr_Type (C variable), 1203
PyArrayFlags_Type (C variable), 1212
PyArrayInterface (C type), 1214
PyArrayInterface.PyArrayInterface.data (C member),

1215
PyArrayInterface.PyArrayInterface.descr (C member),

1215
PyArrayInterface.PyArrayInterface.flags (C member),

1214
PyArrayInterface.PyArrayInterface.itemsize (C member),

1214
PyArrayInterface.PyArrayInterface.nd (C member), 1214

Index 1359



NumPy Reference, Release 1.15.1

PyArrayInterface.PyArrayInterface.shape (C member),
1215

PyArrayInterface.PyArrayInterface.strides (C member),
1215

PyArrayInterface.PyArrayInterface.two (C member),
1214

PyArrayInterface.PyArrayInterface.typekind (C mem-
ber), 1214

PyArrayIter_Check (C function), 1249
PyArrayIter_Type (C variable), 1210
PyArrayIterObject (C type), 1210
PyArrayIterObject.PyArrayIterObject.ao (C member),

1211
PyArrayIterObject.PyArrayIterObject.backstrides (C

member), 1211
PyArrayIterObject.PyArrayIterObject.contiguous (C

member), 1211
PyArrayIterObject.PyArrayIterObject.coordinates (C

member), 1211
PyArrayIterObject.PyArrayIterObject.dataptr (C mem-

ber), 1211
PyArrayIterObject.PyArrayIterObject.dims_m1 (C mem-

ber), 1211
PyArrayIterObject.PyArrayIterObject.factors (C mem-

ber), 1211
PyArrayIterObject.PyArrayIterObject.index (C member),

1211
PyArrayIterObject.PyArrayIterObject.nd_m1 (C mem-

ber), 1211
PyArrayIterObject.PyArrayIterObject.size (C member),

1211
PyArrayIterObject.PyArrayIterObject.strides (C mem-

ber), 1211
PyArrayMapIter_Type (C variable), 1215
PyArrayMultiIter_Type (C variable), 1211
PyArrayMultiIterObject (C type), 1212
PyArrayMultiIterObject.PyArrayMultiIterObject.dimensions

(C member), 1212
PyArrayMultiIterObject.PyArrayMultiIterObject.index

(C member), 1212
PyArrayMultiIterObject.PyArrayMultiIterObject.iters (C

member), 1212
PyArrayMultiIterObject.PyArrayMultiIterObject.nd (C

member), 1212
PyArrayMultiIterObject.PyArrayMultiIterObject.numiter

(C member), 1212
PyArrayMultiIterObject.PyArrayMultiIterObject.size (C

member), 1212
PyArrayNeighborhoodIter_Next (C function), 1251
PyArrayNeighborhoodIter_Reset (C function), 1251
PyArrayNeighborhoodIter_Type (C variable), 1212
PyArrayNeighborhoodIterObject (C type), 1212
PyArrayObject (C type), 1202
PyArrayObject.base (C member), 1203

PyArrayObject.data (C member), 1202
PyArrayObject.descr (C member), 1203
PyArrayObject.dimensions (C member), 1202
PyArrayObject.flags (C member), 1203
PyArrayObject.nd (C member), 1202
PyArrayObject.strides (C member), 1202
PyArrayObject.weakreflist (C member), 1203
PyDataMem_FREE (C function), 1257
PyDataMem_NEW (C function), 1257
PyDataMem_RENEW (C function), 1257
PyDataType_FLAGCHK (C function), 1204
PyDataType_HASFIELDS (C function), 1232
PyDataType_ISBOOL (C function), 1232
PyDataType_ISCOMPLEX (C function), 1231
PyDataType_ISEXTENDED (C function), 1232
PyDataType_ISFLEXIBLE (C function), 1232
PyDataType_ISFLOAT (C function), 1231
PyDataType_ISINTEGER (C function), 1231
PyDataType_ISNUMBER (C function), 1231
PyDataType_ISOBJECT (C function), 1232
PyDataType_ISPYTHON (C function), 1232
PyDataType_ISSIGNED (C function), 1231
PyDataType_ISSTRING (C function), 1232
PyDataType_ISUNSIGNED (C function), 1231
PyDataType_ISUSERDEF (C function), 1232
PyDataType_REFCHK (C function), 1204
PyDimMem_FREE (C function), 1257
PyDimMem_NEW (C function), 1257
PyDimMem_RENEW (C function), 1257
Python Enhancement Proposals

