SciPy

numpy.common_type

numpy.common_type(*arrays)[source]

Return a scalar type which is common to the input arrays.

The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays. If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point dtype.

All input arrays except int64 and uint64 can be safely cast to the returned dtype without loss of information.

Parameters:

array1, array2, ... : ndarrays

Input arrays.

Returns:

out : data type code

Data type code.

See also

dtype, mintypecode

Examples

>>> np.common_type(np.arange(2, dtype=np.float32))
<type 'numpy.float32'>
>>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
<type 'numpy.float64'>
>>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
<type 'numpy.complex128'>

Previous topic

numpy.result_type

Next topic

numpy.obj2sctype