numpy.ma.masked_object¶
-
numpy.ma.
masked_object
(x, value, copy=True, shrink=True)[source]¶ Mask the array x where the data are exactly equal to value.
This function is similar to
masked_values
, but only suitable for object arrays: for floating point, usemasked_values
instead.Parameters: - x : array_like
Array to mask
- value : object
Comparison value
- copy : {True, False}, optional
Whether to return a copy of x.
- shrink : {True, False}, optional
Whether to collapse a mask full of False to nomask
Returns: - result : MaskedArray
The result of masking x where equal to value.
See also
masked_where
- Mask where a condition is met.
masked_equal
- Mask where equal to a given value (integers).
masked_values
- Mask using floating point equality.
Examples
>>> import numpy.ma as ma >>> food = np.array(['green_eggs', 'ham'], dtype=object) >>> # don't eat spoiled food >>> eat = ma.masked_object(food, 'green_eggs') >>> print(eat) [-- ham] >>> # plain ol` ham is boring >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) >>> eat = ma.masked_object(fresh_food, 'green_eggs') >>> print(eat) [cheese ham pineapple]
Note that mask is set to
nomask
if possible.>>> eat masked_array(data = [cheese ham pineapple], mask = False, fill_value=?)