PEP 3118, 349
PyTypeNum_ISBOOL (C function), 1232
PyTypeNum_ISCOMPLEX (C function), 1231
PyTypeNum_ISEXTENDED (C function), 1232
PyTypeNum_ISFLEXIBLE (C function), 1232
PyTypeNum_ISFLOAT (C function), 1231
PyTypeNum_ISINTEGER (C function), 1231
PyTypeNum_ISNUMBER (C function), 1231
PyTypeNum_ISOBJECT (C function), 1232
PyTypeNum_ISPYTHON (C function), 1232
PyTypeNum_ISSIGNED (C function), 1231
PyTypeNum_ISSTRING (C function), 1232
PyTypeNum_ISUNSIGNED (C function), 1231
PyTypeNum_ISUSERDEF (C function), 1232
PyUFunc_checkfperr (C function), 1281
PyUFunc_clearfperr (C function), 1282
PyUFunc_D_D (C function), 1282
PyUFunc_d_d (C function), 1282
PyUFunc_DD_D (C function), 1282
PyUFunc_dd_d (C function), 1282
PyUFunc_e_e (C function), 1282
PyUFunc_e_e_As_d_d (C function), 1282
PyUFunc_e_e_As_f_f (C function), 1282
PyUFunc_ee_e (C function), 1283

1360 Index



NumPy Reference, Release 1.15.1

PyUFunc_ee_e_As_dd_d (C function), 1283
PyUFunc_ee_e_As_ff_f (C function), 1283
PyUFunc_F_F (C function), 1282
PyUFunc_f_f (C function), 1282
PyUFunc_F_F_As_D_D (C function), 1282
PyUFunc_f_f_As_d_d (C function), 1282
PyUFunc_FF_F (C function), 1283
PyUFunc_ff_f (C function), 1282
PyUFunc_FF_F_As_DD_D (C function), 1282
PyUFunc_ff_f_As_dd_d (C function), 1282
PyUFunc_FromFuncAndData (C function), 1280
PyUFunc_FromFuncAndDataAndSignature (C function),

1281
PyUFunc_G_G (C function), 1282
PyUFunc_g_g (C function), 1282
PyUFunc_GenericFunction (C function), 1281
PyUFunc_GetPyValues (C function), 1282
PyUFunc_GG_G (C function), 1283
PyUFunc_gg_g (C function), 1282
PyUFunc_Loop1d (C type), 1215
PyUFunc_O_O (C function), 1283
PyUFunc_O_O_method (C function), 1283
PyUFunc_On_Om (C function), 1283
PyUFunc_OO_O (C function), 1283
PyUFunc_OO_O_method (C function), 1283
PyUFunc_PyFuncData (C type), 1283
PyUFunc_RegisterLoopForDescr (C function), 1281
PyUFunc_RegisterLoopForType (C function), 1281
PyUFunc_ReplaceLoopBySignature (C function), 1281
PyUFunc_Type (C variable), 1208
PyUFuncLoopObject (C type), 1215
PyUFuncObject (C type), 1209
PyUFuncObject.PyUFuncObject.data (C member), 1209
PyUFuncObject.PyUFuncObject.doc (C member), 1210
PyUFuncObject.PyUFuncObject.identity (C member),

1209
PyUFuncObject.PyUFuncObject.iter_flags (C member),

1210
PyUFuncObject.PyUFuncObject.name (C member),

1210
PyUFuncObject.PyUFuncObject.nargs (C member), 1209
PyUFuncObject.PyUFuncObject.nin (C member), 1209
PyUFuncObject.PyUFuncObject.nout (C member), 1209
PyUFuncObject.PyUFuncObject.ntypes (C member),

