# numpy.bitwise_or¶

`numpy.``bitwise_or`(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'bitwise_or'>

Compute the bit-wise OR of two arrays element-wise.

Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator `|`.

Parameters: x1, x2 : array_like Only integer and boolean types are handled. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the ufunc docs. out : array_like Result.

`binary_repr`
Return the binary representation of the input number as a string.

Examples

The number 13 has the binaray representation `00001101`. Likewise, 16 is represented by `00010000`. The bit-wise OR of 13 and 16 is then `000111011`, or 29:

```>>> np.bitwise_or(13, 16)
29
>>> np.binary_repr(29)
'11101'
```
```>>> np.bitwise_or(32, 2)
34
>>> np.bitwise_or([33, 4], 1)
array([33,  5])
>>> np.bitwise_or([33, 4], [1, 2])
array([33,  6])
```
```>>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4]))
array([  6,   5, 255])
>>> np.array([2, 5, 255]) | np.array([4, 4, 4])
array([  6,   5, 255])
>>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32),
...               np.array([4, 4, 4, 2147483647L], dtype=np.int32))
array([         6,          5,        255, 2147483647])
>>> np.bitwise_or([True, True], [False, True])
array([ True,  True], dtype=bool)
```

#### Previous topic

numpy.bitwise_and

#### Next topic

numpy.bitwise_xor