numpy.random.RandomState.power¶
- 
RandomState.power(a, size=None)¶
- Draws samples in [0, 1] from a power distribution with positive exponent a - 1. - Also known as the power function distribution. - Parameters: - a : float or array_like of floats - Parameter of the distribution. Should be greater than zero. - size : int or tuple of ints, optional - Output shape. If the given shape is, e.g., - (m, n, k), then- m * n * ksamples are drawn. If size is- None(default), a single value is returned if- ais a scalar. Otherwise,- np.array(a).sizesamples are drawn.- Returns: - out : ndarray or scalar - Drawn samples from the parameterized power distribution. - Raises: - ValueError - If a < 1. - Notes - The probability density function is - The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. - It is used, for example, in modeling the over-reporting of insurance claims. - References - [R195] - Christian Kleiber, Samuel Kotz, “Statistical size distributions in economics and actuarial sciences”, Wiley, 2003. - [R196] - Heckert, N. A. and Filliben, James J. “NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions”, National Institute of Standards and Technology Handbook Series, June 2003. http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf - Examples - Draw samples from the distribution: - >>> a = 5. # shape >>> samples = 1000 >>> s = np.random.power(a, samples) - Display the histogram of the samples, along with the probability density function: - >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show()   - Compare the power function distribution to the inverse of the Pareto. - >>> from scipy import stats >>> rvs = np.random.power(5, 1000000) >>> rvsp = np.random.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) - >>> plt.figure() >>> plt.hist(rvs, bins=50, normed=True) >>> plt.plot(xx,powpdf,'r-') >>> plt.title('np.random.power(5)') - >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, normed=True) >>> plt.plot(xx,powpdf,'r-') >>> plt.title('inverse of 1 + np.random.pareto(5)') - >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, normed=True) >>> plt.plot(xx,powpdf,'r-') >>> plt.title('inverse of stats.pareto(5)')       