1209
PyUFuncObject.PyUFuncObject.obj (C member), 1210
PyUFuncObject.PyUFuncObject.op_flags (C member),

1210
PyUFuncObject.PyUFuncObject.ptr (C member), 1210
PyUFuncObject.PyUFuncObject.types (C member), 1210
PyUFuncObject.PyUFuncObject.userloops (C member),

1210
PyUFuncReduceObject (C type), 1215
PZERO (in module numpy), 365

Q
qr() (in module numpy.linalg), 668
quantile() (in module numpy), 1128

R
r_ (in module numpy), 588
rad2deg (in module numpy), 726
radians (in module numpy), 724
rand() (in module numpy.matlib), 803
rand() (in module numpy.random), 988
rand() (numpy.random.RandomState method), 1075
randint() (in module numpy.random), 989
randint() (numpy.random.RandomState method), 1077
randn() (in module numpy.matlib), 804
randn() (in module numpy.random), 988
randn() (numpy.random.RandomState method), 1078
random() (in module numpy.random), 992
random_integers() (in module numpy.random), 990
random_integers() (numpy.random.RandomState

method), 1078
random_sample() (in module numpy.random), 991
random_sample() (numpy.random.RandomState

method), 1080
RandomState (class in numpy.random), 1041
ranf() (in module numpy.random), 992
RankWarning, 970, 987
rate() (in module numpy), 577
ravel (in module numpy.ma), 282
ravel() (in module numpy), 432
ravel() (numpy.chararray method), 150
ravel() (numpy.core.defchararray.chararray method), 507
ravel() (numpy.generic method), 58
ravel() (numpy.ma.MaskedArray method), 235
ravel() (numpy.matrix method), 122
ravel() (numpy.ndarray method), 18
ravel() (numpy.recarray method), 176
ravel() (numpy.record method), 193
ravel_multi_index() (in module numpy), 594
rayleigh() (in module numpy.random), 1026
rayleigh() (numpy.random.RandomState method), 1081
real (numpy.generic attribute), 51
real (numpy.ma.MaskedArray attribute), 227
real (numpy.ndarray attribute), 35
real() (in module numpy), 782
real_if_close() (in module numpy), 797
recarray (class in numpy), 162
reciprocal (in module numpy), 769
record (class in numpy), 186
record() (numpy.testing.suppress_warnings method),

1172
recordmask (numpy.ma.MaskedArray attribute), 219, 281
red_text() (in module numpy.distutils.misc_util), 1188
reduce

ufunc methods, 1301

Index 1361



NumPy Reference, Release 1.15.1

reduce() (numpy.ufunc method), 383
reduceat

ufunc methods, 1301
reduceat() (numpy.ufunc method), 386
remainder (in module numpy), 780
remove_axis() (numpy.nditer method), 620
remove_multi_index() (numpy.nditer method), 620
repeat() (in module numpy), 458
repeat() (numpy.chararray method), 150
repeat() (numpy.core.defchararray.chararray method),

507
repeat() (numpy.generic method), 58
repeat() (numpy.ma.MaskedArray method), 244
repeat() (numpy.matrix method), 122
repeat() (numpy.ndarray method), 18
repeat() (numpy.recarray method), 176
repeat() (numpy.record method), 193
replace() (in module numpy.core.defchararray), 484
replace() (numpy.chararray method), 150
replace() (numpy.core.defchararray.chararray method),

507
repmat() (in module numpy.matlib), 803
require() (in module numpy), 444
reset() (numpy.broadcast method), 200
reset() (numpy.nditer method), 620
reshape() (in module numpy), 430
reshape() (in module numpy.ma), 282
reshape() (numpy.chararray method), 150
reshape() (numpy.core.defchararray.chararray method),

