numpy.zeros¶
- numpy.zeros(shape, dtype=float, order='C')¶
- Return a new array of given shape and type, filled with zeros. - Parameters: - shape : int or sequence of ints - Shape of the new array, e.g., (2, 3) or 2. - dtype : data-type, optional - The desired data-type for the array, e.g., numpy.int8. Default is numpy.float64. - order : {‘C’, ‘F’}, optional - Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. - Returns: - out : ndarray - Array of zeros with the given shape, dtype, and order. - See also - zeros_like
- Return an array of zeros with shape and type of input.
- ones_like
- Return an array of ones with shape and type of input.
- empty_like
- Return an empty array with shape and type of input.
- ones
- Return a new array setting values to one.
- empty
- Return a new uninitialized array.
 - Examples - >>> np.zeros(5) array([ 0., 0., 0., 0., 0.]) - >>> np.zeros((5,), dtype=np.int) array([0, 0, 0, 0, 0]) - >>> np.zeros((2, 1)) array([[ 0.], [ 0.]]) - >>> s = (2,2) >>> np.zeros(s) array([[ 0., 0.], [ 0., 0.]]) - >>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype array([(0, 0), (0, 0)], dtype=[('x', '<i4'), ('y', '<i4')]) 
