SciPy

numpy.testing.Tester.test

Tester.test(label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, raise_warnings=None)[source]

Run tests for module using nose.

Parameters:

label : {‘fast’, ‘full’, ‘’, attribute identifier}, optional

Identifies the tests to run. This can be a string to pass to the nosetests executable with the ‘-A’ option, or one of several special values. Special values are: * ‘fast’ - the default - which corresponds to the nosetests -A

option of ‘not slow’.

  • ‘full’ - fast (as above) and slow tests as in the ‘no -A’ option to nosetests - this is the same as ‘’.
  • None or ‘’ - run all tests.

attribute_identifier - string passed directly to nosetests as ‘-A’.

verbose : int, optional

Verbosity value for test outputs, in the range 1-10. Default is 1.

extra_argv : list, optional

List with any extra arguments to pass to nosetests.

doctests : bool, optional

If True, run doctests in module. Default is False.

coverage : bool, optional

If True, report coverage of NumPy code. Default is False. (This requires the `coverage module:

raise_warnings : None, str or sequence of warnings, optional

This specifies which warnings to configure as ‘raise’ instead of being shown once during the test execution. Valid strings are:

  • “develop” : equals (Warning,)
  • “release” : equals (), don’t raise on any warnings.

The default is to use the class initialization value.

Returns:

result : object

Returns the result of running the tests as a nose.result.TextTestResult object.

Notes

Each NumPy module exposes test in its namespace to run all tests for it. For example, to run all tests for numpy.lib:

>>> np.lib.test() 

Examples

>>> result = np.lib.test() 
Running unit tests for numpy.lib
...
Ran 976 tests in 3.933s

OK

>>> result.errors 
[]
>>> result.knownfail 
[]