508
reshape() (numpy.generic method), 59
reshape() (numpy.ma.MaskedArray method), 235
reshape() (numpy.matrix method), 122
reshape() (numpy.ndarray method), 18
reshape() (numpy.recarray method), 176
reshape() (numpy.record method), 193
resize() (in module numpy), 462
resize() (in module numpy.ma), 283
resize() (numpy.chararray method), 151
resize() (numpy.core.defchararray.chararray method), 508
resize() (numpy.generic method), 59
resize() (numpy.ma.MaskedArray method), 236
resize() (numpy.matrix method), 123
resize() (numpy.ndarray method), 18
resize() (numpy.recarray method), 176
resize() (numpy.record method), 193
result_type() (in module numpy), 529
rfft() (in module numpy.fft), 556
rfft2() (in module numpy.fft), 559
rfftfreq() (in module numpy.fft), 565
rfftn() (in module numpy.fft), 559
rfind() (in module numpy.core.defchararray), 495
rfind() (numpy.chararray method), 152
rfind() (numpy.core.defchararray.chararray method), 509

right_shift (in module numpy), 475
rindex() (in module numpy.core.defchararray), 496
rindex() (numpy.chararray method), 152
rindex() (numpy.core.defchararray.chararray method),

509
rint (in module numpy), 733
rjust() (in module numpy.core.defchararray), 485
rjust() (numpy.chararray method), 152
rjust() (numpy.core.defchararray.chararray method), 509
roll() (in module numpy), 468
rollaxis() (in module numpy), 434
roots() (in module numpy), 979
roots() (numpy.polynomial.chebyshev.Chebyshev

method), 849
roots() (numpy.polynomial.hermite.Hermite method),

924
roots() (numpy.polynomial.hermite_e.HermiteE method),

950
roots() (numpy.polynomial.laguerre.Laguerre method),

899
roots() (numpy.polynomial.legendre.Legendre method),

874
roots() (numpy.polynomial.polynomial.Polynomial

method), 825
rot90() (in module numpy), 469
round() (in module numpy.ma), 341
round() (numpy.generic method), 59
round() (numpy.ma.MaskedArray method), 252
round() (numpy.matrix method), 124
round() (numpy.ndarray method), 20
round() (numpy.recarray method), 178
round() (numpy.record method), 193
round_() (in module numpy), 733
row-major, 28
row_stack (in module numpy.ma), 294
rpartition() (in module numpy.core.defchararray), 485
rsplit() (in module numpy.core.defchararray), 485
rsplit() (numpy.chararray method), 152
rsplit() (numpy.core.defchararray.chararray method), 509
rstrip() (in module numpy.core.defchararray), 486
rstrip() (numpy.chararray method), 152
rstrip() (numpy.core.defchararray.chararray method), 510
run_module_suite() (in module numpy.testing), 1170
rundocs() (in module numpy.testing), 1170

S
s_ (in module numpy), 589
sample() (in module numpy.random), 993
save() (in module numpy), 626
savetxt() (in module numpy), 629
savez() (in module numpy), 627
savez_compressed() (in module numpy), 628
scalar

dtype, 62

1362 Index



NumPy Reference, Release 1.15.1

sctype2char() (in module numpy), 539
searchsorted() (in module numpy), 1115
searchsorted() (numpy.chararray method), 153
searchsorted() (numpy.core.defchararray.chararray

method), 510
searchsorted() (numpy.generic method), 59
searchsorted() (numpy.ma.MaskedArray method), 245
searchsorted() (numpy.matrix method), 124
searchsorted() (numpy.ndarray method), 20
searchsorted() (numpy.recarray method), 178
searchsorted() (numpy.record method), 193
seed() (in module numpy.random), 1096
seed() (numpy.random.RandomState method), 1082
select() (in module numpy), 609
set_fill_value() (in module numpy.ma), 314
set_fill_value() (numpy.ma.MaskedArray method), 263
set_printoptions() (in module numpy), 641
set_state() (in module numpy.random), 1097
set_state() (numpy.random.RandomState method), 1082
set_string_function() (in module numpy), 643
set_verbosity() (in module numpy.distutils.log), 1196
setastest() (in module numpy.testing.decorators), 1168
setbufsize() (in module numpy), 372
setdiff1d() (in module numpy), 1101
seterr() (in module numpy), 373
seterrcall() (in module numpy), 374
seterrobj() (in module numpy), 544
setfield() (numpy.chararray method), 153
setfield() (numpy.core.defchararray.chararray method),

