SciPy

numpy.roll

numpy.roll(a, shift, axis=None)[source]

Roll array elements along a given axis.

Elements that roll beyond the last position are re-introduced at the first.

Parameters:
a : array_like

Input array.

shift : int or tuple of ints

The number of places by which elements are shifted. If a tuple, then axis must be a tuple of the same size, and each of the given axes is shifted by the corresponding number. If an int while axis is a tuple of ints, then the same value is used for all given axes.

axis : int or tuple of ints, optional

Axis or axes along which elements are shifted. By default, the array is flattened before shifting, after which the original shape is restored.

Returns:
res : ndarray

Output array, with the same shape as a.

See also

rollaxis
Roll the specified axis backwards, until it lies in a given position.

Notes

New in version 1.12.0.

Supports rolling over multiple dimensions simultaneously.

Examples

>>> x = np.arange(10)
>>> np.roll(x, 2)
array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])
>>> x2 = np.reshape(x, (2,5))
>>> x2
array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9]])
>>> np.roll(x2, 1)
array([[9, 0, 1, 2, 3],
       [4, 5, 6, 7, 8]])
>>> np.roll(x2, 1, axis=0)
array([[5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4]])
>>> np.roll(x2, 1, axis=1)
array([[4, 0, 1, 2, 3],
       [9, 5, 6, 7, 8]])

Previous topic

numpy.flipud

Next topic

numpy.rot90