SciPy

numpy.ma.masked_array.filled

masked_array.filled(fill_value=None)[source]

Return a copy of self, with masked values filled with a given value. However, if there are no masked values to fill, self will be returned instead as an ndarray.

Parameters:
fill_value : scalar, optional

The value to use for invalid entries (None by default). If None, the fill_value attribute of the array is used instead.

Returns:
filled_array : ndarray

A copy of self with invalid entries replaced by fill_value (be it the function argument or the attribute of self), or self itself as an ndarray if there are no invalid entries to be replaced.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
>>> x.filled()
array([1, 2, -999, 4, -999])
>>> type(x.filled())
<type 'numpy.ndarray'>

Subclassing is preserved. This means that if, e.g., the data part of the masked array is a recarray, filled returns a recarray:

>>> x = np.array([(-1, 2), (-3, 4)], dtype='i8,i8').view(np.recarray)
>>> m = np.ma.array(x, mask=[(True, False), (False, True)])
>>> m.filled()
rec.array([(999999,      2), (    -3, 999999)],
          dtype=[('f0', '<i8'), ('f1', '<i8')])