510
setfield() (numpy.generic method), 59
setfield() (numpy.matrix method), 124
setfield() (numpy.ndarray method), 20
setfield() (numpy.recarray method), 178
setfield() (numpy.record method), 194
setflags() (numpy.chararray method), 153
setflags() (numpy.core.defchararray.chararray method),

510
setflags() (numpy.generic method), 59
setflags() (numpy.matrix method), 125
setflags() (numpy.ndarray method), 21
setflags() (numpy.recarray method), 179
setflags() (numpy.record method), 194
setitem

ndarray special methods, 77
setxor1d() (in module numpy), 1102
shape (numpy.dtype attribute), 75
shape (numpy.generic attribute), 50
shape (numpy.ma.MaskedArray attribute), 225
shape (numpy.ndarray attribute), 31
shape() (in module numpy.ma), 279
sharedmask (numpy.ma.MaskedArray attribute), 220
shares_memory() (in module numpy), 805
shrink_mask() (numpy.ma.MaskedArray method), 262

shuffle() (in module numpy.random), 995
shuffle() (numpy.random.RandomState method), 1082
sign (in module numpy), 790
signature (numpy.ufunc attribute), 382
signbit (in module numpy), 763
sin (in module numpy), 714
sinc() (in module numpy), 762
single-segment, 29
sinh (in module numpy), 727
size (numpy.generic attribute), 51
size (numpy.ma.MaskedArray attribute), 225
size (numpy.ndarray attribute), 33
size() (in module numpy.ma), 279
skipif() (in module numpy.testing.decorators), 1168
slicing, 77
slogdet() (in module numpy.linalg), 683
slow() (in module numpy.testing.decorators), 1169
soften_mask (in module numpy.ma), 308
soften_mask() (numpy.ma.MaskedArray method), 261
solve() (in module numpy.linalg), 686
sort() (in module numpy), 1103
sort() (in module numpy.ma), 328
sort() (numpy.chararray method), 155
sort() (numpy.core.defchararray.chararray method), 512
sort() (numpy.generic method), 59
sort() (numpy.ma.MaskedArray method), 245
sort() (numpy.matrix method), 126
sort() (numpy.ndarray method), 22
sort() (numpy.recarray method), 180
sort() (numpy.record method), 194
sort_complex() (in module numpy), 1108
source() (in module numpy), 586
spacing (in module numpy), 767
special methods

getitem, ndarray, 77
setitem, ndarray, 77

split() (in module numpy), 453
split() (in module numpy.core.defchararray), 486
split() (numpy.chararray method), 155
split() (numpy.core.defchararray.chararray method), 513
splitlines() (in module numpy.core.defchararray), 486
splitlines() (numpy.chararray method), 156
splitlines() (numpy.core.defchararray.chararray method),

513
sqrt (in module numpy), 786
square (in module numpy), 788
squeeze() (in module numpy), 441
squeeze() (in module numpy.ma), 288
squeeze() (numpy.chararray method), 156
squeeze() (numpy.core.defchararray.chararray method),

513
squeeze() (numpy.generic method), 60
squeeze() (numpy.ma.MaskedArray method), 236
squeeze() (numpy.matrix method), 127

Index 1363



NumPy Reference, Release 1.15.1

squeeze() (numpy.ndarray method), 23
squeeze() (numpy.recarray method), 181
squeeze() (numpy.record method), 194
stack (in module numpy.ma), 288
stack() (in module numpy), 447
standard_cauchy() (in module numpy.random), 1028
standard_cauchy() (numpy.random.RandomState

method), 1083
standard_exponential() (in module numpy.random), 1029
standard_exponential() (numpy.random.RandomState

method), 1084
standard_gamma() (in module numpy.random), 1029
standard_gamma() (numpy.random.RandomState

method), 1084
standard_normal() (in module numpy.random), 1030
standard_normal() (numpy.random.RandomState

method), 1085
standard_t() (in module numpy.random), 1031
standard_t() (numpy.random.RandomState method), 1086
startswith() (in module numpy.core.defchararray), 496
startswith() (numpy.chararray method), 156
startswith() (numpy.core.defchararray.chararray method),

