SciPy

numpy.array

numpy.array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)

Create an array.

Parameters:

object : array_like

An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence.

dtype : data-type, optional

The desired data-type for the array. If not given, then the type will be determined as the minimum type required to hold the objects in the sequence. This argument can only be used to ‘upcast’ the array. For downcasting, use the .astype(t) method.

copy : bool, optional

If true (default), then the object is copied. Otherwise, a copy will only be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of the other requirements (dtype, order, etc.).

order : {‘K’, ‘A’, ‘C’, ‘F’}, optional

Specify the memory layout of the array. If object is not an array, the newly created array will be in C order (row major) unless ‘F’ is specified, in which case it will be in Fortran order (column major). If object is an array the following holds.

order no copy copy=True
‘K’ unchanged F & C order preserved, otherwise most similar order
‘A’ unchanged F order if input is F and not C, otherwise C order
‘C’ C order C order
‘F’ F order F order

When copy=False and a copy is made for other reasons, the result is the same as if copy=True, with some exceptions for A, see the Notes section. The default order is ‘K’.

subok : bool, optional

If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array (default).

ndmin : int, optional

Specifies the minimum number of dimensions that the resulting array should have. Ones will be pre-pended to the shape as needed to meet this requirement.

Returns:

out : ndarray

An array object satisfying the specified requirements.

Notes

When order is ‘A’ and object is an array in neither ‘C’ nor ‘F’ order, and a copy is forced by a change in dtype, then the order of the result is not necessarily ‘C’ as expected. This is likely a bug.

Examples

>>> np.array([1, 2, 3])
array([1, 2, 3])

Upcasting:

>>> np.array([1, 2, 3.0])
array([ 1.,  2.,  3.])

More than one dimension:

>>> np.array([[1, 2], [3, 4]])
array([[1, 2],
       [3, 4]])

Minimum dimensions 2:

>>> np.array([1, 2, 3], ndmin=2)
array([[1, 2, 3]])

Type provided:

>>> np.array([1, 2, 3], dtype=complex)
array([ 1.+0.j,  2.+0.j,  3.+0.j])

Data-type consisting of more than one element:

>>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])
>>> x['a']
array([1, 3])

Creating an array from sub-classes:

>>> np.array(np.mat('1 2; 3 4'))
array([[1, 2],
       [3, 4]])
>>> np.array(np.mat('1 2; 3 4'), subok=True)
matrix([[1, 2],
        [3, 4]])

Previous topic

numpy.full_like

Next topic

numpy.asarray