Notes

New in version 1.7.0.

For an array with rank greater than 1, some of the padding of later axes is calculated from padding of previous axes. This is easiest to think about with a rank 2 array where the corners of the padded array are calculated by using padded values from the first axis.

The padding function, if used, should return a rank 1 array equal in length to the vector argument with padded values replaced. It has the following signature:

```padding_func(vector, iaxis_pad_width, iaxis, **kwargs)
```

where

vector : ndarray
A 2-tuple of ints, iaxis_pad_width represents the number of values padded at the beginning of vector where iaxis_pad_width represents the number of values padded at the end of vector.
iaxis : int
The axis currently being calculated.
kwargs : misc
Any keyword arguments the function requires.

Examples

```>>> a = [1, 2, 3, 4, 5]
>>> np.lib.pad(a, (2,3), 'constant', constant_values=(4, 6))
array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6])
```
```>>> np.lib.pad(a, (2, 3), 'edge')
array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5])
```
```>>> np.lib.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([ 5,  3,  1,  2,  3,  4,  5,  2, -1, -4])
```
```>>> np.lib.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])
```
```>>> np.lib.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
```
```>>> np.lib.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
```
```>>> a = [[1, 2], [3, 4]]
>>> np.lib.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[3, 3, 3, 4, 3, 3, 3],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1]])
```
```>>> a = [1, 2, 3, 4, 5]
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])
```
```>>> np.lib.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1,  0,  1,  2,  3,  4,  5,  6,  7,  8])
```
```>>> np.lib.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])
```
```>>> np.lib.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])
```
```>>> np.lib.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])
```
```>>> def padwithtens(vector, pad_width, iaxis, kwargs):
...     return vector
```
```>>> a = np.arange(6)
>>> a = a.reshape((2, 3))
```
```>>> np.lib.pad(a, 2, padwithtens)
array([[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10,  0,  1,  2, 10, 10],
[10, 10,  3,  4,  5, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10]])
```