513
std (in module numpy.ma), 322
std() (in module numpy), 1135
std() (numpy.generic method), 60
std() (numpy.ma.MaskedArray method), 252
std() (numpy.matrix method), 128
std() (numpy.ndarray method), 23
std() (numpy.recarray method), 181
std() (numpy.record method), 194
str (numpy.dtype attribute), 73
stride, 28
strides (numpy.generic attribute), 50
strides (numpy.ma.MaskedArray attribute), 226
strides (numpy.ndarray attribute), 32
strip() (in module numpy.core.defchararray), 487
strip() (numpy.chararray method), 156
strip() (numpy.core.defchararray.chararray method), 513
sub-array

dtype, 62, 70
subdtype (numpy.dtype attribute), 75
subtract (in module numpy), 774
sum (in module numpy.ma), 322
sum() (in module numpy), 738
sum() (numpy.generic method), 60
sum() (numpy.ma.MaskedArray method), 252
sum() (numpy.matrix method), 128
sum() (numpy.ndarray method), 23
sum() (numpy.recarray method), 181
sum() (numpy.record method), 194
suppress_warnings (class in numpy.testing), 1170
svd() (in module numpy.linalg), 670
swapaxes (in module numpy.ma), 284

swapaxes() (in module numpy), 435
swapaxes() (numpy.chararray method), 156
swapaxes() (numpy.core.defchararray.chararray method),

513
swapaxes() (numpy.generic method), 60
swapaxes() (numpy.ma.MaskedArray method), 237
swapaxes() (numpy.matrix method), 129
swapaxes() (numpy.ndarray method), 23
swapaxes() (numpy.recarray method), 181
swapaxes() (numpy.record method), 194
swapcase() (in module numpy.core.defchararray), 487
swapcase() (numpy.chararray method), 156
swapcase() (numpy.core.defchararray.chararray method),

513

T
T (numpy.generic attribute), 51
T (numpy.ma.MaskedArray attribute), 237
T (numpy.matrix attribute), 101
T (numpy.ndarray attribute), 35
take() (in module numpy), 601
take() (numpy.chararray method), 156
take() (numpy.core.defchararray.chararray method), 513
take() (numpy.generic method), 60
take() (numpy.ma.MaskedArray method), 246
take() (numpy.matrix method), 129
take() (numpy.ndarray method), 23
take() (numpy.recarray method), 181
take() (numpy.record method), 195
take_along_axis() (in module numpy), 603
tan (in module numpy), 716
tanh (in module numpy), 728
tensordot() (in module numpy), 657
tensorinv() (in module numpy.linalg), 691
tensorsolve() (in module numpy.linalg), 687
terminal_has_colors() (in module

numpy.distutils.misc_util), 1188
Tester (in module numpy.testing), 1170
tile() (in module numpy), 457
title() (in module numpy.core.defchararray), 488
title() (numpy.chararray method), 156
title() (numpy.core.defchararray.chararray method), 514
tobytes() (numpy.ma.MaskedArray method), 234
tobytes() (numpy.matrix method), 129
tobytes() (numpy.ndarray method), 23
tobytes() (numpy.recarray method), 182
todict() (numpy.distutils.misc_util.Configuration

method), 1188
tofile() (numpy.chararray method), 157
tofile() (numpy.core.defchararray.chararray method), 514
tofile() (numpy.generic method), 60
tofile() (numpy.ma.MaskedArray method), 232
tofile() (numpy.matrix method), 130
tofile() (numpy.ndarray method), 24

1364 Index



NumPy Reference, Release 1.15.1

tofile() (numpy.recarray method), 182
tofile() (numpy.record method), 195
toflex() (numpy.ma.MaskedArray method), 232
tolist() (numpy.chararray method), 157
tolist() (numpy.core.defchararray.chararray method), 514
tolist() (numpy.generic method), 60
tolist() (numpy.ma.MaskedArray method), 232
tolist() (numpy.matrix method), 130
tolist() (numpy.ndarray method), 24
tolist() (numpy.recarray method), 183
tolist() (numpy.record method), 195
tomaxint() (numpy.random.RandomState method), 1087
torecords() (numpy.ma.MaskedArray method), 233
tostring() (numpy.chararray method), 158
tostring() (numpy.core.defchararray.chararray method),

515
tostring() (numpy.generic method), 61
tostring() (numpy.ma.MaskedArray method), 233
tostring() (numpy.matrix method), 130
tostring() (numpy.ndarray method), 25
tostring() (numpy.recarray method), 183
tostring() (numpy.record method), 195
trace (in module numpy.ma), 336
trace() (in module numpy), 685
trace() (numpy.generic method), 61
trace() (numpy.ma.MaskedArray method), 253
trace() (numpy.matrix method), 131
trace() (numpy.ndarray method), 25
trace() (numpy.recarray method), 184
trace() (numpy.record method), 195
translate() (in module numpy.core.defchararray), 488
translate() (numpy.chararray method), 158
translate() (numpy.core.defchararray.chararray method),

515
transpose() (in module numpy), 436
transpose() (in module numpy.ma), 284
transpose() (numpy.chararray method), 158
transpose() (numpy.core.defchararray.chararray method),

515
transpose() (numpy.generic method), 61
transpose() (numpy.ma.MaskedArray method), 237
transpose() (numpy.matrix method), 131
transpose() (numpy.ndarray method), 26
transpose() (numpy.recarray method), 184
transpose() (numpy.record method), 195
trapz() (in module numpy), 751
tri() (in module numpy), 426
triangular() (in module numpy.random), 1032
triangular() (numpy.random.RandomState method), 1088
tril() (in module numpy), 427
tril_indices() (in module numpy), 598
tril_indices_from() (in module numpy), 599
trim() (numpy.polynomial.chebyshev.Chebyshev

method), 849

trim() (numpy.polynomial.hermite.Hermite method), 925
trim() (numpy.polynomial.hermite_e.HermiteE method),

950
trim() (numpy.polynomial.laguerre.Laguerre method),

899
trim() (numpy.polynomial.legendre.Legendre method),

874
trim() (numpy.polynomial.polynomial.Polynomial

method), 825
trim_zeros() (in module numpy), 463
trimcoef() (in module numpy.polynomial.polyutils), 971
trimseq() (in module numpy.polynomial.polyutils), 971
triu() (in module numpy), 427
triu_indices() (in module numpy), 599
triu_indices_from() (in module numpy), 600
true_divide (in module numpy), 774
trunc (in module numpy), 736
truncate() (numpy.polynomial.chebyshev.Chebyshev

method), 849
truncate() (numpy.polynomial.hermite.Hermite method),

925
truncate() (numpy.polynomial.hermite_e.HermiteE

method), 950
truncate() (numpy.polynomial.laguerre.Laguerre

method), 900
truncate() (numpy.polynomial.legendre.Legendre

method), 874
truncate() (numpy.polynomial.polynomial.Polynomial

method), 825
type (numpy.dtype attribute), 73
typename() (in module numpy), 538
types (numpy.ufunc attribute), 381

U
ufunc, 1298, 1301

attributes, 379
C-API, 1279, 1284
casting rules, 375
keyword arguments, 377
methods, 383
methods accumulate, 1301
methods reduce, 1301
methods reduceat, 1301

UFUNC_CHECK_ERROR (C function), 1279
UFUNC_CHECK_STATUS (C function), 1280
uniform() (in module numpy.random), 1034
uniform() (numpy.random.RandomState method), 1089
union1d() (in module numpy), 1102
unique() (in module numpy), 463
unpackbits() (in module numpy), 476
unravel_index() (in module numpy), 595
unshare_mask() (numpy.ma.MaskedArray method), 262
unwrap() (in module numpy), 724
upper() (in module numpy.core.defchararray), 489

Index 1365



NumPy Reference, Release 1.15.1

upper() (numpy.chararray method), 159
upper() (numpy.core.defchararray.chararray method), 516
user_array, 196

V
vander() (in module numpy), 428
vander() (in module numpy.ma), 336
var (in module numpy.ma), 323
var() (in module numpy), 1137
var() (numpy.generic method), 61
var() (numpy.ma.MaskedArray method), 253
var() (numpy.matrix method), 132
var() (numpy.ndarray method), 26
var() (numpy.recarray method), 184
var() (numpy.record method), 195
vdot() (in module numpy), 652
vectorize (class in numpy), 580
view, 3

ndarray, 79
view() (numpy.chararray method), 159
view() (numpy.core.defchararray.chararray method), 516
view() (numpy.generic method), 61
view() (numpy.ma.MaskedArray method), 228
view() (numpy.matrix method), 132
view() (numpy.ndarray method), 26
view() (numpy.recarray method), 185
view() (numpy.record method), 196
vonmises() (in module numpy.random), 1035
vonmises() (numpy.random.RandomState method), 1091
vsplit() (in module numpy), 456
vstack (in module numpy.ma), 295
vstack() (in module numpy), 450

W
wald() (in module numpy.random), 1037
wald() (numpy.random.RandomState method), 1092
weibull() (in module numpy.random), 1038
weibull() (numpy.random.RandomState method), 1093
where() (in module numpy), 591
where() (in module numpy.ma), 348

Y
yellow_text() (in module numpy.distutils.misc_util), 1188

Z
zeros (in module numpy.ma), 271
zeros() (in module numpy), 400
zeros() (in module numpy.matlib), 800
zeros_like() (in module numpy), 400
zfill() (in module numpy.core.defchararray), 489
zfill() (numpy.chararray method), 161
zfill() (numpy.core.defchararray.chararray method), 518
zipf() (in module numpy.random), 1039
zipf() (numpy.random.RandomState method), 1095

1366 Index


	Array objects
	The N-dimensional array (ndarray)
	Scalars
	Data type objects (dtype)
	Indexing
	Iterating Over Arrays
	Standard array subclasses
	Masked arrays
	The Array Interface
	Datetimes and Timedeltas

	Constants
	Universal functions (ufunc)
	Broadcasting
	Output type determination
	Use of internal buffers
	Error handling
	Casting Rules
	Overriding Ufunc behavior
	ufunc
	Available ufuncs

	Routines
	Array creation routines
	Array manipulation routines
	Binary operations
	String operations
	C-Types Foreign Function Interface (numpy.ctypeslib)
	Datetime Support Functions
	Data type routines
	Optionally Scipy-accelerated routines (numpy.dual)
	Mathematical functions with automatic domain (numpy.emath)
	Floating point error handling
	Discrete Fourier Transform (numpy.fft)
	Financial functions
	Functional programming
	NumPy-specific help functions
	Indexing routines
	Input and output
	Linear algebra (numpy.linalg)
	Logic functions
	Mathematical functions
	Matrix library (numpy.matlib)
	Miscellaneous routines
	Padding Arrays
	Polynomials
	Random sampling (numpy.random)
	Set routines
	Sorting, searching, and counting
	Statistics
	Test Support (numpy.testing)
	Window functions

	Packaging (numpy.distutils)
	Modules in numpy.distutils
	Building Installable C libraries
	Conversion of .src files

	NumPy C-API
	Python Types and C-Structures
	System configuration
	Data Type API
	Array API
	Array Iterator API
	UFunc API
	Generalized Universal Function API
	NumPy core libraries
	C API Deprecations

	NumPy internals
	NumPy C Code Explanations
	Internal organization of numpy arrays
	Multidimensional Array Indexing Order Issues

	NumPy and SWIG
	Testing the numpy.i Typemaps

	Acknowledgements
	Bibliography
	Python Module Index
	Index

